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Abstract
We present an interactive modeling tool, VERA,
that scaffolds the acquisition of domain knowledge
involved in conceptual modeling and agent-based
simulations. We describe the knowledge engineer-
ing process of contextualizing large-scale domain
knowledge. Specifically, we use the ontology of bi-
otic interactions in Global Biotic Interactions, and
the trait data of species in Encyclopedia of Life to
facilitate the model construction. Learners can use
VERA to construct qualitative conceptual models
of ecological phenomena, run them as quantitative
simulations, and review their predictions.

1 Introduction
Modeling is central to human cognition and scientific reason-
ing [Schwarz and White, 2005]. Qualitative representations
in the form of conceptual models capture the components and
mechanisms that explain the observed phenomenon [Forbus,
1984][Schwarz and White, 2005], which helps learners exter-
nalize, share, and simulate the system the model represents.
Simulation models are executable with specific values for the
system’s input variables, enabling determination of the tem-
poral evolution of the values of the system’s output variables
[White and Frederiksen, 1990][De Jong and Van Joolingen,
1998].

The importance of learning how to construct, use, evaluate,
and revise models has been advocated by many researchers
[Frederiksen and White, 2002]. In particular, with the impor-
tance of addressing environmental problems, there is growing
interest in empowering novice learners with little scientific
training or expertise to engage in modeling activities to in-
crease their understanding of the local environments and to
learn through various experiments. They are also interested
in capturing and simulating conceptual knowledge [Huang et
al., 2017].

However, many studies have revealed that modeling is a
difficult process for novice learners and hampered by lack of
domain knowledge [Hogan and Thomas, 2001][Sins et al.,
2005][VanLehn, 2013]. Ecological knowledge is inherently
heterogenous, including both qualitative and quantitative as-
pects [Salles and Bredeweg, 2003]. The qualitative aspect
of ecological knowledge includes definitions of components,

a set of variables associated with them, and causal relations
between the variables associated with the different compo-
nents [Liem and others, 2013]. For example, learners should
be able to answer some questions, such as “How much en-
ergy will an alligator acquire from eating a muskrat?” and
“What are the relationships between body mass and respira-
tory rate?” Without the domain’s necessary knowledge as a
pre-requisite, the learner will not be able to benefit from using
and creating models because there is no knowledge to differ-
entiate and integrate [Tennyson and Breuer, 2002].

Of course, large amounts of knowledge about many do-
mains are now readily accessible on the internet. However,
much of this general-purpose knowledge is not particular to
any specific task and thus difficult to comprehend by many
learners. The research question then becomes can we pro-
vide access to large-scale domain knowledge in a compre-
hensible manner? Our research hypothesis is that access to
large-scale domain knowledge should be contextualized and
that contextualized acquisition of this knowledge may help
learners achieve deeper understanding about the domain and
generate richer models.

In this paper, we describe the knowledge engineering pro-
cess of contextualizing large-scale domain knowledge in an
online modeling called VERA. The Virtual Experimentation
Research Assistant (VERA; vera.cc.gatech.edu; [An et al.,
2020]) supports ecological modeling using large-scale do-
main knowledge through Smithsonian’s Encyclopedia of Life
[EOL; eol.org; [Parr et al., 2016]] and Global Biotic In-
teraction [GloBI; globalbioticinteractions.org; [Poelen et al.,
2014]]. Specifically, we used the ontology of biotic interac-
tions in GloBI and the trait data of species in EOL to facilitate
the model construction. Learners can use VERA to construct
qualitative conceptual models of ecological phenomena, run
them as quantitative simulations, and review their predictions.

2 Related Work
Much cognitive systems research has explored interactive
tools for qualitative modeling and qualitative simulation and
their use for promoting science education and research [Bre-
deweg and Forbus, 2003][Forbus et al., 2005][Leelawong and
Biswas, 2008][Bredeweg et al., 2013]. VERA has a close
similarity to Forbus et al.’s Vmodel [2005], Bredeweg et al.’s
Garp-3 system [2009], and DynaLearn [2013] in that it al-
lows the user to first create qualitative models of ecologi-
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cal phenomena and then qualitatively simulate them [For-
bus et al., 2005][Bredeweg et al., 2009][Bredeweg et al.,
2013]. In contrast to these qualitative modeling tools, VERA
uses Component-Mechanism-Phenomena language to assist
the process of authoring conceptual models. VERA also uses
a translator between the conceptual models and the off-the-
shelf NetLogo engine for directly spawning the agent-based
simulations from the conceptual models.

VERA is built on the previous work that used Component-
Mechanism-Phenomenon (or CMP) causal models [Joyner et
al., 2011] that arose from Structure-Behavior-Function mod-
els [Goel et al., 2009]. In CMP, Components represent the
Structure of the system, emphasizing the physical pieces of
an ecological system and their properties. Mechanism rep-
resents the Behavior of the system, a sequence of develop-
ments linked together in a causal chain that results in some
observable Phenomenon. Phenomenon represents what was
formerly described as the Function of the system; the Phe-
nomenon is the initial observable event that the investiga-
tor aims to explain. VERA is also built on the previous
work that used an off-the-shelf agent-based simulation sys-
tem called NetLogo [Joyner et al., 2014] because agent-based
simulations are especially well suited for ecological modeling
[Wilensky and Reisman, 2006].

Although the focus of this paper is on the knowledge en-
gineering in VERA, we should note that earlier work has
demonstrated VERA’s usefulness for enabling learning of do-
main knowledge [An et al., 2018]. In particular, we found
that learners who used the full cycle of model construction,
evaluation, and revision created models of higher quality than
learners who only constructed conceptual models or only ob-
served the simulations [An et al., 2022].

3 VERA
VERA (Virtual Experimentation Research Assistant) is an
online learning environment that enables learners to construct
conceptual models of ecological systems and run agent-based
simulations of these models. This allows learners to explore
ecological systems and perform “what-if” experiments to ei-
ther explain an existing ecological system or attempt to pre-
dict the outcome of future changes to one.

From a human-learning perspective, the key steps in the
overall procedure for learning in VERA are as follows. A
learner often starts with the identification of an atypical or
abnormal phenomenon (e.g., overpopulation). The learner
may then develop multiple hypotheses for explaining the phe-
nomenon. The VERA’s interface for CMP conceptual model-
ing coupled with the contextualized domain knowledge helps
the learner to express and elaborate his or her hypotheses.
The learner may then evaluate his or her hypotheses through
the agent-based simulations, which may lead to a revision of
his or her hypothesis.

This paper focuses on describe the knowledge engineering
process of contextualizing large-scale domain knowledge in
VERA. As shown in Figure 1, VERA uses domain knowledge
in two ways. First, VERA’s taxonomy of interactions among
biotic components in a conceptual model is based on the on-
tology of the interactions used by Global Biotic Interactions

(GloBI). Second, VERA uses trait data from Encyclopedia
of Life to suggest the initial parameter values and define the
relationships between variables.

This section introduces the design of our system including
conceptual models using CMP modeling language (Section
3.1) and an AI compiler that translates the conceptual models
into agent-based simulation (Section 3.3). Section 3.2 pro-
vides how VERA retrieves and contextualize domain knowl-
edge.

Figure 1: Schematic Overview of Using Domain Knowledge for
Conceptual Modeling and Simulation.

3.1 Conceptual Models
The declarative conceptual models of an ecological phe-
nomenon in VERA are based on the Component-Mechanism-
Phenomenon (CMP) models. Components in VERA can be
either biotic or abiotic, and each component has a set of vari-
ables associated with it, thirteen for biotic and three for abi-
otic components to represent the structure of the system. For
example, biotic components are defined by their lifespan, re-
productive maturity, reproductive interval, offspring count,
starting population, minimum population, body mass, carbon
biomass, respiratory rate, photosynthesis rate, assimilation
efficiency, move direction, and move velocity. Abiotic sub-
stances are defined by their amount, minimum amount, and
growth rate. These properties were selected and adapted to
represent ecologically relevant attributes and primitives for
ecological modeling (see Table 1).

To describe casual relationships among components in
an ecological system, we used the ontology of the inter-
actions from a digital library called Global Biotic Interac-
tions (GloBI) [Poelen et al., 2014]. GloBI provides open ac-
cess to finding species interaction data (e.g., predator-prey,
pollinator-plant, pathogen-host, parasite-host) by combining
existing open datasets using open-source software. GloBI
provides 22 possible interaction types between species.
Among 22 interaction types, we reduced to five interaction
types by integrating redundant interactions and extracting
“primitive” interactions between components that give rise
to the behavior of the system as a whole (see Table 2). Ex-
amples of such primitive component–component interactions



Component Property Description EOL Trait Data

Biotic Lifespan Average lifespan of organisms in this
population in months.

“life span” or “total life span”

Reproductive
Maturity

Age when organisms in this popula-
tion are able to begin reproduction in
month.

“age at first birth”,“age at first
reproduc-tion”,“age at matu-
rity”,“onset of fertility”,“egg laying
begins”

Reproductive
Interval

Frequency with which organisms in
this population are able to reproduce
in months.

“inter-birth interval”

Offspring
Count

Average number of offspring per
spawning individual for a reproduc-
tion cycle.

“offspring” “litters per year”

Body Mass Average body mass per organism. “body mass” If it is not available, at-
tempt to estimate it based on taxo-
nomic ancestry traits (“body length”)

Carbon
Biomass

Average carbon biomass in an individ-
ual organism.

“carbon biomass” Attempt to estimate
it based on taxonomic ancestry traits
(“plant height”, “body mass”)

Respiratory
Rate

Average basal metabolic rate, mea-
sured as respiration (loss) of carbon
biomass.

“respiratory rate” If it is not avail-
able, attempt to estimate it based
on taxonomic ancestry traits (“basal
metabolic rate”, “body mass”)

Photosynthesis
Rate

Average addition of carbon biomass
from photosynthesis for a square
meter of density-based populations
(kg/month).

“photosynthetic rate” If it is not avail-
able, attempt to estimate it based on
taxonomic ancestry traits (“net carbon
fixation rate”)

Assimilation
Efficiency

Efficiency of assimilating carbon
biomass via consumption (0.0 - 1.0).

Attempt to estimate it based on taxo-
nomic ancestry traits.

Table 1: The Selected Properties of Biotic Components and their Trait Data for Conceptual Modeling.

include consumes (one biotic organism consuming another),
produces (a biotic organism producing an abiotic substance),
and destroys (an abiotic substance harming a biotic organ-
ism).

To instantiate the principles of CMP and better facilitate
modeling of ecological phenomena, VERA provides a visual
interface for Component-Mechanism-Phenomenon language
with a well-defined semantics to represent conceptual models
clearly. Figure 2(A) shows a screenshot of the model can-
vas in VERA where a learner can build a conceptual model
by adding biotic (rectangular), abiotic (ellipse), and relation-
ships among them. The learner can draw a directed relation-
ship between two components and choose a pre-dfined rela-
tionship type from the drop-down menu. The right-side panel
in Figure 2(B) is the modeling and simulation parameter edi-
tor. The simulation parameters of each component can affect
its simulation behavior.

Figure 2(A) illustrates a causal conceptual model of kudzu
(Pueraria Montana), kudzu bug (Megacopta Cribraria), and
American hornbeam (Carpinus Caroliniana) in the Southern
United State. In this model, there are four components: light
(abiotic), kudzu (biotic), American hornbeam (biotic), and
kudzu bug (biotic). Regarding mechanisms (relationships),
kudzu bug consumes both kudzu and American hornbeam,
and light affects both kudzu and American hornbeam. The di-

rection of the arrow between the variables of two components
indicates the direction of causal influence. For example, the
arrow from kudzu bug to kudzu indicates that the population
of kudzu bug consumes the population of kudzu.

A Phenomenon is an observation of the system of interest.
For example, the mechanism illustrated in Figure 2(A) can
exhibit three different phenomena depending on the manip-
ulation of the kudzu bug population. First, when kudzu bug
is low, kudzu grows fast and outcompetes American horn-
beam for the shared resource of light, and American horn-
beam does not survive the competition with kudzu. Second,
when the population of the kudzu bug is adequate (medium),
the kudzu population is controlled while American hornbeam
also survives (as shown in Figure 2(C)). Lastly, when the pop-
ulation of the kudzu bug is high, the Kudzu and the American
hornbeam population both die off due to the large kudzu bug
population.

3.2 Contextualize Domain Knowledge
We use EOL’s the trait data to suggest initial parameter values
for species of interest (see Table 1). EOL is the world’s largest
aggregated and curated database of species data with almost
two million species and eleven million attribute records in the
biological domain [Parr et al., 2016]. Over 10 million trait
data records are available for 1.7 million taxa. Figure 3 shows



Figure 2: The VERA system. (A) Conceptual Model. (B) Simulation parameters. (C) The Simulation Output Graph – x axis: Time (months);
y axis: Population.

a screenshot of trait data of Red Tailed Hawk in EOL. Trait-
Bank aggregates trait records from many sources, and for a
given trait, multiple records may exist from different studies
under a variety of conditions. To support large-scale queries,
EOL provides API services that allow queries for on-demand
JSON output about EOL taxa, ecological interactions, and or-
ganism attributes in the Cypher language.

VERA derives simulation parameters from EOL traits if
possible, otherwise attempts to estimate them based on troph-
ical ancestor and its body mass. If the trait data is available
in EOL, values are directly derived from the EOL trait data.
For example, in Table 1, lifespan is retrieved from existing
EOL traits such as life span or total life span (In case of re-
dundancy, the average value is used). Reproductive maturity
is retrieved from traits such as age at first birth, age at first
reproduction, age at maturity, onset of fertility, egg laying
begins. However, if the necessary trait data is not available
in EOL, VERA attempts to estimate the value with the in-
formation of the species’ ancestor. For example, if carbon
biomass is not available in EOL, it is calculated using its
body mass: Creptilia(.122) × bodymass (in case its ances-
tor is Reptilia in freshwater); Cmammalia(.16) × bodymass
(in case of Mammalia). If its taxonomic ancestry traits are
not available, VERA provides reasonable default values for
ecological plausibility (e.g., Cdefault(.1)× bodymass).

VERA provides the contextualized domain knowledge via

Figure 3: Screenshot of EOL trait data of Red Tailed Hawk

“Lookup EOL” feature. Figure 4 shows the process of adding
a biotic component via Lookup EOL. (1) The learner clicks
on “LookUp EOL” button in VERA and queries species name
(either scientific or common names). (2) Then the system
returns a list of species names that matches the input via EOL
Search API. (3) Then, the learner selects one species from the
list, and the system calls EOL TraitBank API for retrieving
specific traits of the species. Our inference engine uses the



Relationship Property Description GloBI Interactions

X Consumes Y Consumption rate,
interaction proba-
bility

When X interacts with Y, it will par-
tially or wholly consume Y, with car-
bon transfer to X from Y.

“eat”, “get eaten by”, “preys on”, “get
preyed on by”

X Destroys Y Destruction rate,
interaction proba-
bility

When X interacts with Y, it partially
or wholly destroys a simulation entity
of type Y with no carbon transfer to
X.

“kill”, “is killed by”, “parasi-tize”,
“get parasitized by”, “get infected by”

X Produces Y Production rate X will produce Y with some stochas-
tic timing and amount.

“visits flowers of”, “flowers visited
by”, “pollinate”, “get pollinated by”,
“spread”, “get spread by.”

X Affects Y Growth rate, inter-
action probability

This is a generic growth modifier that
allows for growth rates (negative or
positive) to modify Y when X inter-
acts with it, where none of the above
relationships apply.

“interacts with” (+, -), “related to”
(+, -), “parasitize” (-), “get parasitized
by” (-), “hosts”, “get hosted by.”

X Becomes Y on
Death

Percent body mass When X expires, it produces Y. -

Table 2: The Taxonomy of Interactions among Components.

retrieved traits to preset the simulation parameters.

3.3 Translating Conceptual Models into
Simulations

Following our earlier work on the MILA-S system [Joyner
et al., 2011][Joyner et al., 2014][Goel et al., 2016], VERA
uses an artificial intelligence compiler to automatically trans-
late the patterns in the conceptual models into the primi-
tives of agent-based simulation of NetLogo. In other words,
VERA automatically generates the simulations directly from
learner’s casual model. After constructing a CMP conceptual
model, the learner uses the suggested initial parameter values
by EOL for simulation generation (as described in Section
3.2).

Figure 5 illustrates mechanisms for translating the seman-
tics of CMP conceptual models into the semantics of the
Netlogo agent-based simulations, which is composed of four
steps. First, the compiler extracts conceptual model from vi-
sual layout via mxGraph java library. Then it is represented as
VeraWeb Domain Model to handle high level simulation con-
cepts. Next, Domain Simulation Builder decomposes high-
level domain-specific behaviors and logic into domain inde-
pendent simulation operations. Finally, the resulting simu-
lation abstract syntax tree (AST) and abstract semantic graph
(ASG) compiles abstract simulation into target simulation na-
tive constructs such as NetLogo.

We developed detailed knowledge representations for each
component (agent)-component (agent) interaction that will
specify how to set up the corresponding simulation. This
includes knowledge about the mechanism by which an
agent–agent interaction occurs as described in Table 2; for ex-
ample, in the case of consumption, the consuming organism
receives energy and nutrients while the consumed organism
perishes. It will also include numerical information relating
the various parameters of the mechanism. Some of this infor-
mation will be specific to the simulation engine so that the AI

compiler can in fact automatically generate the corresponding
simulation in the given simulation platform.

The components and properties in VERA (in Figure 2) are
translated to NetLogo models [Wilensky and Reisman, 2006].
Biotic components in VERA are translated to Turtles–the pri-
mary agents in NetLogo, and their attributes are also trans-
lated back to turtles’ attributes. For example, carbon parame-
ters, carbon biomass (the amount of carbon), respiratory rate
(loss of carbon biomass), photosynthesis rate (gain of carbon
biomass), and assimilation efficiency (percentage of carbon
biomass retained by the consumer) in VERA are calculated to
measure energy in NetLogo. Spatial parameters, move veloc-
ity and move direction, in VERA are translated to xcor, ycor,
and heading in NetLogo (The initial positions are randomly
initialized in VERA).

Figure 2(C) illustrates the time-series graph of the NetLogo
simulation results for the conceptual model in Figure 2(A).
Note that all four components of the causal model are repre-
sented in the simulation: the Light in yellow, Kudzu in green,
American Hornbeam in light blue, and Kudzu Bug in purple.
Before running a simulation, the user clicks the Reset button
to apply input parameters to a new simulation. The user next
clicks the Start button to start the time steps of the simulation
and clicks the Stop button to pause the simulation.

We should note that VERA is a conceptual modeling tool
specifically designed for non-scientists with little scientific
training or expertise. Therefore, the core aim of VERA’s
agent-based simulation is not to provide accurate scientific
predictions, but to give learners the ability to manipulate var-
ious variables and to see for themselves how the changes may
affect the system. By translating conceptual models into sim-
ulations, VERA facilitates the higher-level rapid model re-
vision process. The running of the simulation enables the
learner to observe the evolution of the system variables over
time, and iterate through the model-simulate-refine loops. In
this way, VERA integrates both qualitative reasoning in the



Figure 4: Using EOL TraitBank Data to Set Up Simulation Values.

conceptual model and quantitative reasoning in the simula-
tion reasoning on one hand, and explanatory reasoning and
predictive reasoning.

4 Conclusions

Modeling requires domain knowledge, e.g., relationships be-
tween variables describing the system being modeled. The
research question in this work is how might we provide ac-
cess to large-scale domain knowledge for learners engaged
in constructing qualitative models of ecological systems in a
comprehensible manner? The research hypothesis is that con-
textualizing large-scale domain knowledge can scaffold the
task of authoring conceptual models. VERA contextualizes
EOL’s large scale domain knowledge to support modeling of
ecological systems. It also uses Globi’s ontology of ecologi-
cal interactions to ground VERA’s CMP models.

The VERA system has been introduced and evaluated in
various contexts including college courses [An et al., 2018]
and self-directed learning on the web [An et al., 2022]. Addi-
tionally, our data analysis indicates promising results on the
usefulness of contextualized domain knowledge in building
conceptual models. Based on theses results, the contextual-
ized domain knowledge is expected to help novice learners
to use both qualitative and quantitative aspects of ecological
knowledge to model, analyze, explain, and predict problems
in ecological systems.
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