Learning by imitation is an essential process in human cognition. Recently, imitation learning has also become important in robotics research. We address the problem of learning by imitation in interactive, robotic agents using case-based reasoning. We describe two tasks for which case-based reasoning may be used: (i) interpretation, in which the robot interprets new skill demonstrations as being related to previous observations, and (ii) imitation, in which a robot seeks to use previously learned skills to address new problem scenarios. We present a case-based framework for imitation and interpretation in a robotic agent that learns from observations of a human teacher.
Recent News
Ashok Goel: CogSci 2022
Sungeun An: Presentation at The 23rd International Conference on Artificial Intelligence in Education.
Sungeun An: Presentation at ITS (Intelligence Tutoring System) 2022 conference
Faces of Research: Meet Ashok Goel
XPrize has selected Georgia Tech’s Veritas team for the round of 10 teams in the Digital Learning Challenge