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Introduction & Motivation

RQ1: How can an intelligent agent (IA) explain how a skill functions?

RQ2: How can an IA inspect the design of a skill?

q An IA can effectively explain how a skill functions if it is decomposed using the 
TMK (Task-Method-Knowledge) framework. 

q We modeled six skills taught in a graduate-level AI course2 using the following 
procedures:
o Task definition: Identify the goal of a skill.

o Method specification: Outline the sequence of states and state transitions to 
accomplish the task.

o Knowledge representation: Define objects, concepts, and their 
relationships within the environment. 

q Online learners often struggle to understand the “how” and “why” behind 
procedural skills.

q Traditional chat-based agents offer shallow explanations that hinder skill-based 
learning

q Proposal: A hybrid system combining knowledge-based AI and generative AI 
to generate explanations that embody teleological, causal and compositional 
principles. 
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Figure 1: High-level TMK model of the ‘Partial Order Planning’ 
skill, showing hierarchical problem decomposition.

Figure 2: Overall schematic of the IA architecture.

Research Questions

Model skills using the TMK framework1

Algorithm for Skill Learning Q&A
q Step 1: Learner submits question.

q Step 2: Coach moderates and determines if it cannot answer or routes question 
to Knowledge Retrieval module.

q Step 3: Assess question complexity to determine the depth of response and 
fetches relevant TMK components.

q Step 4: Response generation iteratively refines answers.

q Step 5: Optimize the response to be clear and concise and send it as output to 
the learner.

Example Use Case
q Skill: Partial Order Planning (POP)

q Learner Question: "What is the goal of the painting task in POP?"

q IA Response: "The goal is to achieve the end state where both the ladder and 
ceiling are painted, ensuring actions are sequenced to avoid conflicts (e.g., 
paint ceiling before ladder).”

q Compared to baseline methods, IA provides structured logic and teleological 
reasoning.

Evaluation and Results

q Developer Perception Evaluation:
o IA preferred in 82.14% of responses over RAG benchmark (53.57%)

q Semantic Similarity (SBERT Scores):
o IA: 0.82 (Avg.) vs. Expected Responses.

q Automated Knowledge Trace Analysis:
o Correct TMK file usage in 90% of queries.
o 83% of content sourced from relevant documents.

Key Takeaways
q The IA, powered by TMK models and Generative AI, provides deeper and 

more structured explanations than traditional methods.

q Learners benefit from teleological, causal, and compositional reasoning in 
explanations.

q Enhanced understanding of procedural knowledge leads to improved skill-
based learning outcomes.

Future Work
q Automating TMK model creation to reduce development time.

q Expanding to episodic knowledge queries.

q Conducting real-world learner studies to validate practical impact.
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