We address the problem of imitation learning in interactive robots which learn from task demonstrations. Many current approaches to interactive robot learning are performed over a set of demonstrations, where the robot observes several demonstrations of the same task and then creates a generalized model. In contrast, we aim to enable a robot to learn from individual demonstrations, each of which are stored in the robot’s memory as source cases. When the robot is later tasked with repeating a task in a new environment containing a different set of objects, features, or a new object configuration, the robot would then use a case-based reasoning framework to retrieve, adapt, and execute the source case demonstration in the new environment. We describe our ongoing work to implement this case-based framework for imitation learning in robotic agents.
Recent News
Ashok Goel: CogSci 2022
Sungeun An: Presentation at The 23rd International Conference on Artificial Intelligence in Education.
Sungeun An: Presentation at ITS (Intelligence Tutoring System) 2022 conference
Faces of Research: Meet Ashok Goel
XPrize has selected Georgia Tech’s Veritas team for the round of 10 teams in the Digital Learning Challenge