Parameter estimation is a common challenge that arises in the domain of computational scientific modeling. Agent-based models offer particular challenges in this regard, and many solutions are too computationally intense and scale with the number of parameters. In this paper, we propose knowledge-based function approximation methods to deal with this problem in agent-based modeling. Our method is implemented within the VERA modeling system, and we show the validity of our methods using an internal model as well as an external model.
Recent News
New Podcast on Jill Watson and SAMI
Hiring a full-time research scientist and a half-time post-doc
News coverage on Jill Watson: what different sectors can teach us about AI
Congratulations to DILab alumni Mukundan Kuthalam for his recent acceptance to the Computer Science PhD program at Northwestern University!
Congratulations to DILab alumni Varsha Achar for starting her new job at Facebook!