
t* \

WL-TR-97-1165

A KNOWLEDGE-BASED APPROACH TO
INTEGRATING AND QUERYING
DISTRIBUTED INFORMATION SYSTEMS
HETEROGENEOUS INTELLIGENT PROCESSING FOR
ENGINEERING DESIGN (HIPED)

Professor Shamkant B. Navathe, P.I.

Georgia Institute of Technology
College of Computing
Atlanta, Georgia 30332-0280

AUGUST 1997

FINAL REPORT FOR PERIOD 30 September 1993 - 30 March 1997

Approved for public release; distribution unlimited I

W980420122
J QÜÄLKT HJEH^GTED 4

AVIONICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7623

/ «*\

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in
connection with a definitely Government related procurement, the United States Government incurs no
responsibility nor any obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or
otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as
conveying any rights or permission to manufacture, use, or sell patented invention that may in any way be
related thereto.

This technical report has been reviewed and is approved for publication.

This report is releasable to the National Technical Information Service (NTIS).
At NTIS, it will be available to the general public, including foreign nations.

CHARLES P. SATTERTHWAITE, Project Engineer JAMES S. WILLIAMSON, Acting Chief
Software Hardware Technology Branch Software Hardware Technology Branch
WL/AASH WL/AASH

STANLEY E.'WAGNER, Chief
Systems Concepts & Simulation Division
WL/AAS

IF YOUR ADDRESS HAS CHANGED, EF YOU WISH TO BE REMOVED FROM OUR
MAILING LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR
ORGANIZATION, PLEASE NOTIFY WL/AASH, BLDG 620, 2241 AVIONICS CIRCLE, WRIGHT-
PATTERSON AFB, OH 45433-7318 TO HELP US MAINTAIN A CURRENT MAILING LIST.

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN IS
REQUIRED BY SECURITY CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR NOTICE ON
A SPECIFIC DOCUMENT.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 1997
3. REPORT TYPE AND DATES COVERED

 Final 30 Sept 93 - 30 Mar 97
4. TITLE AND SUBTITLE

A Knowledge-Based Approach to Integrating and Querying Distributed Information
Systems
Heterogeneous Intelligent Processing for Engineering Design (HIPED)
6. AUTHOR(S)

Prof. Shamkant B. Navathe, P.I.

5. FUNDING NUMBERS

C: F33615-93-1-1338
PE: 62301E
PR: A522
TA: 01
WU: 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Georgia Institue of Technology
College of Computing
Atlanta, Georgia 30332-0280

8. PERFORMING ORGANIZATION
REPORT NUMBER

Grant #: F33615-93-1-1338

.9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AVIONICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7623
POC: Charles Satterthwaite, AFRL/IFTA, 937-255-6548 x3584

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

WL-TR-97-1165

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Max/mum 200 words)

This program develops techniques which allows for the interactive access of dissimilar data sources; the informed
processing of the resultant search; and the capture of the associated knowledge gained from the interative usage of the
system.

14. SUBJECT TERMS

Heterogeneous distributed Information, Intelligent Query Processing, Databases
Knowledgebases

15. NUMBER OF PAGES

174
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

SAR
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

TABLE OF CONTENTS
page(s)

SECTION 1: Executive Summary 1-2

SECTION 2: Summaries ofResearch and Published Papers 3

PART I: HIPED: Heterogeneous Information Processing for Engineering Design 4-8
PUBLICATIONS (PART 1) 9

a. Towards Intelligent Integration of Heterogeneous Information Sources 10-18
b. Rule Based Database Integration in HIPED: Heterogeneous Intelligent Processing in

Engineering Design 19-26
c. From Data to Knowledge: Method-Specific Transformations 27-35
d. Integrating Heterogeneous Databases for Engineering Design 36-50
e. Method-Specific Knowledge Compilation: Towards Practical Design Support Systems ... 51-69

PART II: Visualization And User Interface Techniques for Information Retrieval 70-73
PUBLICATIONS (PART 2) 74

f. Visual Interface for Textual Information Retrieval Systems 75-79
g. Querying, Navigating and Visualizing a Digital Library Catalog 80-83
h. Interactive TREC-4 at Georgia Tech 84-94
i. Evaluation of a Tool for Visualization of Information Retrieval Results 95-118
j. Effectiveness of a Graphical Display of Retrieval Results 119-128

PART III: Metadata Management for Intelligent Query Processing 129-131
PUBLICATIONS (PART 3) 132

k. Maintaining Instance-Based Constraints for Semantic Query Optimization 133-153
1. Maintaining Semantic and Structural Metadata in the View Graph Framework 154-173

PART IV: Development of Intelligent Interface Tool for Engineering Design 174-176
PUBLICATIONS (PART 4) 177

m. Explanatory Interface in Interactive Design Environments 178-197
n. Toward Design Learning Environments -1: Exploring How Devices Work 198-206
o. Meta-Cases: Explaining Case-Based Reasoning 207-220
p. Functional Explanations in Design 221-230

SECTION 3: Conclusions 231-234

111

Section 1: EXECUTIVE SUMMARY

This report is a compilation of a summary of all the research work and
publications produced as a result of the project: "A Knowledge-Based
Approach to Integrating and Querying Distributed Heterogeneous
Information Systems", at the Georgia Institute of Technology, College of
Computing. The project was also nicknamed "HEPED" for Heterogeneous
Intelligent Processing for Engineering Design." The project was conducted
during 1993-96 under DARPA's 13 (Intelligent Integration of Information)
program by Professor Shamkant B. Navathe (P.I.), with Professors Edward
Omiecinski and Ashok Goel as co-principal investigators. Several graduate
students participated in the project including two who completed their Ph.D.
dissertations - Dr. Aravindan Veerasamy and Dr. Jeff Pittges. Professor Leo
Mark also participated as an advisor of Jeff Pittges.

The project was conducted keeping in mind the broad aim of the 13 program
to create enabling mediator technology by which future large scale
applications involving data from a variety of sources can be supported. The
"intelligence" during the processing of data and knowledge was considered by
incorporating meta data, rules and constraints as a part of the information
bases. We used design of engineering devices as a sample application, partly
because it provided an appropriate environment to study integration of data
and for transforming the needs of an intelligent front-end tool already under
development. This tool named KRITIK was enhanced so that its decision
alternatives may be enriched by extracting information from database
backends.

The project produced several prototype systems: (i) A HIPED testbed which
incorporated a deductive database engine called CORAL, and worked with the
KRITIK as a front end, (ii) a tool to support free-form queries against text
database, incorporating user feedback and visualization of results, and (iii) an
explanation interface in conjunction with the KRnTK3 interactive design
tool.

There were four broad objectives of this research program which are described
in the four parts of this report:

1. Integration: Creation of a uniform way of accessing heterogeneous data
sources by using a rule based approach that gives a flexibility to the user to
express correspondences among existing databases. Integration of data and
knowledge is achieved by linking front-end tools with reasoning capability to
back-end databases with query processing capability.

2. Query Formulation and Refinement for Text Data: Investigation and
validation of an approach that allows users to put in free-form requests for

data from a document database and improves their retrieval productivity by
appropriate mechanisms of feedback through visualization and user interface
design.

3. Query Optimization based on Semantics: Improving the efficiency of query
processing by exploring semantics of data, specifically in the form of
constraints at the instance level. A secondary problem of the efficient
management of such constraints was thoroughly investigated.

4. Improving the end user's understanding of query results: This is
accomplished by providing appropriate explanations. This work was done so
as to improve an existing engineering device design tool. - KRITIK 2.

The present research can be extended in several directions: determination of
appropriateness of an existing information source, using thesauri and
ontologies to capture domain knowledge during query processing, automated
knowledge acquisition from existing sources, dealing with external
knowledge sources during query processing, etc.

This work has developed many techniques and identified many open
problems that are summarized in Section 3 and 4 of the report. By addressing
several problems related to information integration, query formulation,
processing and integration, we have contributed to the overall goals of the
DARPA's 13 program.

SECTION 2.

SUMMARIES OF RESEARCH
AND PUBLISHED PAPERS

PARTI

HIPED: HETEROGENEOUS INTELLIGENT PROCESSING FOR
ENGINEERING DESIGN

PART II

VISUALIZATION AND USER INTERFACE TECHNIQUES FOR
INFORMATION RETRIEVAL

PART in

METADATA MANAGEMENT FOR INTELLIGENT QUERY
PROCESSING

PART IV

DEVELOPMENT OF AN INTELLIGENT INTERACTIVE TOOL
FOR ENGINEERING DESIGN

PARTI

HIPED: HETEROGENEOUS
INTELLIGENT PROCESSING
FOR ENGINEERING DESIGN

PART I: HIPED - HETEROGENEOUS INTELLIGENT
PROCESSING FOR ENGINEERING DESIGN.

Our main objective in this work was to develop an approach for supporting
large scale engineering design activities that need access to heterogeneous
database sources. We were particularly interested in developing a mediator
which utilizes meta-knowledge of the underlying information sources to aid
a user in browsing the underlying data or help a system or a user in
retrieving specific relevant information.

OBJECTIVE 1: Support Of Facilities For Accessing Heterogeneous Data And
Knowledge Sources:

The mediator we have designed provides the following capabilities:

A. A uniform access method and view of any database/knowledge base
system with relevant information regardless of the design of the individual
information system. We have taken engineering design as the application
domain.

The Engineering data is thought to be made up of various "Prototypes".
Each
Prototype has various "Properties". Each Property takes up some "Value" for
every Prototype. We can compare the Values of various properties using the
relations : =, <, >, <=, >=, <> etc. Thus any query can be represented as,

(Prototype <proto_name>) (Property <prop_name>)
(Value <value>) (Relation <rel>)

Paper [1.2] elaborates on this approach.

B. Metadata query facilities allowing the design system to determine relevant
information about component parameters, previous design specifications,
device function descriptions, etc. The data is organized at two levels. (1) the
metadata repository: consisting of information about various databases and
tables in them and (2) the actual data: which is distributed in various
heterogeneous databases. This organization reduces the data to be dealt with
at the first level to get to the appropriate database(s) and table(s). It also allows
heterogeneity in the various databases involved. Our initial proposal for
metadata management was described in paper [1-1]. It has been further refined
in [1.2]

The metadata is stored in the form of CORAL facts and rules. CORAL
is a deductive database system which stores data as facts and rules, and allows
for that data to be queried. It is public domain software developed at the

University of Wisconsin. By using CORAL the mediator can decide which
database(s) and table(s) are useful in answering any given query. In
particular, CORAL is used in deriving relationships like equivalence between
attributes, between tables and databases. Any creation, deletion or
modification of a table results in a change in the metadata repository. This
dynamic behavior can be easily captured by CORAL. In essence, CORAL
provides us with the facility for database integration through the facts and
rules specified about tables and databases. However, this integration can be
considered implicit rather than explicit since no global conceptual schema is
explicitly formed.

C. Data querying facilities allowing the design system to retrieve the actual
data regardless of location (local vs. remote) and data organization (relational,
knowledge-base, rule system, etc). In addition, this process is transparent to
the engineering design tool.

The actual data is distributed across various tables in various (possibly
heterogeneous) databases. Each database provides with its access methods
(e.g. an SQL engine) so that the data can be accessed by the query.
In the prototype implementation, we used the Oracle relational database
system to store the actual data.

As mentioned earlier, the metadata is stored in CORAL as facts and
rules. For example, the tables belonging to a given database is represented by
specific CORAL facts, Facts which specify the equivalence of attributes in
different tables and databases are also included as well as other facts.

When a query is submitted to the system, all the tables that would
generate a meaningful result for it are found. We use the C++ interface of
CORAL for the purpose. The metadata (represented in CORAL facts and
rules) is consulted in making these decisions. Once we identify the
database(s) and table(s) that would satisfy query requirements, we construct
and route a corresponding query (e.g., an SQL query) to each of them.
Detailed examples are provided in [1.2] and [1.4].

In our current prototype, the CORAL/C++ program (which deals with
the metadata and translates the original query) creates a file of SQL queries for
the particular database. The file of SQL queries is processed by a pro*C
program (i.e., a C language program which makes SQL calls to the Oracle
relational database system). The pro*C program handles dynamic SQL
queries (i.e., it parses the input query, connects to the Oracle database,
submits the query for execution, receives the output a tuple at a time, formats
the output for display and then disconnects from Oracle).

The result is given back to the user/HTPED front end.

OBTECTIVE 2: Knowledge Based System Integration:

A second objective in our HIPED work, which constituted a bulk of our effort
as far as the faculty involvement was concerned - between Professors
Navathe, Goel and Omiecinski was to use this as a vehicle for research in the
development of large-scale high performance knowledge based systems.
During the course of our project, we ended up addressing the following
difficult issues:

a) How to tie intelligent front ends to the (unintelligent) back end database
systems which acts a sources of information.

b) How to develop a dual approach that deals not only with data integration,
but with method or process integration at the same time.

Papers [1.3] and [1.5] capture the essence of our results in this area. Figure 1 in
[1.3] shows our dual approach to database and knowledge base integration
where new data requests originate from the knowledge systems when there is
a need to supply new information. These requests then go to the "global
request broker" for further processing by consulting the meta-data repository.

In terms of our own work in this area in the context of HIPED, a team of
students took a first pass at integrating KRITTO, a knowledge based front end
with a relational database. Tools like KQML and LIM and IDI were used for
communication and access between the front end and the back end. This
activity is documented in [1.1]. Two areas of our work related to "intelligent
processing" in heterogeneous environments are outlined below:

A. Explanation in Heterogeneous Knowledge Based Systems

In the HIPED project, we investigated three issues in designing transparent
knowledge systems: how to explain and illustrate the system's reasoning,
how to explain and justify its results, and how to enable the user to navigate
and browse its knowledge base. Our approach is to endow knowledge systems
with meta-models of the system's knowledge and reasoning. An interactive
design and learning environment called Interactive Kritik - KRI11K3 has
been developed. Part rV of this report documents the work on generating
explanations for the designer or a design student in a learning environment.

B. Knowledge Compilation In Query Answering

A major issue in querying large-scale heterogeneous distributed information
sources is how to efficiently retrieve an answer to the query. During 1995, we
developed a new case-based approach to this problem. In our approach,
retrievals are compiled into meta-cases, where a meta-case is a triplet
consisting of a [query, answer, trace]. The trace in a meta-case refers to the

trace of retrieving the answer to the past query. If the new query is identical
to the old one, then, like with a meta-rule, the meta-case provides the needed
answer. In addition, if the new query is similar to the old one, then the trace
in the meta-case points to the neighborhood in a specific information source
that needs to be searched for the answer.

PUBLICATIONS (PARTI):

[1.1]." Towards Intelligent Integration of Heterogeneous Information
Sources ," Shamkant B. Navathe and Michael J. Donahoo.. In
Proceedings of the 6th International Workshop on Database Re-
engineering and Interoperability, Computer Society of Hong Kong,
March 1995.

[1.2]. " Rule Based Database Integration in HIPED : Heterogeneous
Intelligent Processing in Engineering Design ", Shamkant B. Navathe,
Sameer Mahajan, Edward Omiecinski . In Proceedings of
International Symposium on Cooperative Database Systems for
Advanced Applications, World Scientific Press, 1996.

[1.3]" From Data to Knowledge: Method-Specific Transformations,"
Michael J. Donahoo, J. William Murdock, Ashok K. Goel, Shamkant B.
Navathe, Edward Omeicinski, Proceedings of the 10th International
Symposium on Methodologies for Intelligent Systems,
Charlotte, North Carolina, October 15-18, 1997, (Z. Ras, Ed.),
Springer Verlag, 1997.

[1.4] "Integrating Heterogeneous Databases for Engineering Design,"
Sameer Mahajan and Shamkant B. Navathe, Working Paper, College of
Computing, Georgia Institute of Technology, December 1996.

[1.5]"Method-Specific Knowledge Transformations Towards ," J.
William Murdock, Michael J. Donahoo, Ashok K. Goel, Shamkant B.
Navathe, to appear in Proceedings of the International Conference on
A.I. Applications in Design, Lisbon, Portugal, August 1998.

Towards Intelligent Integration of Heterogeneous Information Sources*

Shamkant B. Navathe Michael J. Donahoo

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332-0280
{sham,mjd} @ cc.gatech.edu

Abstract
Current methodologies for information integration are inadequate for solving the problem of integration of
large scale, distributed information sources (e.g. databases, free-form text, simulation etc). The existing
approaches are either too restrictive and complicated as in the "federated" (global model) approach or do
not provide the necessary functionality as in the "multidatabase" approach. We propose a hybrid approach
combining the advantages of both the federated and multidatabase techniques which we believe provides
the most feasible avenue for large scale integration. Under our architecture, the individual data site admin-
istrators provide an augmented export schema specifying knowledge about the sources of data (where data
exists), their structure (underlying data model or file structure), their content (what data exists), and their
relationships (how the data relates to other information in its domain). The augmented export schema from
each information source provides an intelligent agent, called the "mediator," knowledge which can be used
to infer information on some of the existing inter-system relationships. This knowledge can then be used to
generate a partially integrated, global view of the data.

1 Introduction

Much of the research in database interoperability has focused on two extremes: multidatabase
and federated systems. Multidatabase [Lit90, Spe88] systems provide a uniform access language to a
set of database systems. While this is a necessary first step in solving the problems of heterogeneity,
it places most of the integration responsibility on the user which may be unacceptable. Federated
systems[She90] propose to create a global view of the underlying systems making the heterogeneity
completely transparent to the user. While this approach is enticing, the complexity of constructing
a global schema for large scale integration makes this approach infeasible because it requires an
administrator who understands the semantics of all underlying systems and can resolve all inter-
system schematic conflicts[Bat86]. In addition, the maintenance of a global schema in the face of
addition/deletion of systems is difficult.

A better approach to interoperability involves the combination of techniques of reasoning and
learning with techniques of data modeling and access to provide a partially integrated, global view.
To accomplish this, the administrator of each underlying system presents a semantic description
(augmented export schema) of their information to the "mediator." This augmented export schema
may be as simple as the typical export schema or as detailed as a knowledge-based data description of
the data, its relationships, and the system's domain. A knowledge-base system, such as Loom[Bri94],
provides the capability to represent knowledge about the underlying information repositories and to
make inferences as to the relationships among the various autonomous systems and generalizations
concerning the information in each system. We have previously demonstrated that classification
hierarchies can be effectively used to carry out integration of schemas[Sav91]. In this paper, we

*To appear in Proceedings of 6th International Hong Kong Computer Society Database Workshop, Hong Kong,
February 1995

10

review the goals and strategy of the project HIPED, Heterogeneous Information Processing for
Engineering Design, which we are currently pursuing at the Georgia Institute of Technology.

2 Related Work

Earlier work in integration provides the motivation and framework for our efforts. Batini et
al. [Bat86] detail the problems of schema integration and provide a methodology for comparison
of proposed solutions. Unlike many earlier integration efforts, we do not limit ourselves strictly
to integration of databases. Instead, we focus on the integration of information sources including
databases, free-form text, hypertext, etc. One possible method of dealing with this wide variety of
information is to use Stanford's Object Exchange Model (OEM)[Pap94] which allows information
exchange via self-described objects[Mar85] between different types of information sources. We pro-
pose to adapt the mediator paradigm[Pap94, Wei92, Wei93, Are94] to perform integration of the
augmented export Schemas. Integration of heterogeneous information sources requires a semantically
rich data model. Earlier work has shown that the CANDIDE[Bec89, Nav91] model provides unique
integration capabilities not found in traditional models. One major feature of the CANDIDE model
is its ability to compute class-subclass relationships even among classes from dissimilar systems by
subsumption from class relationship information[Sav91, She93, Wha93, Bra85]. Work with classi-
fication in the object-oriented model has produced similar results[Nav95, Are]. A variety of such
systems supporting description logics are surveyed in [Bor94].

3 Approach

Our main objective is to build and demonstrate an intelligent interface to a set of (possibly
autonomous) information sources including structured databases, knowledge bases, and unstruc-
tured data. Figure 1 shows our proposed architecture. The parenthetical references are made
to applications developed under the ARPA 13 Initiative. KQML (Knowledge Query and Manip-
ulation Language) [Cha92] allows remote access to knowledge/data bases. LIM (Loom Interface
Module)[Par93b] allows import of external database information into Loom data structures. IDI
(Intelligent Database Interface) [Par93a] is a common access language to several commercial database
systems.

The approach we have selected involves development of an Engineering Design Mediator (EDM)
which utilizes meta-knowledge of the underlying information to aid a user in "browsing" the data
for relevant information sources and to make informed decisions about a plan for retrieving the
appropriate data. To demonstrate this technology, we intend to augment the capabilities of both an
autonomous (KPJTIK2) and an interactive (Canah-Chab[Goe93]) device design system by providing
a mediated interface between the design system and a collection of data/knowledge based systems
(D/KBS). The mediator will be responsible for processing queries from the device design systems by
determining where relevant data is, sending the appropriate query to the information site, performing
the appropriate translations on the data, and returning the data to the design system. The design
of the mediator is predicated on the following design goals:

1. Autonomy of the remote systems. Additionally, the remote systems should not be required to
perform any functions outside of those defined for the internetwork connecting the system to
the mediator.

2. Meta-data query facilities which allow the design system to determine relevant information
about component parameters, previous design specifications, device function descriptions, etc.
The mediator may also take an active role in helping the design tool determine what informa-
tion may be helpful (e.g. by use of a thesaurus, domain concept hierarchy, etc).

3. Separation of concerns of the device design system from the query system. This will facilitate
reuse of the mediated query system for other intelligent tasks such as planning.

11

Intelligent
Query

Processor

Meta-Knowledge
Derivation
Module

.Oil

Meta-Data

Remote Database Access Module
(IDI)

i 3

I &

Remote Knowledge
Base

Unstructured
Data

Fig. 1: Proposed Architecture for the Engineering Design Mediator (EDM)

12

4. Data location (remote vs. local) and data organization (relational, knowledge base, text, etc)
transparency.

5. Easy import of external D/KBS information into existing design system data structures min-
imizing the required changes to the device design system.

These constraints are designed to facilitate reuse of the mediator and to make the use of the system
as transparent to intelligent applications as possible. Figure 2 presents an example query processing
scenario.

4 Ongoing Research

Research is currently under way in the following areas to facilitate construction of a prototype
query system which can be integrated with the device design system:

• Selection and development of the appropriate export data model to represent the data stored
at each information source.

• Construction of an export knowledge model whereby information source administrators can
express the relationships between their data and real world domain concepts. This in combi-
nation with the export data model will define the augmented export schema.

• Development of techniques for providing integration of the Schemas of information sources into
a partially integrated, global schema.

• Determination of optimization techniques for querying the remote information sources. Since
the information sources may be interconnected with a WAN, a query processing bottleneck
may arise with frequent remote data transmission.

• Provision of a query interface which aids the user in deriving the best answer to a query.
Since no completely integrated schema exists and the user does not know what information is
available, a query processor is required to guide users to the desired information.

• Capability of inferencing intersource knowledge from the augmented export Schemas specifi-
cally concerning the relationships between information source entities.

• Ability to learn new, relevant knowledge about information sources based on user interaction.

5 Future Direction

Our initial focus is on providing access of integrated information to intelligent device design
systems, but many other applications of this technology exist. With the advent of internetworks
which connect thousands of computers all over the world, an explosion has resulted of the available
data, both unstructured (text, graphical documents, audio, video, program sources) and structured
(under DBMS control), accessible to hundreds of thousands of users. It would be difficult, if not
impossible, to integrate all these sites with the current heterogeneous database techniques especially
since most sites will not all be willing to provide services beyond those defined by the internetwork.
Many query applications already exist for the Internet. WAIS servers provide keyword access to
documents; however these documents must be under the control of a WAIS server. Gopher allows
sites to setup directories of information that users can browse, but the information can only be
accessed in the organization defined by the site manager. Archie provides a keyword query interface
to find source code, but the keywords only work on the name of the source file (the user cannot
ask for a program that performs some function, X; instead they must find the name of a program
that performs X and search for it by name. World Wide Web (WWW) provides a nice interface

13

Query from Canah-Chab

I
Consult Thesaurus

Expanded Query

Look for Related Target Schemas

Possibly Useful Schema

Input "Relevant" Schemas
and Meta Data

Expanded Infor nation on Schemas

Validation of Schemas
Against User's Domain View

Subset of Schemas

User Approval

Package Query in KQML and
Send Response to Canah-Chab

Send Results to Canah-Chab

Fig. 2: Query Processing Scenario in the EDM

Physical
Domain
Concept

Hierarchy
*

Design
Thesarus

z>

Meta
Database/

Knowledgebase
of

B
*

* Databases to populate

14

to information organized by site managers (similar to gopher), but users suffer from the "hypertext
navigation problem" which creates difficulties in locating specific information and keeping track of
where they are in the web of hypertext documents over time.

Several problems exist for the tools mentioned above. First, the tools access a particular type
of data (e.g. Archie only finds source code). If a manual exists for a particular application whose
source code is found by Archie, the user is not informed. Second, the tools lack relativism because
the users must access the data in the manner dictated by the site manager (e.g. in WWW the
data is explicitly organized by hyperlinks). Third, some of the applications require a particular site
organization (e.g. Gopher requires a specific directory structure). If a site has information but no
desire to organize it, a gopher search may not find the relevant information at that site. Fourth,
the query processors provide little organization to the data (e.g. Archie does not organize its source
code references by application type, instead all applications with a substring match on the query
are returned). For these reasons, the Internet environment provides a true testbed for large scale,
heterogeneous information source integration.

We propose a query processing application which, using the native internetwork capabilities,
provides a single interface for accessing all types of data regardless of source or format. The following
list proposes some of the necessary extensions to the EDM:

• The system should perform automated "net surfing" to create an intelligent index of each data
store's information. The intelligence of the index lies in the ability to discern between types
of data (audio, text, source, etc), utilize an indexing methodology tailored to the particular
data type (e.g. organize keywords of a text document by the document section), and facilitate
determination of an object's relevance for a query based on the knowledge of the user's interests
and technical expertise. This should require no a priori knowledge of the individual data
site organization. Work is being done at the Georgia Institute of Technology in intelligent
text document processing and work has been done at IBM Almaden Research Center in file
classification[Vee95a]. Extensive work has been done on parsers for the various document types
(e.g. html, LaTeX) on the Internet.

• The problem of data overload may result from this large scale integration. Our query processor
should utilize user profiles so that only data of specific relevance and technical difficulty will
be derived. Unfortunately, the user profile method of data overload reduction may eliminate
relevant documents. To deal with this problem, the user needs feedback from the query
processor in the form of a description of what information is/is not being considered and an
explanation of why. Work in explanation is part of the Canah-Chab System [Goe93].

• Keyword searches should not be limited by the vocabulary of the query; instead, a thesaurus
should be used to consider synonyms. This may result in synonym overload so user profiles
should also be used in pruning the list of synonyms.

• The user is assumed to be "browsing" the available information; therefore, the query interface
should provide reformulation capabilities. Reformulation techniques include iterative query
alteration and positive/negative feedback from the user[Vee95b].

• The system should attempt automated knowledge acquisition to provide a better understanding
of indexed objects and to find other available data stores. The following list orders levels of
object knowledge in ascending complexity:

ID Knowledge - System only knows site assigned ID of object (e.g. filename)

Content Knowledge - System knows information about object content (e.g. keywords for
text)

Description Knowledge - System knows content knowledge and an external specification
of the object.

15

Interrelational Knowledge - System knows all of the above and interobject relationships
(e.g. papers about cancer research grouped together).

• The system should be extensible with respect to "plugging-in" different types of data in-
dexing components and user profiles. Additionally, the system should transparently handle
adding/subtracting participating sites. Utilities already exist for component indexing including
parsers for various document types, image recognition utilities, etc.

• Different server systems should be able to exchange information and knowledge. Work in
KQML at the University of Maryland facilitates knowledge interchange even with differing
ontologies[Cha92].

• Objects must be described in terms of a nested model. For example, a document may be
composed of sections which are composed of text, subsections, and graphics. Stanford's Object
Exchange Model (OEM) provides "self-describing," nested objects[Pap94].

• The distributed control of the system leads to problems of object identity. For example,
identical application source code may reside in multiple locations; therefore, the system should
attempt to provide object identity to facilitate replicated object identification. Additionally,
object versioning will allow the system to keep track of more recent versions of a retrieved
object. A primitive form of object identification is supported in Stanford's OEM project
[Pap94].

• External knowledge sources should be used to learn about objects in the system. For example,
the query processor could inspect newsgroups or look at the manner in which objects are used
in WWW to acquire knowledge about the objects and their relationships. Primitive forms of
natural language understanding and concept derivation techniques may be used.

• Use of existing query systems should be considered (e.g. use WAIS server to augment search).

• Special consideration should be given to optimization including reuse of retrieved data[Don93].

6 Conclusion

We have presented a framework for research in the area of intelligent, large scale integration of
information sources. Clearly, much more work needs to be done before any of the detailed function-
ality can be implemented. We believe that much of the research into the necessary technology has
begun, and the main task lies in tailoring these technologies to the needs of large scale integration
and applying them in a prototype environment. We intend to further study the concepts presented
above in order to develop a flexible and extensible scheme for integrating information from heteroge-
neous sources. Although we wish to experiment by applying our research in the area of augmenting
intelligent device design in engineering, the applicability of this technology obviously extends beyond
the engineering domain.

References
[Are] Yigal Arens, Chin Chee, Chun-Nan Hsu, and Craig A. Knoblock. Retrieving and inte-

gration data from multiple information sources. To appear in International Journal on
Intelligent and Cooperative Information Systems.

[Are94] Yigal Arens, Chin Chee, Chun-Nan Hsu, Hoh In, and Craig A. Knoblock. Query processing
in an information mediator. ISI Technical Report, 1994.

16

[Bat86] C. Batini, M. Lenzernini, and S. B. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys, 18(4):325-364, Dec. 1986.

[Bec89] Howard W. Beck, Sunit K. Gala, and Shamkant B. Navathe. Classification as a query
processing technique in the CANDIDE semantic data model. In 1989 IEEE Conference
on Data Engineering, pages 572-581. IEEE, 1989.

[Bor94] Alexander Borgida. Description logics in data management. Technical report, Rutgers
University, July 1994.

[Bra85] R. Brachman and G. Schmölze. An overview of the KL-ONE knowledge representation
system. Cognitive Science, 9(2):171-216, 1985.

[Bri94] David Brill. Loom Reference Manual (Version 2.0). ISX Corp, October 1994.

[Cha92] Hans Chalupsky, Tim Finin, Rich Fritzson, Don McKay, Stu Shapiro, and Gio Weiderhold.
An overview of KQML: A knowledge query and manipulation language. Technical report,
KQML Advisory Group, April 1992.

[Don93] Michael J. Donahoo. Integration of Information in Heterogeneous Library Information
Systems. Master's thesis, Baylor University, May 1993.

[Goe93] Ashok K. Goel, Andres Garza, Nathalie Grue, M. Recker, and T. Govindaraj. Beyond
domain knowledge: Towards a computing environment for the learning of design strategies
and skills. Technical report, College of Computing, Georgia Tech, 1993.

[Lit90] Witold Litwin, Leo Mark, and Nick Roussopoulos. Interoperability of multiple autonomous
databases. ACM Computing Surveys, 22(3):267-293, September 1990.

[Mar85] Leo Mark. Self-Describing Database Systems - Formalizalion and Realization. PhD thesis,
Computer Science Department, University of Maryland, 1985.

[Nav91] Shamkant Navathe, Sunit K. Gala, and Seong Geum. Application of the CANDIDE se-
mantic data model for federations of information bases. In Invited paper, COMAD '91,
Bombay, India, December 1991.

[Nav95] Shamkant B. Navathe and Ashoka N. Savasere. A practical schema integration facility using
an object-oriented model. To be published in Object Oriented Multidatabase Systems: A
Solution for Advanced Applications (O. Bukhres and A. Elmagarmid, eds), Prentice-Hall,
January 1995.

[Pap94] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object exchange
across heterogeneous information sources. Stanford University, Department of Computer
Science, Technical Report, 1994.

[Par93a] Paramax System Corporation. Computer System Operator's Manual for the Cache-Based
Intelligent Data Interface of the Intelligent Database Interface, revision 2.3 edition, Feb.
1993.

[Par93b] Paramax Systems Corporation. Software Design Document for the Loom Interface Module
(LIM) of the Cache-Based Intelligent Database Interface, revision 2.0 edition, Jan. 1993.

[Sav91] Ashoka Savasere, Amit Sheth, Sunit Gala, Shamkant Navathe, and Howard Marcus. On
applying classification to schema integration. In First International Workshop on In-
teroperability in Multidatabase Systems, pages 258-261. IEEE Computer Society, IEEE
Computer Society Press, April 1991.

17

[She90] Amit P. Sheth and James A. Larson. Federated database systems for managing dis-
tributed, heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3):183-
236, September 1990.

[She93] Amit P. Sheth, Sunit K. Gala, and Shamkant B. Navathe. On automatic reasoning for
schema integration. International Journal of Intelligent and Cooperative Information Sys-
tems, 2(l):23-50, 1993.

[Spe88] R. Speth, editor. Global View Definition and Multidatabase Languages - Two Approaches
to Database Integration. Amsterdam: Holland, April 1988.

[Vee95a] Aravindan Veerasamy, Scott Hudson, and Shamkant Navathe. Visual interface for tex-
tual information retrieval systems. To appear in Proceedings of IFIP 2.6 Third Working
Conference on Visual Database Systems, Lausanne, Switzerland, Springer Verlag, March
1995.

[Vee95b] Aravindan Veerasamy and Shamkant Navathe. Querying, navigating and visualizing an
online library catalog. Submitted for Publication, January 1995.

[Wei92] Gio Weiderhold. Mediators in the architecture of future information systems. IEEE Com-
puter, pages 38-49, March 1992.

[Wei93] Gio Weiderhold. Intelligent integration of information. In Arie Segev, editor, ACM SIG-
MOD International Conference, volume 22, pages 434-437. ACM, ACM Press, June 1993.

[Wha93] Whan-Kyu Whang, Sharma Chakravathy, and Shamkant B. Navathe. Heterogeneous
databases: Toward merging and querying component schema. Computing Systems, 6(3),
August 1993. (a Univ. of California Press publication).

18

Rule Based Database Integration in HIPED : Heterogeneous
Intelligent Processing in Engineering Design

Shamkant B. Navathe Sameer Mahajan Edward Omiecinski

College of Computing,
Georgia Institute of Technology,
Atlanta, GA 30332-0280, USA.

{sham,sameer,edwardo}@cc.gatech.edu

Abstract
In this paper * we describe one aspect of our re-

search in the project called HIPED, which addressed
the problem of performing design of engineering de-
vices by accessing heterogeneous databases. The front
end of the HIPED system consisted of interactive KRI-
TIK, a multimodal reasoning system that combined
case based and model based reasoning to solve a design
problem. This paper focuses on the backend processing
where five types of queries received from the front end
are evaluated by mapping them appropriately using the
"facts" about the Schemas of the underlying databases
and "rules" that establish the correspondance among
the data in these databases in terms of relationships
such as equivalence, overlap and set containment. The
uniqueness of our approach stems from the fact that
the mapping process is very forgiving in that the query
received from the front end is evaluated with respect
to a large number of possibilities. These possibilities
are encoded in the form of rules that consider various
ways in which the tokens in the given query may match
relation names, attrribute names, or values in the un-
derlying tables. The approach has been implemented
using CORAL deductive database system as the rule
processing engine.

1 Introduction
Heterogeneity of databases is becoming a necessary

factor to contend with in the design of new applica-
tions because of the proliferation of database man-
agement systems that used diverse data models over
the last three decades. Among widely implemented
data models we have the hierarchical, network, rela-
tional and object oriented data models. A large body
of work exists that deals with the mapping of these
models among one another (e.g. see the mapping of
models using the entity relationship model as an inter-
mediate model in [1] [3]. While vendors are also pro-
viding middleware solutions to draw data from these
legacy systems, the semantic problems of resolving,
naming, scale, structure etc. that were pointed out
several years ago [5] [6] still remain. The purpose of
the present research was to develop a technique to

'To appear in the Proceedings of International Symposium
on Cooperative Database Systems for Advanced Applications,
Heian Shrine, Kyoto, Japan, World Scientific Press, 1996.

dealing with the semantic differences in data by tak-
ing a flexible rule based approach. Another goal of
the project was to tie a set of heterogeneous databases
to an "intelligent front end application" which would
make requests for data without any knowledge of the
Schemas of the target databases. To limit the degree
of difficulty we assume that we are dealing with data
in relational databases only. This assumption is rea-
sonable in the sense that of the data is coming from a
hierarchical or a network DBMS, we can first convert
the schema to a relational one before treating it for
purposes of integration.

The database integration problem we discuss here
is couched in the context of engineering design which,
like any other design application, relies on extracting
data from existing databases containing material data,
components, existing designs etc. The exact context
and the application scenario will be explained in the
next section.

We assume that relevant data for the design ap-
plication is stored in relations (tables) whose schemas
are available at "design time" to construct a rule-base.
It is conceivable that to support large scale engineer-
ing designs, data from a variety of databases, i.e., from
multiple schemas would be required. To facilitate inte-
gration of data among these databases we assume that
the "correspondances", i.e., the similarities and differ-
ences among the (meaning of) attributes is encoded
in the form of rules. Furthermore, for our application
context, the front end of HIPED issues certain queries
looking for relevant design information. We show in
this paper how a query may have several interpreta-
tions, each one of which is encoded in the form of rules
again.

Because of these two kinds of rules involved in the
integration approach we have termed our approach
a rule based approach to database integration. The
present approach is an improvement over previous ap-
proaches where we handled integration by using the
correspondance information to derive the process [2]
[6] [7] [8].

2 Application Context
In this section we will provide the overall architec-

ture of the HIPED system and point out the need for
heterogeneous database processing which will be de-

19

scribed and illustrated in the next two sections.

2.1 Overall Architecture of HIPED
Our main objective in the HIPED project is to build

and demonstrate an intelligent interface to a set of
(possibly autonomous) information sources including
structured databases, knowledge bases, and unstruc-
tured data. The approach we have selected involves
the development of a mediator which utilizes meta-
knowledge of the underlying information stores to aid
a user in browsing data or to enable an application
front-end to retrieve specific relevant information for
problem solving.

The overall architecture of HIPED is described in
Figure 1. We look at only the "Database Bachend" in
this paper. The data is organized at two levels namely,
(1) the metadata repository : consisting of informa-
tion about various databases and tables in them and
(2) the actual data which is distributed in various het-
erogeneous databases. This organization reduces the
data to be dealt with at the first level to get to the
appropriate database(s) and table(s). It also allows
heterogeneity in the various databases involved. The
Querying Interface is as described in section 3.1. The
"data" together with its "wrapper" forms a database
system. "Wrapper" simply defines the access methods
to the data for reading purposes. A wrapper can be de-
signed for each target database management system.
A user query would be translated into the correspond-
ing query, as understood by the corresponding "wrap-
per", for each of the relevant tables. This query would
then be routed to the corresponding database, that
contains this table. The metadata repository is con-
sulted in determining these relevant tables and finding
the corresponding database. The user would get the
result, obtained after running the query against the ta-
ble through the concerned "Output Data" channel(s).

2.2 Interactive KRITIK Front End
We developed the HIPED architecture by assuming

a frontend system called Interactive Kritik [4]. This
system is a multimode reasoning system which works
like a design assistant for the design of devices such
as acid coolers, electrical devices. In its current form
the system uses "hard-wired" knowledge in the form
of LISP data structures. The goal was to extend the
capability of interactive Kritik to make it scalable to
real-life design problems by incorporating databases
of relevant design data as the back end. We there-
fore abstracted different forms of generic query types
which would be used as requests to the back end. By
coupling an intelligent front end application to a set
of heterogeneous databases, we can thus extend the
scope of problem solving by a large measure. For en-
gineering device design, the above front end generates
a number of requests for data from the underlying de-
sign databases such as design prototypes, properties of
devices and components, material data, design speci-
fications and tolerances etc. For illustrative purposes
we have chosen five generic types of queries that are
most commonly presented by the front end. They will
be explained in detail in the following section.

(uSERj

Interactive
KRITIK

external data reqoeiI

result composition

Query

Processor

Database
Backend

wrapper

^R
wrapper

Heterogeneous Databases

daw l

Figure 1: The High Level View of HIPED

3 Rule Based Approach to Database
Integration

As explained earlier the main contribution of this
research is the use of the two types of rules to accom-
plish access to the underlying heterogeneous informa-
tion sources. The first set of rules deals with estab-
lishing various types of relationships among relation
names and among attribute names across databases.
The second set deals with the interpretation of queries
from the front end so that various possible mappings
to the interface of underlying target databases may be
considered. We will explain both these types of rules
when we discuss the generic queries and their map-
pings.

3.1 Five generic types of queries
The user is assumed to use this system as an En-

gineering Database for device design. Let us limit the
application domain for illustrative purposes. We as-
sume that during the design process, he would typi-
cally like to find components that satisfy his require-
ments (e.g. batteries with voltage rating higher than
10V and cheaper than $10). Keeping this user's per-
spective in mind, the Engineering data is thought to
be made up of various "Prototypes". Each Proto-
type has various "Properties". Each Property takes
up some "Value" for every Prototype. We can com-
pare the Values of various properties using the rela-
tions : ==,<,>,<=,>=,<> etc. The queries can
be classified into the following five generic types,

20

1. (Prototype <proto_name>) : here the user
is looking for all the prototypes identified by
"proto-name". It is implicit that the user wants
to see the various values for various properties
(attributes) of these prototypes.

2. (Property <prop_name>) : the user is interested
in all the prototypes having the specific Property
identified by "prop_name". It is implicit that the
user wants to see the values taken by this property
for the various prototypes, that would be listed.

3. (Prototype <proto_name>)
(Property <prop.name>) : the user wants to see
all the prototypes identified by "proto_name" and
having property identified by "prop_name". It is
implicit that the user also wants to see the cor-
responding value that the property takes for the
particular prototype.

4. (Prototype <proto_name>)
(Property <prop_name>)
(Value<value>) (Rel-op <op>) : the user is in-
terested in prototypes identified by "proto-name"
having a property identified by "prop-name". In
addition to this he wants only those prototypes
for which the property takes a value which is re-
lated to the given "value" or a constant in the
query by the operator "op" (i.e. it is equal to
"value" or greater than "value" etc.)

5. (Property <prop_name>) (Value <value>)
(Rel-op <op>) : the user is interested in all the
prototypes for which the property identified by
"propjtiame" takes a value which is related to the
given "value" by the operator "op.

Data is distributed among various databases and
various tables in each of those databases. The only
assumption that we make about any database system
is that it has an SQL access method. It is a reasonable
assumption and is made to contain the complexity of
the problem.

The system needs to find out which databases and
which tables in these databases have the relevant data
to answer a particular query. It then translates the
query into a corresponding SQL query for every table.
This SQL query is run against that table to get an
answer. As we made an assumption of a uniform SQL
interface to all the databases, we can simply translate
a request for data into a set of SQL queries in each of
these cases.
3.2 Rules for Interpretation of Queries

For better understanding of the following discus-
sion, let us take up an example query. Let the four
components of the query be,

(Prototype Battery) (Property Voltage)
(Value 10) (Relation ==).

As there can be various tables with different schema,
we need to run this query with only those tables that
might give meaningful results for the query. We can
easily observe that any of "Prototype", "Battery",
"Property" and "Voltage" can be a table or a column
of a table. The "Battery" and "Voltage" can also be

values in the columns (e.g. those labeled as "Proto-
type" and "Property" respectively). Of course there
are a lot of dependencies amongst these components
- e.g. if "Prototype" is a table then "Battery" has to
be a column of this table. On the other hand if there
is a table called the "Battery", then we are looking
for values in the column "voltage" or "volts" - so that
the query would generate meaningful results with the
table. Now we take up an example query for each of
the five types listed above. For every query we list the
possible interpretations according to our scheme.

1. (Prototype Battery). The user typically means
that he wants all the batteries with their prop-
erties and their corresponding values. Hence we
will have to run this query against all the tables
which,

• are equivalent to "Prototype Table" and
have a column equivalent to "Battery" or

• are equivalent to "Battery Table"
• have a column equivalent to "Prototype"

(and only the tuples with Prototype as "Bat-
tery" would be considered).

if and only if these tables have columns equivalent
to "Property" and "Value" each.

2. (Property Voltage). The user is interested in list-
ing all the Prototypes having "Voltage" as their
one of the Properties. The Values of these Proper-
ties would also be significant from his standpoint.
Hence we consider all the tables which,

• are equivalent to "Property Table" and have
a column equivalent to "Voltage" or

• are equivalent to "Voltage Table"

• have a column equivalent to "Property" (and
only the tuples with Property as "Voltage"
would be considered).

if and only if they have "Prototype" equivalent
column.

3. (Prototype Battery) (Property Voltage). The
user wants all the batteries with special interest
in their voltages. Hence we will run the query
against all the tables which,

• are equivalent to "Prototype Table" and
have "Battery", "Property" and "Value"
equivalent columns and we would be inter-
ested only in the tuples having an entry of
"Voltage" in the "Property" equivalent col-
umn or

• are equivalent to "Prototype Table" and
have "Battery", "Voltage" equivalent
columns or

• are equivalent to "Battery Table" and have
"Property" and "Value" equivalent columns.
We would be interested only in those tuples
having Property "Voltage" or

21

• are equivalent to "Battery Table" and have
a column equivalent to "Voltage" or

• are equivalent to "Property Table" and have
columns equivalent to "Voltage", "Proto-
type" and "Value". We would be interested
in tuples with Prototype as "Battery".

• are equivalent to "Property Table" and
have "Voltage" and "Battery" equivalent
columns.

• are equivalent to "Voltage Tables" and
have "Prototype" and "Value" equivalent
columns. We would look for only tuples with
Prototype as "Battery".

• are equivalent to "Voltage Table" with "Bat-
tery" and "Value" equivalent columns.

• have "Prototype" and "Property" equivalent
columns as far as they have "Value" equiv-
alent column. Only the tuples with Proto-
type as "Battery" and Property as "Voltage"
would be considered.

4. (Prototype Battery) (Property Voltage) (Value
10) (Relation ==). Here the interest is indicated
in all the batteries having Voltage as "10". The
query can be run with all the tables as indicated
as above with an added constraint that only those
tuples which have an entry of "10" in the "Volt-
age" or "Value" column - whichever is applica-
ble - (Note the table can have only one of these
columns at a time) will be considered.

5. (Property Voltage) (Value 10) (Relation ==). All
the Prototypes having voltage of "10" are being
considered. Thus all the tables that,

• are equivalent to "Property Table" and have
a column equivalent to "Voltage"

• are equivalent to "Voltage Table" and have
a column equivalent to "Value"

• have "Property" and "Value" equivalent
columns along with "Prototype" column,
(only tuples with Property "Voltage" and
Value "10" would be taken into considera-
tion).

would be considered if and only if they have a
column equivalent to "Prototype". All the tu-
ples with "Voltage" or "Value" being 10 would
be taken into account.

3.3 Rules to establish Data Correspon-
dance

We need to relate various attributes and tables,
within and across databases. The relationship could
be of equivalence, subsumption, overlap, disjointness
or containment. The relationship between attributes
needs to be supplied by the schema developer, e.g.
Attributes called "volt" and "voltage" in different ta-
bles are actually equivalent. The relationship between
tables can either be supplied or can be deduced by the
relationships of their individual attributes. A simple
deduction rule can be that two tables are equivalent if
all their attributes are equivalent.

4 Use of CORAL for rule representa-
tion and query processing

The metadata is stored in the form of CORAL [10]
[11] facts and rules. CORAL is a deductive database
system which stores data as facts and rules, and allows
for that data to be queried. By using CORAL the me-
diator can decide which database(s) and table(s) are
useful in answering any given query. In particular,
CORAL is used in deriving relationships like equiva-
lence; between attributes, tables and databases. Any
creation, deletion or modification of a table results in a
change in the metadata repository. This dynamic be-
havior can be easily captured by CORAL. In essence,
CORAL provides us with the facility for database in-
tegration through the facts and rules specified about
tables and databases. However, this integration can be
considered implicit rather than explicit since no global
conceptual schema is explicitly formed. Also the C++
interface provided by CORAL makes writing general
purpose programs easy.

We explain the implementation with the help of
an example. One more sample system for a single
database environment is given in Table 5. Some sam-
ple input queries and the corresponding output SQL
queries are shown in Tables 6 and 7 respectively.

4.1 A Simple Example
Consider the query,

(Prototype Battery) (Property Voltage).

Let us assume that there are two databases - dbl and
db2. Let dbl have tables : Table 1 and Table 2. and

CompNo Prototype Property Value

B101 Battery Voltage 10
M101 Motor Voltage 10
JB110 Battery Voltage 100
Bill Battery Current too

Table 1: "Components" Table in dbl

let db2 have Table 3 and Table 4.
We observe that according to the discussion in sec-

tion 3.2 only the tables in dbl would produce mean-
ingful results with the query under consideration.

BatteryJNo Voltage
B1Ö1 15
B1Ö2 30

Table 2: "Battery" Table in dbl

22

BatteryMo Current
Blöl 15
BlÖ2 30

Table 3: "Battery" Table in db2

BatteryNo Supplier No
B1Ö1 4567
B1Ö2 4568

Table 4: "Supplier" Table in db2

4.2 Schema Representation
It is stored as CORAL facts and rules. The advan-

tage of such a storage is that we can utilize the strong
deductive power of CORAL (e.g. deducing equiva-
lence of attributes, equivalence of tables etc.). The
various components of the repository are described be-
low.

• First we list all the tables in all the databases as
CORAL facts :

'/. For the first database, dbl.
belongsTo(components,dbl).
belongsTo(battery.dbl).

'/, For the second database, db2.
belongsTo(battery,db2).
belongsTo(supplier,db2).

• Then we list attributes of individual tables as
CORAL facts. The first argument of these pred-
icates is the database name. It is so because the
same table may have different attributes in dif-
ferent databases, e.g. the "battery" table in the
two databases "dbl" and "db2" as shown below.

*/. for dbl
hasAttribs(dbl,components,

[compName,prototype,property,value]).
hasAttribs(dbl.battery,CbName.voltage]).

'/. for db2
hasAttribs(db2,battery,[bName,current]).
hasAttribs(db2,supplier,CbName,sName]).

• We also need facts to list what attributes are
equivalent. The equivalence of tables can be ei-
ther given by facts or can be deduced by the rules

(e.g. two tables with equivalent attributes are
equivalent). But we do not need them in this
particular example.

To find whether a table has a particular attribute
in a given database we define a CORAL rule as,

module isAttrib.
export isAttrib(bff).
isAttrib (Db,Table,Attri) :-

hasAttribs(Db,Table,Attribs),
iselem (Attri,Attribs).

end_module.

'/, Module "iselem" is defined for the
'/. sake of completeness,
module iselem.
export iselem(bb).
Cpipelining+. '/. Solve in a

'/, top-down fashion

iselem(X, [Xl_]).
iselem(X, [_|Z])
end_module.

iselem(X,Z).

4.3 Sample Query Mapping Algorithm
The mapping of input requests into SQL queries is

done according to the scheme suggested in section 3.2.
We use the C++ interface of CORAL for this matter.
In fact, an imperative interface (e.g. in C) would have
been enough for the purpose. We check for the various
conditions given in the scheme and generate the ap-
propriate SQL queries for the existing tables. We run
through the algorithm for the example query under
consideration,

begin
For every "table'' equivalent to
''prototype table''
for every attribute equivalent
to "battery", say attribl

for every attribute equivalent
to "property", say attrib2

if "table" has "attribl"
as well as "attrib2"
for every attribute
equivalent to ''value'',
say attrib3

if "table" has attrib3
select the corresponding
database and fire SQL query,
SELECT * FROM table
WHERE attrib2 == voltage or

some equivalent value,
goto next table

for every attribute equivalent
to "voltage", say attrib4

if "table" has attrib4
select the corresponding
database and fire SQL query,
SELECT * FROM table

23

For every ''table'' equivalent to
''battery table''
for every attribute equivalent
to "voltage", say attribl

if "table" has attribl
select the corresponding
database and fire SQL query,
SELECT * FROM table
goto next table

for every attribute equivalent
to "property", say attrib2

for every attribute equivalent
to "value", say attrib3

if "table" has attrib2
and attrib3
select the corresponding
database and fire SqL query,
SELECT * FROM table
WHERE attrib2 == voltage or

some equivalent value.

For every "table" equivalent
to "property table"

for every attribute equivalent
to "voltage", say attribl

for every attribute equivalent
to "prototype", say attrib2

if "table" has "attribl"
as well as "attrib2"
for every attribute
equivalent to ''value'',
say attrib3

if "table" has attrib3
select the corresponding
database and fire SQL query,
SELECT * FROM table
WHERE attrib2 == battery or

some equivalent value,
goto next table

for every attribute equivalent
to "battery", say attrib4

if "table" has attrib4
select the corresponding
database and fire SQL query,
SELECT * FROM table

For every table equivalent to
''voltage table''
for every attribute equivalent
to "battery", say attribl

if "table" has attribl
select the corresponding
database and fire SQL query,
SELECT * FROM table
goto next table

for every attribute equivalent
to "prototype", say attrib2

for every attribute equivalent
to "value", say attrib3

if "table" has attrib2
and attrib3
select the corresponding
database and fire SQL query,

SELECT * FROM table
WHERE attrib2 == battery or

some equivalent value.

For every table having columns
equivalent to each of
prototype, property and value

select the corresponding
database and fire SqL query
SELECT * FROM table
WHERE prototype equivalent column

== battery equivalent value
AND
property equivalent column

== voltage equivalent value
end

4.4 The Result
Let us say that the wrapper of dbl can handle SQL

queries. In that case we first select that database and
then simply run a query,

SELECT *
FROM components
WHERE prototype == "battery"

AND property == "voltage"

against the first ("components") table in the database.
We take similar actions for the other table in (possibly
various) databases. The other query in this case would
be,

SELECT *
FROM battery

again with the same database namely, dbl. The result
is presented to the user as displayed by the correspond-
ing "wrapper".

5 Conclusions and Future Work
In this paper we illustrated the implementation of a

rule-based database integration scheme by considering
two types of rules : (1) Rules to establish the "corre-
spondence" among underlying component databases
and (2) Rules to interpret data requests in an "open-
ended" fashion where no knowledge of the component
database Schemas is expected from the application
front end. We also described an interface to hetero-
geneous databases in which a user may directly ac-
cess the back end data by making use of the rules of
data correspondance and an SQL-like syntax for the
queries.

The system makes an assumption that all the
databases involved provide an SQL interface. This
condition can be relaxed. In this case we need to
generate different queries, as understood by each of
the databases involved. This work was predicated on
the assumption that the data relevant to our appli-
cation was stored in relational tables. An extension
of the present work involves relaxing this assumption
and illustrating the utility of the approach by actu-
ally providing wrappers for hierarchical and network
databases and sequential files. That would establish

24

'/. CORAL facts
isTable(battery).
hasAttribs(battery,

[bname,voltage,current,life]).

isTable(compTable).
hasAttribs(compTable,

[no,prototype,property,value]).

isTable(dummy).
hasAttrib(dummy,[prototype,property]).

isTable(prototype).
hasAttribs(prototype,

[motor,property,value]).

isTable(motor).
hasAttribs(motor,[property.value]).

isTable(property).
hasAttribs(property,

[rps,prototype,value]).

isTable(rps).
hasAttribs(rps, [prototype,value]).

isTable(voltage).
hasAttribs(voltage,[battery,value]).

'/. CORAL rules

module isAttrib.
export isAttrib(ff).
isAttrib (X,Y) :- hasAttribs(X,Z),

iselem (Y,Z).
endmodule.

Table 5: A Single Database System

prototype battery property voltage
prototype battery property current
prototype motor property rps
prototype sheet property size

Table 6: Sample Input Queries

++++++++ for the first data request ++++++
SELECT * FROM battery;
SELECT * FROM voltage;
SELECT * FROM compTable
WHERE prototype == battery

AND property == voltage;
++++++++ for the second data request +++++
SELECT * FROM battery;
SELECT * FROM compTable
WHERE prototype == battery

AND property = current;
++++++++ for the third data request ++++++
SELECT * FROM prototype
WHERE property = rps;
SELECT * FROM motor
WHERE property == rps;
SELECT * FROM property
WHERE prototype = motor;
SELECT * FROM rps
WHERE prototype == motor;
SELECT * FROM compTable
WHERE prototype == motor

AND property = rps;
+++++++ for the fourth data request +++++
SELECT * FROM compTable
WHERE prototype == sheet

AND property == size;

Table 7: The corresponding SQL queries

the practical utility of the approach in a significant
way. The next step would be to work on a query
optimization by introducing a stage after the query
interpretation phase to evaluate possible orderings of
sub queries and cross subquery reduction of redundant
processing.

From the engineering design standpoint, the prob-
lem horizon can be extended to include additional
types of design problems. The current implementa-
tion can be initially enhanced by considering addi-
tional types of design queries.

Currently only the individual tables are checked to
see whether they provide satisfactory data to answer
a particular query. But it is possible that two or more
tables taken separately do not have enough informa-
tion to answer a query. At the same time, when taken
together (e.g. their join), they provide data to an-
swer the query. Consider that there are two tables -
which might be in the same database or in different
databases - one with columns "Component Number"
and "Prototype". The other with columns "Compo-
nent Number" and "Voltage". Then neither of them
provides enough information for the query,

(Prototype Battery) (Property Voltage)
But their equijoin with the additional condition of
"Prototype == Battery" for the tuples is of interest
to us. The extended solution can exhaustively take
care of all such cases.

In essence, the overall rule based approach appears
promising in the context of Navathe's long standing

25

investigation of the database integration problem [5]
[6] [7] f8] [9].

Acknowledgement
We would like to thank Ashok Goel and William

Murdock for their work on Interactive KRITIK. The
work crystallized the HIPED front end to our system.
We are also grateful to Jeff Donahoo, Ashok Savasere
and Byong-soo Jeong for initializing the implementa-
tion work. The idea of using CORAL as a deduc-
tive database system was generated by Ed Omiecin-
ski. The implementation was completed by Siddharth
Bajaj. Support from ARPA grant no. F33615-93-1-
1338 is greatly appreciated. Prof. Navathe's work is
also partially supported by Center of Excellence in In-
formation Science, Clark Atlanta University, Contract
No. OSP-93-09-400-002.

References
[1] C. Batini, S. Ceri, and S.B. Navathe, Conceptual

Database Design: An Entity Relationship
Approach, Benjamin Cummings, August 1991,
470 pp.

[2] C. Batini, M. Lenzerini and S.B. Navathe, A Com-
parative Analysis of Methodologies for Database
Schema Integration, ACM Computing Surveys, 18,
4, December 1986, pp. 323-364.

[3] R. Elmasri, S Navathe, Fundamentals of
Database Systems, Addision Wesley Computer
Science, 2nd Edition, 1994.

[4] Ashok Goel, Andres Gomez, Nathalie Grue,
William Murdock, Margaret Recker, and T.
Govindaraj. Design Explanations in Interactive
Design Environments. In Proc. Fourth Interna-
tional Conference on AI in Design, Palo Alto, June
1996.

[5] J. Larson, S. B. Navathe, and R. Elmasri A The-
ory of Attribute Equivalence in Databases with
Application to Schema Integration, IEEE Trans-
actions on Software Engineering, Vol. 15, No. 4,
April 1989.

[6] S.B. Navathe, R. Elmasri and J.A. Larson, In-
tegrating User Views in Database Design, IEEE
Computer, Vol. 19, No. 1, January 1986, pp. 50-
62.

[7] S. B. Navathe and A. Savasere, "A Practical
Schema Integration Facility using an Object Ori-
ented Approach," Multidatabase Systems (A. El-
magarmid and O.Bukhres, Eds.), Prentice Hall,
1996.

[8] S. Prabhakar, J. Srivastava, S.B. Navathe, et
al., Federated Autonomous Databases: Project
Overview, Proceedings of the International Confer-
ence on Interoperability in Multidatabase Systems
(IMS'93), Vienna, Austria, April 19-20, 1993.

[9] A. Sheth, S.K. Gala, S.B. Navathe, On Automatic
Reasoning for Schema Integration, Int. Journal of
Intelligent Co-operative Information Systems, Vol.
2, No.l, March 1993.

[10] R. Ramakrishnan, D. Srivastava and S. Sudar-
shan, CORAL: Control, Relations and Logic, Pro-
ceedings of the International Conference on Very
Large Databases, 1992.

[11] R. Ramakrishnan, D. Srivastava, S. Sudarshan
and P. Seshadri, Implementation of the CORAL
deductive database system, Proceedings of the
ACM S1GMOD Conference on Management of
Data, 1993.

26

From Data to Knowledge:
Met hod-Specific Transformations

Michael J. Donahoo, J. William Murdock, Ashok K. Goel, Shamkant Navathe,
and Edward Omiecinski

Georgia Institute of Technology
College of Computing

801 Atlantic Drive
Atlanta, Georgia 30332-0280, USA

Source: Proceedings of the 1997 International Symposium Symposium on Methodolo-
gies for Intelligent Systems.

Abstract. Generality and scale are important but difficult issues in
knowledge engineering. At the root of the difficulty lie two hard ques-
tions: how to accumulate huge volumes of knowledge, and how to support
heterogeneous knowledge and processing? One answer to the first ques-
tion is to reuse legacy knowledge systems, integrate knowledge systems
with legacy databases, and enable sharing of the databases by multiple
knowledge systems. We present an architecture called HIPED for realiz-
ing this answer. HIPED converts the second question above into a new
form: how to convert data accessed from a legacy database into a form
appropriate to the processing method used in a legacy knowledge system?
One answer to this reformed question is to use method-specific transfor-
mation of data into knowledge. We describe an experiment in which a
legacy knowledge system called INTERACTIVE KRITIK is integrated with
an ORACLE database using IDI as the communication tool. The exper-
iment indicates the computational feasibility of method-specific data-to-
knowledge transformations.

1 Motivations, Background, and Goals

Generality and scale have been important issues in knowledge systems research ever
since the development of the first expert systems in the mid sixties. Yet, some thirty
years later, the two issues remain largely unresolved. Consider, for example, current
knowledge systems for engineering design. The scale of these systems is quite small both
in the amount and variety of knowledge they contain, and the size and complexity of
problems they solve. In addition, these systems are both domain-specific in that their
knowledge is relevant only to a limited class of domains, and task-specific in that their
processing is appropriate only to a limited class of tasks.

At the root of the difficulty lie two critical questions. Both generality and scale
demand huge volumes of knowledge. Consider, for example, knowledge systems for

* This work was funded by a DARPA grant monitored by WPAFB, contract #F33615-
93-1-1338, and has benefited from feedback from Chuck Sutterwaite of WPAFB. We
appreciate the support.

27

a specific phase and a particular kind of engineering design, namely, the conceptual
phase of functional design of mechanical devices. A robust knowledge system for even
this very limited task may require knowledge of millions of design parts. Thus the first
hard question is this: How might we accumulate huge volumes of knowledge? Generality
also implies heterogeneity in both knowledge and processing. Consider again knowledge
systems for the conceptual phase of functional design of mechanical devices. A robust
knowledge system may use a number of processing methods such as problem/object
decomposition, prototype/plan instantiation, case-based reuse, model-based diagnosis
and model-based simulation. Each of these methods uses different kinds of knowledge.
Thus the second hard question is this: How might we support heterogeneous knowledge
and processing?

Recent work on these questions may be categorized into two families of research
strategies: (i) ontological engineering, and (ii) reuse, integration and sharing of informa-
tion sources. The well known CYC project [?] that seeks to provide a global ontology
for constructing knowledge systems exemplifies the strategy of ontological engineering.
This bottom-up strategy focuses on the first question of accumulation of knowledge.
The second research strategy has three elements: reuse of information sources such
as knowledge systems and databases, integration of information sources, and sharing
of information in one source by other systems. This top-down strategy emphasizes
the second question of heterogeneity of knowledge and processing and appears espe-
cially attractive with the advent of the world-wide-web which provides access to huge
numbers of heterogeneous information sources such as knowledge systems, electronic
databases and digital libraries. Our work falls under the second category.

[?] have pointed out that a key question pertaining to this topic is how to convert
data in a database into knowledge useful to a knowledge system. The answer to this
question depends in part on the processing method used by the knowledge system.
The current generation of knowledge systems are heterogeneous both in their domain
knowledge and control of processing. They not only use multiple methods, each of
which uses a specific kind of knowledge and control of processing, but they also enable
dynamic method selection. Our work focuses on the interface between legacy databases
and legacy knowledge systems of the current generation.

The issue then becomes: given a legacy database, and given a legacy knowledge sys-
tem in which a specific processing method poses a particular knowledge goal (or query),
how might the data in the database be converted into a form appropriate to the pro-
cessing method? The form of this question indicates a possible answer: method-specific
transformation (or MST), which would transform the data into a form appropriate to
the processing strategy. The goal of this paper is to outline a conceptual framework for
the MST technique. Portions of this framework are instantiated in an operational com-
puter system called HIPED (for Heterogeneous Intelligent Processing for Engineering
Design). HIPED integrates a knowledge system for engineering design called INTERAC-
TIVE KRITIK [?, ?] with an external database represented in Oracle [?]. The knowledge
system and the database communicate through IDI [?].

2 HIPED Architecture

Figure 1 illustrates the general scheme. We describe this architecture in the following
subsection by decomposing it into database, knowledge system, and user components.

28

Schema
Builder

Task- i
Method i

Structurel
s ?\

„.. . '• Query
«*u «« i i,: Processor ^OthexWIsta--]/-

KncWedge Systems

New Data

Information Sources
L ; i.)

Local Information! Sources

Fig. 1. The HIPED architecture (Arrowed lines indicate unidirectional flow of infor-
mation; all other lines indicate bidirectional flow. Annotations on lines describe the
nature of the information which flows through that line. Rectangular boxes indicate
functional units and cylinders represent collections of data).

29

2.1 Database Integration

An enormous amount of data is housed in various database systems; unfortunately,
the meaning of this data is not encoded within the databases themselves. This lack
of metadata about the schema and a myriad of interfaces to various database systems
creates significant difficulties in accessing data from various legacy database systems.
Both of these problems can be alleviated by creating a single, global representation of
all of the legacy data, which can be accessed through a single interface.

Common practice for integration of legacy systems involves manual integration of
each legacy schema into a global schema [?]. Clearly, this approach does not work for
integration of a large number of database systems. We propose (see the right side of
Figure 1) to allow the database designers to develop a metadata description, called an
augmented export schema, of their database system. A collection of augmented export
Schemas can then be automatically processed by a schema builder to create a partially
integrated global schema2 which can be as simple as the actual database schema, al-
lowing any database to easily participate, or as complicated as the schema builder
can understand (See [?] for details on possible components of an augmented export
schema). A user can then submit queries on the partially integrated global schema to a
query processor which fragments the query into queries on the local databases. Queries
on the local databases can be expressed in a single query language which is coerced to
the local databases query language by a database wrapper.

2.2 Knowledge System Integration

As with databases, a considerable number knowledge systems exist. Most knowledge
systems do not provide an externally accessible description of the tasks and methods
they address. We propose (see the left side of Figure 1) to allow knowledge system
designers to develop a description, called a "task-method schema," of the tasks each
local knowledge system can perform [?]. In this approach, a set of knowledge systems,
defined at the level of tasks and methods, is organized into a coherent whole by a query
processor or central control agent. The query processor uses a hierarchically organized
schema of tasks and methods as well as a collection of miscellaneous knowledge about
processing and control (i.e. other meta-knowledge). Both the task-method structure and
the other meta-knowledge may be constructed by the system designer at design time
or built up by an automated schema builder.

2.3 Integrated Access

Transparent access to data and knowledge is important. We propose the provision of
a global request broker which takes a query from a user, submits the query to both
knowledge and database systems and returns an integrated result. Knowledge systems
needing data not available in their local repositories may act as users themselves.

2.4 Method-Specific Transformation

In this paper, we are concerned with the transformation of knowledge from external
sources into a form suitable for use by a knowledge system method. A naive approach

A mechanism for complete, automated integration is unlikely.

30

involves writing a transformation function for every permutation of knowledge system
and database. Clearly, this limits the overall scalability of the system.

We propose to leverage the partially integrated global representation of the knowl-
edge and database systems by creating a method-specific transformation for each
knowledge system which transforms knowledge from the partially integrated global
schema into a knowledge system specific representation. The number of necessary
method-specific transformations is linear with respect to the number of knowledge
systems, increasing the scalability of our approach.

2.5 Information Flow

Consider a knowledge system which spawns a task for finding a design part such as a
battery with a certain voltage. In addition to continuing its own internal processing, the
knowledge system also submits a query to the Global Request Broker. The broker sends
the query to the query processors for both integrated knowledge and database systems.
The database query processor fragments the query into subqueries for the individual
databases. The data derived is merged, converted to the global representation, and
returned to the Global Request Broker. Meanwhile, the knowledge query processor,
using its task-method schema, selects knowledge systems with appropriate capabilities
and submits tasks to each. Solutions are converted to a common representation and
sent to the Global Request Broker. It then passes the output from both the knowledge
and database system query processors through a method-specific transformer which
coerces the data into a form which is usable by the requesting knowledge system. The
resulting battery may be an actual battery which satisfies the voltage specification from
a knowledge or database system information source or it may be a battery constructed
from a set of lower voltage batteries by a knowledge system.

3 An Experiment with HIPED

We have been conducting a series of experiments in the form of actual system imple-
mentations. Figure 2 presents an architectural view of one such experiment, in which
a legacy knowledge system requests and receives information from a general-purpose
database system. Since this experiment deals with only one knowledge system and only
one database, we are able to abstract away a great many issues and focus on a specific
question: method-specific transformation.

3.1 General Method

The overall algorithm developed in this experiment breaks down into four steps which
correspond to the four architectural components shown in Figure 2:

Step 1 The knowledge system issues a request when needed information is not avail-
able in its local information source.

Step 2 The query processor translates the request into a query in the language of the
information source.

Step 3 The information source processes the query and returns data to the query
processor which sends the data to the method-specific transformer.

Step 4 The method-specific transformer converts the data into a knowledge represen-
tation format which can by understood by the knowledge system.

31

Fig. 2. The portion of the architecture relating to the proposed solution

All four of these steps pose complex problems. Executing step one requires that a
knowledge system recognize that some element is missing from its knowledge and that
this element would help it to solve the current problem. Performing step two requires
a mechanism for constructing queries and providing communication to and from the
external system. Step three is the fundamental problem of databases: given a query
produce a data item. Lastly, step four is a challenging problem because the differ-
ences between the form of the data in the information source and the form required
by the knowledge system may be arbitrarily complex. We focus on the fourth step:
method-specific transformation. The algorithm for the method-specific transformer im-
plemented in our experimental system is as follows:

Substep 4.1 Database data types are coerced into to knowledge system data types.
Substep 4.2 Knowledge attributes are constructed from fields in the data item.
Substep 4.3 Knowledge attributes are synthesized into a knowledge element.

3.2 Integration

The particular legacy systems which we combined in our implementation were INTER-

ACTIVE KRITIK and a relational database system [?] developed under Oracle. INTER-

ACTIVE KRITIK is a knowledge system which performs conceptual design of simple

32

physical devices and provides visual explanations of both the reasoning processes it
goes through and the design products it produces. It is an inherently multi-strategy
knowledge system. It uses case-based reasoning as a general process for performing
design and it also uses an assortment of model-based methods for doing specific design
tasks such as diagnosis and repair.

The experimental system which we have written serves as an interface between
INTERACTIVE KRITIK and our Oracle database. It is used when INTERACTIVE KRITIK

is attempting to redesign a device by component substitution, one redesign strategy
in its library of strategies. As a simple example, consider the situation in which the
system has determined that a flashlight is not producing enough light and has decided
that a more powerful bulb is needed. When the system identifies a single component
whose replacement could potentially solve the design problem, it consults its library
of components to see if such a replacement exists; in the example, it would check to
see if it knows about a more powerful bulb and would make a substitution only if it
did. In earlier implementations, the library of components was stored entirely within
INTERACTIVE KRITIK itself in the form of data structures in memory. In our experiment,
these data structures are not present in memory and the request for an appropriate
component takes place through our partial implementation of the pieces of the HIPED
architecture illustrated in Figure 2.

INTERACTIVE KRITIK sends its request to the query processor. The request is made
as a LISP function call to a function named lookup-database-by-attribute which takes
three arguments: a prototype, an attribute, and a value for that attribute. An example
of such a call from the system is a request for a more powerful light bulb for which the
prototype is the symbol 'L-BULB which refers to the general class of light bulbs, the
attribute is the symbol 'CAPACITY, and the value is the string "capacity-more" which
is internally mapped within INTERACTIVE KRITIK to a value, 18 lumens. The query
processor uses IDI to generate an SQL query as follows:

SELECT DISTINCT RVl.inst.name
FROM PROTO.INST RV1, INSTANCE RV2
WHERE RVl.proto.name = '1-bulb'
AND RVl.inst_name = RV2.name
AND RV2.att_val = 'capacity-more'

IDI sends this query to Oracle running on a remote server. Oracle searches through
the database tables illustrated in Table 1. The first of these tables, INSTANCE, holds
the components themselves. The second table, PROTOJNST is a cross-reference table
which provides a mapping from components to prototypes.

Table 1. The tables for the Oracle database

Table INSTANCE
NAME ATTRIBUTE ATT.VAL

littlebulb lumens capacity-less
bigmotor watts power-more

bigbulb lumens capacity-more

Table PROTOJNST
INST-NAME PROTO.NAME

littlebulb l-bulb
bigmotor motor

bigbulb l-bulb

33

If Oracle finds a result, as it does in this example, it returns it via the method-
specific transformer. In this case, the query generates the string "bigbulb" as the result.
The prototype name and the value are also part of the result, but they are not explicitly
returned by the database since they are the values used to select the database entry
in the first place. The method-specific transformer converts the raw data from the
database to a form comprehensible to INTERACTIVE KRITIK by using the algorithm
described in Section 3.1. In Substep 4.1, the string "bigbulb" is converted from a fixed
length, blank padded string, as returned by Oracle, to a variable length string, as
expected by INTERACTIVE KRITIK. In Substep 4.2, the attributes of the new bulb are
generated. The values "bigbulb" and 'L-BULB are used as the knowledge attributes
name and prototype-cornp; the values 'CAPACITY, 'LUMENS, and "capacity-more" are
combined into a CLOS object of a class named parameter and a list containing this
one object is created and used as the parameters attribute of the component being
constructed. Finally, in Substep 4.3 these three attribute values are synthesized into a
single CLOS object of the component class. The end result of this process is an object
equivalent to the one defined by the following statement:

(clos:make-instance 'component
: init-name "bigbulb"
:prototype-comp 'L-BULB
:parameters (list (clos:make-instance 'parameter

: init-name 'CAPACITY
:parm-units 'LUMENS
:pana-value "capacity-more")))

These commands generate a CLOS object of the component class with three slots.
The first slot contains the component name, the second contains the prototype of the
component, and the third is a list of parameters. The list of parameters contains a
single item which is, itself, a CLOS object. This object is a member of the parameter
class and has a parameter name, the units which this parameter is in, and a value for
the parameter. This object is then returned to INTERACTIVE KRITIK which is now able
to continue with its processing.

4 Discussion

The complexity involved in constructing a knowledge system makes reuse an attractive
option for true scalability. However, the reuse of legacy systems is non-trivial because
we must accommodate the heterogeneity of systems. The scalability of the HIPED
architecture comes from the easy integration of legacy systems and transparent access
to the resulting pool of legacy knowledge. Sharing data simply requires that a legacy
system designer augment the existing local schema with metadata that allows a global
coordinator to relate data from one system to another, providing a general solution to
large scale integration.

The specific experiment described in Section 3 models only a small portion of the
general architecture described in Section 2. In a related experiment, we have worked
with another portion of the architecture [?]. Here, five types of queries that INTERAC-
TIVE KRITIK may create are expressed in an SQL-like syntax. The queries are evaluated
by mapping them using facts about the databases and rules that establish correspon-
dences among data in the databases in terms of relationships such as equivalence,

34

overlap, and set containment. The rules enable query evaluation in multiple ways in
which the tokens in a given query may match relation names, attribute names, or val-
ues in the underlying databases tables. The query processing is implemented using the
CORAL deductive database system [?].

While the experiment described in this paper demonstrates method-specific trans-
formation of data into knowledge usable by INTERACTIVE KRITIK, the other experiment
shows how queries from INTERACTIVE KRITIK can be flexibly evaluated in multiple
ways. We expect an integration of the two to provide a seamless and flexible tech-
nique for integration of knowledge systems with databases through method-specific
transformation of data into useful knowledge.

This article was processed using the M^X macro package with LLNCS style

35

Integrating Heterogeneous Databases for Engineering Design

Sameer Mahajan Shamkant Navathe

College of Computing,
Georgia Institute of Technology,

(sameer,sham)@cc.gatech.edu

Abstract

A number of applications access data residing in heterogeneous databases, based on various data
models, having differing schemas, consisting of different internal representations etc. In this paper
we pick up a generic application of Engineering Design and assume a predetermined intelligent user
interface. We concentrate mainly on relational databases with the SQL interface for the purpose of an
illustrative implementation. We demonstrate the use of the CORAL deductive database management
system for the representation and maintenance of the metadata repository; and for the generation of
multiple possible interpretations of the user queries. CORAL facts store information about the various
schemas in the system. CORAL rules establish various relationships amongst different databases,
tables, attributes and values. The C++ interface of CORAL (also termed as CORAL++) along with
its deductive power is used for arriving at the multiple interpretations of the user queries.

1 Introduction

Heterogeneity of databases is becoming a necessary factor to contend with in the design of new
applications because of the proliferation of database management systems that used diverse data
models over the last three decades. Among widely implemented data models we have the hierarchi-
cal, network, relational and object oriented data models. A large body of work exists that deals with
the mapping of these models among one another (e.g. see the mapping of models using the entity
relationship model as an intermediate model in [1] [2]. While vendors are also providing middle-
ware solutions to draw data from these legacy systems, the semantic problems of resolving conflicts
regarding naming, scale, structure etc. that were pointed out several years ago [3] [4] still remain.
The purpose of the project was to tie a set of heterogeneous databases to an "intelligent front end
application" which would make requests for data without any knowledge of the schemas of the target
databases. To limit the degree of difficulty we assume that we are dealing with data in relational
databases only. This assumption is reasonable in the sense that if the data is coming from a hierar-
chical or a network DBMS, we can first convert the schema to a relational one before treating it for
purposes of integration. The database integration problem we discuss here is couched in the context
of engineering design which, like any other design application, relies on extracting data from existing
databases containing material data, components, existing designs etc. The exact context and the
application scenario will be explained in the next section.

We assume that relevant data for the design application is stored in relations (tables) whose
schemas are available at "design time". It is conceivable that to support large scale engineering
designs, data from a variety of databases, i.e., from multiple schemas would be required. To facilitate
integration of data among these databases we assume that the "correspondences", i.e., the similarities
and differences among the (meaning of) attributes is encoded in the form of rules. Furthermore, for
our application context, the user issues certain queries looking for relevant design information. We

Working Paper, College of Computing, Georgia Institute of Technology, December 1996

36

show in this paper how a query may have several interpretations. A deductive database system like
CORAL makes it easy to represent the schema information and the interrelationships in a natural
way. The C++ interface embedded in CORAL++ makes it easy to write general purpose programs
to access and update this information.

2 Problem Definition

Our main objective is to build and demonstrate an intelligent interface to a set of (possibly au-
tonomous) information sources including structured databases, knowledge bases, and unstructured
data. The approach we have selected involves the development of a mediator which utilizes meta-
knowledge of the underlying information stores to aid a user in browsing data or a system in retrieving
specific relevant information.

2.1 Predetermined Querying Interface

The user is assumed to use this system as an Engineering Database for designing purposes. So he
would typically like to find components that satisfy his requirements (e.g. batteries with voltage rat-
ing higher than 10V and cheaper than $10). Keeping this user's perspective in mind, the Engineering
data is thought to be made up of various "Prototypes". Each Prototype has various "Properties".
Each Property takes up some "Value" for every Prototype. We can compare the Values of various
properties using the relations : ==, <, >, <=, >=, <> etc. For the purpose of our implementation,
the queries can be classified into the following five types,

1. (Prototype <proto_name>) : here the user is looking for all the prototypes identified by
"proto_name". It is implicit that the user wants to see the various values for various prop-
erties of these prototypes.

2. (Property <prop_riame>) : the user is interested in all the prototypes having the Property
identified by "prop_name". It is implicit that the user wants to see the values taken by this
property for the various prototypes, that would be listed.

3. (Prototype <proto_name>) (Property <prop_name>) : the user wants to see all the prototypes
identified by "proto_name" and having property identified by "prop_name". It is implicit that
the user also wants to see the corresponding value that the property takes for the particular
prototype.

4. (Prototype <proto_name>) (Property <prop_name>) (Value <value>) (Relation <rel>) : the
user is interested in prototypes identified by "proto_name" having a property identified by
"prop_name". In addition to this he wants only those prototypes for which the property takes
a value which is related to the given "value" in the query by the relation "rel" (i.e. it is equal
to "value" or greater than "value" etc.)

5. (Property <prop_name>) (Value <value>) (Relation <rel>) : the user is interested in all the
prototypes for which the property identified by "prop-name" takes a value which is related to
the given "value" by the relation "rel".

2.2 Heterogeneous Databases as the Backend

Data is scattered in various databases and various tables in each of those databases. The databases
are assumed to be relational with the SQL interface for the illustrative purpose. It is a reasonable
assumption and is made to contain the complexity of the problem. The system needs to find out
which databases and which tables in these databases have the relevant data to answer a particular
query. It then translates the query into a corresponding SQL query for every table. This SQL query
is run against that table to get an answer. As we made an assumption of a uniform SQL interface
to all the databases, we can simply translate a query into one in SQL against a target database in
each of these cases.

37

3 Overall Operations in the System

The data is organized at two levels namely, (1) the metadata repository : consisting of informa-
tion about various databases and tables in them and (2) the actual data : which is distributed in
various heterogeneous databases. This organization reduces the data to be dealt with at the first
level to get to the appropriate database(s) and table(s). It also allows heterogeneity in the various
databases involved. The Querying Interface is as described in section 2.1. The "data" together with
its "wrapper" forms a database system. "Wrapper" simply defines the access methods to the data
for reading and updating purposes. A user query, which is of the form described above, would be
translated into the corresponding query, as understood by the corresponding "wrapper", for each of
the relevant tables. This query would then be routed to the corresponding database, that contains
this table. The metadata repository is consulted in determining these relevant tables and finding the
corresponding database. The user would get the result, obtained after running the query against all
the applicable databases through the "Result Composer". The overall system architecture is given
in figure 1.

INTELLIGENT

USER

INTERFACE

query / result userxrequest

Query

Processor

CORAL
meta-
data

wrapper wrapper

;=K

Heterogeneous Databases

Figure 1: The High Level System View

3.1 Multiple Interpretations of the various types of queries

For better understanding of the following discussion, let us take up an example query. Let the four
components of the query be,
(Prototype Battery) (Property Voltage) (Value 10) (Relation ==)■
As there can be various tables with different schema, we need to run this query with only those tables
that might give meaningful results for the query. We can easily observe that any of "Prototype",
"Battery", "Property" and "Voltage" can be a table or a column of a table. The "Battery" and

38

"Voltage" can also be values in the columns (e.g. those labeled as "Prototype" and "Property" re-
spectively). Of course there are a lot of dependencies amongst these components - e.g., if "Prototype"
is a table, then "Battery" has to be a column of this table. On the other hand, if there is a table
called the "Battery", then we are looking for values in the column "voltage" or "volts" - so that the
query would generate meaningful results with the table. Now we take up an example query for each
of the five types listed above. For every query we list the possible tables according to our scheme.

1. (Prototype Battery). The user typically means that he wants all the batteries with their
properties and their corresponding values. Hence we will have to run this query against all the
tables which,

• are equivalent to "Prototype Table" and have a column equivalent to "Battery" or
• are equivalent to "Battery Table"

• have a column equivalent to "Prototype" (and only the tuples with Prototype as "Battery"
would be considered).

if and only if these tables have columns equivalent to "Property" and "Value" each.

2. (Property Voltage). The user is interested in listing all the Prototypes having "Voltage" as one
of their Properties. The Values of these Properties would also be significant from his standpoint.
Hence we consider all the tables which,

• are equivalent to "Property Table" and have a column equivalent to "Voltage" or
• are equivalent to "Voltage Table"

• have a column equivalent to "Property" (and only the tuples with Property as "Voltage"
would be considered).

if and only if they have "Prototype" equivalent column.

3. (Prototype Battery) (Property Voltage). The user wants all the batteries with special interest
in their voltages. Hence we will run the query against all the tables which,

• are equivalent to "Prototype Table" and have "Battery", "Property" and "Value" equiva-
lent columns and we would be interested only in the tuples having an entry of "Voltage"
in the "Property" equivalent column or

• are equivalent to "Prototype Table" and have "Battery", "Voltage" equivalent columns or

• are equivalent to "Battery Table" and have "Property" and "Value" equivalent columns.
We would be interested only in those tuples having Property "Voltage" or

• are equivalent to "Battery Table" and have a column equivalent to "Voltage" Or

• are equivalent to "Property Table" and have columns equivalent to "Voltage", "Prototype"
and "Value". We would be interested in tuples with Prototype as "Battery".

• are equivalent to "Property Table" and have "Voltage" and "Battery" equivalent columns.
• are equivalent to "Voltage Tables" and have "Prototype" and "Value" equivalent columns.

We would look for only tuples with Prototype as "Battery".
• are equivalent to "Voltage Table" with "Battery" and "Value" equivalent columns.
• have "Prototype" and "Property" equivalent columns as far as they have "Value" equiv-

alent column. Only the tuples with Prototype as "Battery" and Property as "Voltage"
would be considered.

4. (Prototype Battery) (Property Voltage) (Value 10) (Relation ==). Here the interest is indicated
in all the batteries having Voltage as "10". The query can be run with all the tables as indicated
as above with an added constraint that only those tuples which have an entry of "10" in the
"Voltage" or "Value" column - whichever is applicable - (Note the table can have only one of
these columns at a time) will be considered.

5. (Property Voltage) (Value 10) (Relation ==). All the Prototypes having voltage of "10" are
being considered. Thus all the tables that,

39

• are equivalent to "Property Table" and have a column equivalent to "Voltage"
• are equivalent to "Voltage Table" and have a column equivalent to "Value"
• have "Property" and "Value" equivalent columns along with "Prototype" column, (only

tuples with Property "Voltage" and Value "10" would be taken into consideration).

would be considered if and only if they have a column equivalent to "Prototype". All the tuples
with "Voltage" or "Value" being 10 would be taken into account.

4 Effective Use of CORAL for the Integration

The metadata is stored in the form of CORAL [5] [6] facts and rules. CORAL is a deductive database
system which stores data as facts and rules, and allows for that data to be queried. By using CORAL
the mediator can decide which database(s) and table(s) are useful in answering any given query. In
particular, CORAL is used in deriving relationships like equivalence; between attributes, tables and
databases. Any creation, deletion or modification of a table results in a change in the metadata
repository. This dynamic behavior can be easily captured by CORAL. In essence, CORAL provides
us with the facility for database integration through the facts and rules specified about tables and
databases. However, this integration can be considered implicit rather than explicit since no global
conceptual schema is explicitly formed. Also the C++ interface provided by CORAL makes writing
general purpose programs easy. We explain the implementation by taking help of an example. The
integration of CORAL deductive engine with the C++ interface makes CORAL++ rich and well-
suited for our system.

4.1 A Simple Example

Consider a query,

(Prototype Battery) (Property Voltage).

This query is asking for information in all the databases that has something do with battery as a
prototype and voltage as a property.

Let us assume a system (as illustrated in figure 2) that has two databases - dbl and db2. Let
dbl have the populated tables as shown in Table 1 and Table 2.

CompNo Prototype Property Value

B101 Battery Voltage 10
M101 Motor Voltage 10
B110 Battery Voltage 100
Bill Battery Current 100

Table 1: "Components" Table in dbl

and let db2 have populated tables as shown in Table 3 and Table 4.
We observe that according to the discussion in section 3 only the tables in dbl would produce

meaningful results with the query under consideration.

4.2 Representation of the Metadata Repository-

It is stored as CORAL facts and rules. The advantage of such a storage is that we can utilize the
strong deductive power of CORAL (e.g. deducing equivalence of attributes, equivalence of tables
etc.). The various components of the repository are described below.

40

dbl

Components Table

CompNo Prototype Property Value

Battery Tab e

bNo Voltage

db2

Supplier Table Battery Table

BatteryNo SupplierNo bNo Current

Figure 2: An Example Database System

BatteryNo Voltage

B101 15
B102 30

Table 2: "Battery" Table in dbl

BatteryNo Current

B101 15
B102 30

Table 3: "Battery" Table in db2

BatteryNo Supplier No

B101 4567
B102 4568

Table 4: "Supplier" Table in db2

41

• First we list all the tables in all the databases as CORAL facts like,

y. For the first database, dbl.
belongsTo(component, dbl).
belongsTo(battery, dbl).

'/. For the second database, db2.
belongsTo(battery, db2).
belongsTo(supplier, db2).

• Then we list attributes of individual tables as CORAL facts. The first argument of these
predicates is the database name. It is so because the same table may have different attributes
in different databases, e.g. the "battery" table in the two databases "dbl" and "db2" as shown
below.

'/. for dbl
hasAttribs(dbl, component, [compName, prototype, property, value]).
hasAttribs(dbl, battery, [bName, voltage]).

'/. for db2
hasAttribs(db2, battery, [bName, current]).
hasAttribs(db2, supplier, [bName, sName]).

• We also need facts to list what attributes are equivalent. The equivalence of tables can be either
given by facts or can be deduced by the rules (e.g. two tables with equivalent attributes are
equivalent). But we do not need them in this particular example.

• To find whether a table has a particular attribute in a given database we define a CORAL rule
as,

module isAttrib.
export isAttrib(bff).
isAttrib (Db, Table, Attri) :- hasAttribs(Db, Table, Attribs),

iselem (Attri, Attribs).
end_module.

V. Module ''iselem'' is defined for the sake of completeness.
module iselem.
export iselem(bb).
©pipelining*. '/, Solve in a top-down fashion

iselem(X, [Xl_]).
iselem(X, [_|Z]) :- iselem(X,Z).
end_module.

4.3 Deducing the Appropriate Tables

It is done according to the scheme suggested in section 3. We use the C++ interface of CORAL for
this matter. In fact, an imperative interface (e.g. in C) would have been enough for the purpose.
We check for the various conditions given in the scheme and generate the appropriate SQL queries
for the existing tables. We run through the algorithm for the example query under consideration,

begin

42

For every "table" equivalent to ''prototype table"
for every attribute equivalent to ''battery", say attribi

for every attribute equivalent to ''property", say attrib2
if "table" has "attribi" as well as "attrib2"

for every attribute equivalent to "value", say attrib3

if "table" has attrib3

select the corresponding database and fire SQL query,
SELECT * FROM table

WHERE attrib2 == voltage equivalent value,
goto next table

for every attribute equivalent to "voltage", say attrib4

if "table" has attrib4
select the corresponding database and fire SQL query,

SELECT * FROM table

For every "table" equivalent to "battery table"

for every attribute equivalent to "voltage", attribi
if "table" has attribi

select the corresponding database and fire SQL query,
SELECT * FROM table

goto next table

for every attribute equivalent to "property", attrib2

for every attribute equivalent to "value", attrib3

if "table" has attrib2 and attrib3

select the corresponding database and fire SQL query,

SELECT * FROM table

WHERE attrib2 == voltage equivalent value.

For every table equivalent to "property table"

for every attribute equivalent to "voltage", say attribi

for every attribute equivalent to "prototype", say attrib2

if "table" has "attribi" as well as "attrib2"

for every attribute equivalent to "value", say attrib3
if "table" has attrib3

select the corresponding database and fire SQL query,
SELECT * FROM table

WHERE attrib2 == battery equivalent value,

goto next table

for every attribute equivalent to "battery", say attrib4
if "table" has attrib4

select the corresponding database and fire SQL query,

SELECT * FROM table

For every table equivalent to "voltage table"

for every attribute equivalent to "battery", attribi
if "table" has attribi

select the corresponding database and fire SQL query,
SELECT * FROM table

goto next table

for every attribute equivalent to "prototype", attrib2
for every attribute equivalent to "value", attrib3

if "table" has attrib2 and attrib3

4:

select the corresponding database and fire SQL query,

SELECT * FROM table
WHERE attrib2 =- battery equivalent value.

For every table having columns equivalent to each of

prototype, property and value

select the corresponding database and fire SQL query

SELECT * FROM table
WHERE prototype equivalent column) == battery equivalent value

AND property equivalent column == voltage eqv. value

end

4.4 The Result of Sample Queries

Let us say that the wrapper of dbl can handle SQL queries. In that case we first select that database
and then simply run a query,

SELECT *
FROM component
WHERE prototype = ''battery'' AND property = ''voltage''

against the first ("component") table in the database. We take similar actions for the other table in
(possibly various) databases. The other query in this case would be,

SELECT *
FROM battery

again with the same database viz. dbl. The result is presented to the user as displayed by the
corresponding "wrapper". The task of Result Composer is trivial in this case. It needs to simply
display the two tables with appropriate header information (e.g. table names etc.). In general it
might be required to merge tables coming from multiple databases. It might also be required to take
into consideration the interrelationships amongst various various tables, attributes and values in the
same database.

5 Exploiting the Deductive Power of CORAL

The equivalence relationships amongst the various attributes are stored as CORAL facts. The de-
duced equivalences between tables can be added (and modified as and when required) dynamically
for performance benefits. Additional relationships, including semantic ones, between attributes and
tables can also be easily captured under this scheme. Sometimes it might be necessary to account
for these relationships. They might improve the efficiency of arriving at the result in other cases. A
sample system with definition of some additional relationships is given in Appendix A. This example
is given for illustrative purposes only. It does not address completeness or efficiency. It means that
neither all the facts and rules required are given nor the rules are written to ensure optimal search
results.

6 Conclusions and Future Work.

Integration of heterogeneous databases is achieved with respect to an Engineering Data Processing
Application. The effective use of deductive database engine integrated with the C++ like interface
is illustrated with the help of CORAL++ implementation. CORAL++ makes it easy to represent
the information and deduce the outcomes in a natural way.

44

The system makes an assumption that all the databases involved provide an SQL interface. This
condition can be relaxed. In this case we need to generate different queries, as understood by each
of the databases involved. Currently only the individual tables are checked to see whether they
provide satisfactory data to answer a particular query. But it is possible that two or more tables
taken separately do not have enough information to answer a query. At the same time, when taken
together (e.g. their join), they provide data to answer the query. Consider that there are two tables
- which might be in the same database or in different databases - one with columns "Component
Number" and "Prototype". The other with columns "Component Number" and "Voltage". Then
neither of them provides enough information for the query
(Prototype Battery) (Property Voltage)
But their equijoin with the additional condition of "Prototype == Battery" for the tuples is of
interest to us. The extended solution can exhaustively take care of all such cases. The five types of
queries, given in section 2.1, were decided intuitively. They can be modified and / or extended based
on a systematic treatment of the user needs.

References

[1] C. Batini, S. Ceri, and S.B. Navathe, Conceptual Database Design: An Entity Relation-
ship Approach, Benjamin Cummings, August 1991, 470 pp.

[2] R. Elmasri, S Navathe, Fundamentals of Database Systems, 2nd Edition, 1994.

[3] J. Larson, S. B. Navathe, and R. Elmasri A Theory of Attribute Equivalence in Databases with
Application to Schema Integration, IEEE Transactions on Software Engineering, Vol. 15, No.
4, April 1989.

[4] S.B. Navathe, R. Elmasri and J.A. Larson, Integrating User Views in Database Design, IEEE
Computer, Vol. 19, No. 1, January 1986, pp. 50-62.

[5] R. Ramakrishnan, D. Srivastava and S. Sudarshan, CORAL: Control, Relations and Logic,
Proceedings of the International Conference on Very Large Databases, 1992.

[6] R. Ramakrishnan, D. Srivastava, S. Sudarshan and P. Seshadri, Implementation of the CORAL
deductive database system, Proceedings of the ACM SIGMOD Conference on Management of
Data, 1993.

45

Appendix A

db(db2).
db(dbl).

*/.
'/, Attributes in LDB 1 (University Registration)
*/.
attrib(dbl, professor, profname).

attrib(dbi, professor, desc).

attrib(dbi, student, name).

attrib(dbl, student, id).

attrib(dbi, project, id).

attrib(dbl, project, projname).

attrib(dbl, project, desc).

attrib(dbl, course, coursename).

attrib(dbl, course, desc).

attrib(dbl, manage, id).

attrib(dbl, manage, profname).
attrib(dbl, manage, projname).

attrib(dbl, participate, id).

attrib(dbl, participate, projname).
attrib(dbl, participate, stdid).

attrib(dbl, assigned, id).

attrib(dbi, assigned, coursename).

attrib(dbl, assigned, profname).

attrib(dbi, enroll, id).

attrib(dbl, enroll, coursename).

attrib(dbi, enroll, stdid).

'/.
'/, Attributes in LDB 2 (University Payroll)

'/.
attrib(db2, project, id).

attrib(db2, project, fund).

attrib(db2, professor, id).
attrib(db2, professor, name).

attrib(db2, student, name).

attrib(db2, student, id).

attrib(db2, department, id).
attrib(db2, department, name).

46

attrib(db2, grapay, code).

attrib(db2, grapay, stdid).

attrib(db2, grapay, projid).

attrib(db2, gtapay, code).

attrib(db2, gtapay, stdid).
attrib(db2, gtapay, deptid).

attrib(db2, deptpay, code).

attrib(db2, deptpay, profname).

attrib(db2, deptpay, deptid).

attrib(db2, projpay, code).

attrib(db2, projpay, profname).

attrib(db2, projpay, projid).

'/.
V. Entities (classes) in Two Databases
*/.
'/. Entities in LDB 1 (University Registration)

class(dbl, professor).
class(dbl, student).

class(dbl, project).

class(dbl, course).

class(dbl, manage).

class(dbl, participate).

class(dbl, assigned),
class(dbl, enroll).

*/, Entities in LDB 2 (University Payroll)

class(db2, professor),
class(db2, student).

class(db2, project).

class(db2, department).

class(db2, grapay).

class(db2, gtapay).

class(db2, projpay).
class(db2, deptpay).

'/.
'/, Attributes of an individual class listed

'/.

has_attribs(db2, professor, [id, name, address, officeno]).

has_attribs(dbl, student, [id, name, address]).

has_attribs(dbi, project, [id, courseno, desc]).

has_attribs(dbl, course, [no, name, desc]).

has_attribs(dbl, manage, [id, projid, profno]).

has_attribs(dbl, participate, [id, stdid, projid]).
has_attribs(dbl, assigned, [id, courseno, profno]).

47

has_attribs(dbl, enroll, [id, stdid, courseno]).

has_attribs(db2, professor, [id, name]).

has_attribs(db2, student, [id name]).

has_attribs(db2, project, [id, fund]).

has_attribs(db2, department, [id, name]).

has_attribs(db2, grapay,[code, projid, stdid]).
has_attribs(db2, gtapay,[code, deptid, stdid]).

has_attribs(db2, projpay,[code, projid, profid]).

has_attribs(db2, deptpay, [code, deptid, profid]).

*/. Information from Schema Analysis

'/. 1. Attributes Relationship

keqv(dbl, project, id, db2, project, id).

keqv(dbl, student, id, db2, student, id).

keqv(dbl, student, name, db2, student, name).

keqv(dbl, professor, name, db2, professor, name).

kcontain(db2, student, id, db2, grapay, stdid).

kcontain(db2, student, id, db2, gtapay, stdid).

kcontain(dbl, student, id, dbi, participate, stdid).

kcontain(db2, professor, name, db2, project, name).

kcontain(db2, professor, name, db2, department, name).

kcontain(dbi, professor, name, dbl, assigned, name).
kcontain(dbl, professor, name, dbi, manage, name).

kcontain(dbl, course, name, dbl, assigned, name).
kcontain(dbi, course, name, dbi, enroll, coursename).

'/, Information from Schema Analysis

%
V, 1. Class Relationship

"/, The following relationships would be added dynamically as they are
V, deduced by the system.

ksubsume(dbl, professor, db2, professor).

ksubsume(dbl, project, db2, project).

ksubsume(dbl, student, db2, student).

'/.
V, equivalent attributes
'/.

eqv(X, X)
eqv(X, Y)
eqv(X, Y)
eqv(X, Z)

- attrib(Db, T, X).

- keqv(Dbl, Tl, X, Db2, T2, Y).
- keqv(Dbl, Ti, Y, Db2, T2, X).

- eqv(X, Y), eqv(Y, Z).

48

y.
7, Attribute Containment Relationship

contain(X, Z)
contain(X, Y)
contain(X, Z)
contain(X, Z)

eqv(X, Z).

kcontain(Dbl, Tl, X, Db2, T2, Y).
contain(X, Y), contain(Y, Z).

eqv(X, Y), contain(Y, Z).

'/, Overlapping Attributes

overlap(X, Y)

overlap(X, Y)

overlap(X, Y)

contain(X, Y).

contain(Y, X).

eqv(X, Y).

'/, Disjoint Attributes

'/.

disjoint(X, Y) :- attrib(Dbl, Tl, X), attrib(Db2, T2, Y), not overlap(X, Y).

*/.
'/, equivalent classes

*/.

eqclass(X, Y)
eqclass(X, X)

eqclass(X, Y)

:- keqclass(Dbl, X, Db2, Y).

:- class(Db, X).

:- eqclass(Y, X).

'/, class equivalence derived from attributes.

eqclass(X, Y) :- has_attribs(X, Z), has_attribs(Y, W), eqlist(Z.W).
eqclass(X, Z) :- eqclass(X, Y), eqclass(Y, Z).

*/.
7. Equivalent Lists of Attributes

7.
eqlist ([],□).
eqlist([X|Y],[W|Z]) :- eqv(X.W), !, eqlist(Y,Z).
eqlist([X|Y],[W|Z]) :- iseqv(X.Z),eqlist(Y,[W|Z]).

7.
'/. Testing for being a member of a list.

7.
iseqv(X.D) :- !, fail.
iseqv(X,[Y|_]) :- eqv(X.Y).

iseqv(X,[_|Y]) :- iseqv(X.Y).

7.
'/, class X subsumes class Y

7.

49

subsume(X, Y) :- ksubsume(Dbi, X, Db2, Y).
subsume(X, Z) :- class(Dbl, X), class(Db2, Y), class(Db3, Z),
subsume(X, Y), subsume(Y, Z).
subsume(X, Z) :- eqclass(X, Z).
subsume(X, Z) :- eqclass(X, Y), subsume(Y, Z).

7.
7, overlapping classes
7.

overclass(X, Y)
overclass(X, Y)
overclass(X, Y)

- subsume(X, Y),
- subsume(Y, X),
- eqclass(X, Y),

7.
7. disjoint classes
7.

disclass(X, Y) :- class(Dbl, X), class(Db2, Y), not overclass(X, Y).

50

METHOD-SPECIFIC KNOWLEDGE COMPILATION:

TOWARDS PRACTICAL DESIGN SUPPORT SYSTEMS

J. WILLIAM MURDOCH AND ASHOK K. GOEL
Intelligent Systems Group

MICHAEL J. DONAHOO
Networking and Telecommunications Group

AND

SHAMKANT NAVATHE
Database Systems Group

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280, USA

[To appear in: Proceedings of the 5th International Conference on Artificial Intelligence and Design (AID'98).

Lisbon, Portugal, July 20-23, 1998.]

Abstract.
Modern knowledge systems for design typically employ multiple problem-solving

methods which in turn use different kinds of knowledge. The construction of a het-
erogeneous knowledge system that can support practical design thus raises two fun-
damental questions: how to accumulate huge volumes of design information, and
how to support heterogeneous design processing? Fortunately, partial answers to
both questions exist separately. Legacy databases already contain huge amounts
of general-purpose design information. In addition, modern knowledge systems
typically characterize the kinds of knowledge needed by specific problem-solving
methods quite precisely. This leads us to hypothesize method-specific data-to-
knowledge compilation as a potential mechanism for integrating heterogeneous
knowledge systems and legacy databases for design. In this paper, first we outline
a general computational architecture called HIPED for this integration. Then, we
focus on the specific issue of how to convert data accessed from a legacy database
into a form appropriate to the problem-solving method used in a heterogeneous
knowledge system. We describe an experiment in which a legacy knowledge sys-
tem called INTERACTIVE KRITIK is integrated with an ORACLE database using
IDI as the communication tool. The limited experiment indicates the computa-
tional feasibility of method-specific data-to-knowledge compilation, but also raises
additional research issues.

51

2 J. William Murdock ET AL.

1. Motivations, Background, And Goals

Knowledge systems for design developed thus far appear incapable of sup-
porting practical design. This critique surely is valid for all laboratory
knowledge systems such as AIR-CYL (Brown and Chandrasekaran, 1989),
COMADE (Lenz et al., 1996), and our own KRITIK series of systems de-
scribed at earlier AI in Design conferences (Stroulia et al., 1992; Bhatta
et al., 1994; Goel et al., 1996b). But it is also applicable to systems that have
directly led to real applications such as Rl (McDermott, 1982), PRIDE (Mit-
tal et al., 1986), VT (Marcus et al., 1988), CLAVIER (Hennessy and Hinkle,
1992), and ASK-JEF (Barber et al., 1992). The problem is the limited scale
and scope of knowledge systems for design. The scale of these systems is
quite small both in the size and complexity of problems they solve and
the amount and variety of knowledge they contain. In addition, these sys-
tems are both domain-specific in that their knowledge is relevant only to a
very narrow class of domains, and task-specific in that their processing is
appropriate only to a very narrow class of tasks.

At the root of the above problem lie two critical questions. Firstly,
both scope and scale imply heterogeneity in knowledge and processing.
Consider, for example, KRITIK, which integrates case-based reasoning and
model-based reasoning for addressing the conceptual phase of functional
design of mechanical devices. In KRITIK, even this limited task requires
many different kinds of knowledge ranging from design cases to device mod-
els to repair plans, and many different processing strategies ranging from
problem-driven case retrieval to model-based adaptation to goal-directed
plan instantiation. Thus the first hard question is this: How might we sup-
port heterogeneous knowledge and processing? Secondly, both scale and
scope demand huge volumes of knowledge. A robust version of KRITIK ca-
pable of supporting practical design may require knowledge of millions of
design cases, primitive components, device models, physical processes, en-
gineering mechanisms, repair plans, etc. Thus the second hard question is
this: How might we accumulate huge volumes of knowledge?

1.1. PAST RESEARCH

The above two questions are among the core issues in AI research on knowl-
edge systems in general. AI strategies for answering them may be divided
into two general categories: (i) ontological engineering, and (ii) information
integration. The well known CYC project (Lenat and Guha, 1990), which
seeks to provide a global ontology for constructing knowledge systems, ex-
emplifies the strategy of ontological engineering. Ontolingua (Gruber, 1993)
provides another, domain-specific example of this strategy. The bottom-
up strategy focuses on the second question of accumulation of knowledge:

52

Method-Specific Knowledge Compilation 3

domain-specific and domain-independent ontologies may one day enable
interactive knowledge acquisition from external sources and autonomous
acquisition of knowledge through learning from experience. But the strat-
egy requires the building of new systems based on a common ontology.

In contrast, the strategy of information integration emphasizes the reuse
of legacy information sources such as databases, integration of the informa-
tion sources, and sharing of information in one source by other systems. This
top-down strategy focuses on one part of the first question above, namely,
heterogeneity of knowledge. The strategy appears especially attractive with
the advent of the World Wide Web which provides potential access to huge
numbers of heterogeneous information sources such as electronic databases
and digital libraries.

Various projects on information integration have focused on different
aspects of information integration. For example, KQML (Finin and Wieder-
hold, 1991) provides a protocol language for communication among database
systems, and KIF (Genesreth and Fikes, 1991) provides a meta-language
for enabling translation between knowledge systems. In contrast, (Brodie,
1988) has emphasized the need for integrating knowledge systems and
databases. (McKay et al., 1990) in particular have pointed out that a key
question is how to convert data in a database into knowledge useful to a
knowledge system. The answer to this question clearly depends in part on
the problem-solving method used by the knowledge system.

1.2. THIS WORK

Modern knowledge systems for design may be considered as belonging to the
third generation. The first generation, such as Rl, used a single problem-
solving method, e.g., rule-based reasoning, characterized by a single kind
of knowledge, e.g., production rules, and a single control of processing, e.g.,
forward chaining. The second generation of systems, such as AIR-CYL,
PRIDE and VT, not only used multiple problem-solving methods, but they
also explicitly represented the control of processing of each method. AIR-
CYL, for example, used top-down plan instantiation and expansion for the
task of generating preliminary designs and bottom-up pattern matching
for the subtask of selecting appropriate design plans. The third generation
of knowledge systems for design, such as COMADE and KRITIK, not only
use a richer array of problem-solving methods, but also allow for flexible
strategic control and enable dynamic method selection (Punch et al., 1996).

Given the variety and complexity of design, the above evolution is only
natural. But it introduces a new element in the AI strategy of information
integration: how to accommodate heterogeneity of processing. For heteroge-
neous knowledge systems that employ multiple problem-solving methods,

53

4 J. William Murdock ET AL.

we may translate the question posed by McKay et al. as follows: given a
legacy database, and given a legacy knowledge system in which a specific
problem-solving method poses a particular goal (or query), how might the
data in the database be converted into a form appropriate to the method?
The form of this question itself suggests a possible answer: method-specific
knowledge compilation, which would transform the data into a form appro-
priate to the processing method.

This above issue is hard and complex. The modest goal of this paper is
simply to examine the AI strategy of information integration from the per-
spective of heterogeneous knowledge systems for design. We outline a com-
putational architecture for supporting method-specific data to knowledge
compilations. We also report on an experiment with a particular instan-
tiation of one portion of the architecture in an operational computer sys-
tem called HIPED (for Heterogeneous Intelligent Processing for Engineer-
ing Design). HIPED integrates INTERACTIVE KRITIK (Goel et al., 1996b;
Goel et al., 1996c), the current version of KRITIK, with an external database
represented in Oracle (Koch and Loney, 1995). The knowledge system and
the database communicate through IDI (Paramax, 1993).

2. The HIPED Architecture

To avoid the enormous cost of constructing knowledge systems for design,
HIPED proposes the reuse of legacy knowledge and database systems, so
that we can quickly and inexpensively construct large scale systems with
capabilities and knowledge drawn from existing systems. To facilitate easy
integration which, in effect, increases overall scalability, we restrict our-
selves to making few, if any, changes to the participating legacy systems.
The long-term goal is to allow a system to easily access the capabilities of a
pool of legacy systems. The architecture of Figure 1 illustrates the general
scheme. The architecture presented in this figure is a projected reference
architecture and not a description of a specific existing system. In this sec-
tion, we describe the entire reference architecture. In the following sections
we will further elaborate on a particular piece of work which instantiates a
portion of this architecture.

2.1. DATABASE INTEGRATION

An enormous amount of engineering design data is housed in various database
systems. Unfortunately, the meaning of this data is not encoded within the
databases themselves. At best, the database schema has meaningful names
for individual data elements, but often it is difficult to infer all, if any, of
the meaning of the data from the schema. This lack of metadata about
the schema and a myriad of interfaces to various database systems creates

54

Method-Specific Knowledge Compilation

User

Global
Request Broker

Schema
Builder

Kndwedge Syjstpms

Query
Processor

New Data

InfoTrationSouces

Figure 1. The HIPED architecture (Arrowed lines indicate unidirectional flow of infor-
mation; all other lines indicate bidirectional flow. Annotations on lines describe the nature
of the information which flows through that line. Rectangular boxes indicate functional
units and cylinders represent collections of data).

55

6 J. William Murdock ET AL.

significant difficulties in accessing data from various legacy database sys-
tems. Both of these problems can be alleviated by creating a single, global
representation of all of the legacy data, which can be accessed through a
single interface.

Common practice for integration of legacy systems involves manual in-
tegration of each legacy schema into a global schema. That is, database
designers of the various legacy systems create a global schema capable of
representing the collection of data in the legacy databases and provide a
mapping between the legacy system schemas and this global schema (Batini
et al., 1986). Clearly, this approach does not work for integration of a large
number of database systems. We propose (see the right side of Figure 1)
to allow the database designers to develop a metadata description, called
an augmented export schema, of their database system. A collection of aug-
mented export schemas can then be automatically processed by a schema
builder to create a partially integrated global schema1 which can be as simple
as the actual database schema, allowing any database to easily participate,
or as complicated as the schema builder can understand (See (Navathe and
Donahoo, 1995) for details on possible components of an augmented export
schema). A user can then submit queries on the partially integrated global
schema to a query processor which fragments the query into sub-queries
on the local databases. Queries on the local databases can be expressed
in a single query language which is coerced to the local database's query
language by a database wrapper.

2.2. KNOWLEDGE SYSTEM INTEGRATION

As with databases, a considerable number of knowledge systems exist for
design (e.g. Rl, AIR-CYL, PRIDE, COMADE) each with their own abili-
ties to perform certain tasks with various methods. Users wishing to access
the capabilities of a collection of such systems encounter problems of differ-
ent interfaces and knowledge representations. Most knowledge systems do
not provide an externally accessible description of the tasks and methods
they address. As with the database system, one way to integrate legacy
knowledge systems is to gather together the designers and construct an ad
hoc interface which combines the capabilities of the underlying systems.
Once again, this approach does not work for integration of a large number
of knowledge systems.

We propose (see the left side of Figure 1) to allow knowledge system
designers to develop a description, called a "task-method schema," of the
tasks each local knowledge system can perform (Stroulia and Goel, 1995).
In this approach, a set of knowledge systems, defined at the level of tasks and

A mechanism for complete, automated integration is unlikely.

56

Method-Specific Knowledge Compilation 7

methods, are organized into a coherent whole by a query processor or central
control agent. The query processor uses a hierarchically organized schema
of tasks and methods as well as a collection of miscellaneous knowledge
about processing and control (i.e. other meta-knowledge). Both the task-
method structure and the other meta-knowledge may be constructed by
the system designer at design time or built up by an automated schema
builder.

2.3. INTEGRATED ACCESS

The dichotomy of knowledge systems and database systems is irrelevant to
global users. Users simply want answers and are not concerned with whether
the answer was provided directly from a database or derived by a process
in a knowledge system. We propose the provision of a global request broker
which takes a query from a user, submits the query to both knowledge
and database systems and returns an integrated result. It is completely
transparent to a global user how or from where an answer was derived.

Furthermore, the individual knowledge systems may, themselves, act as
users of the integrated access mechanism. The knowledge systems each have
their own local repositories of data but may also find that they need in-
formation from a database or another knowledge system. When they need
external knowledge, they simply contact the global request broker which can
either recursively call the general collection of knowledge systems to gener-
ate a response or contact the system of databases. When either a database
or a knowledge system generates a response to a request from a knowledge
system, the resulting answer is then sent through a method-specific knowl-
edge compiler which does whatever specific translation is needed for the
particular system.

2.4. METHOD-SPECIFIC KNOWLEDGE COMPILATION

In this paper, we are concerned with the compilation of knowledge from ex-
ternal sources into a form suitable for use by a knowledge system method.
Recall that we do not want to alter the knowledge system, so the form of
the knowledge may be very specific to the particular method which exe-
cuted the query; consequently, we call this a "method-specific knowledge
compilation." We will examine the mechanisms behind this component of
the reference architecture in more detail in later sections.

2.5. INFORMATION FLOW

Consider a design knowledge system which spawns a task for finding a
design part such as a battery with a certain voltage. In addition to con-

57

8 J. William Murdock ET AL.

tinuing its own internal processing, the knowledge system also submits a
query to the global request broker. The broker sends the query to the
query processors for both integrated knowledge and database systems. The
database query processor fragments the query into subqueries for the in-
dividual databases. The data derived is merged, converted to the global
representation, and returned to the global request broker. Meanwhile, the
knowledge query processor, using its task-method schema, selects knowl-
edge systems with appropriate capabilities and submits tasks to each. So-
lutions are converted to a common representation and sent back to the
global request broker. It then passes the output from both the knowledge
and database system query processors through a method-specific knowl-
edge compiler which coerces the data into a form which is usable by the
requesting knowledge system. The resulting battery may be an existing bat-
tery which satisfies the voltage specification from a knowledge or database
system information source or it may be a battery constructed from a set of
lower voltage batteries by a knowledge system.

3. Knowledge Compilation

The architecture described in the previous section raises an enormous vari-
ety of issues. The one which we want to focus on more closely here is that
of knowledge compilation, i.e. the principled transformation of knowledge
from one form to another. Large volumes of information can be found in
existing databases of components, design schematics, etc. An intelligent de-
sign system can make use of this existing data by compiling it into a form
which is sutable to its use. There are several closely interrelated perspec-
tives on knowledge compilation as presented in "Knowledge Compilation:
A Symposium" (Goel (ed.), 1991). A few of these perspectives relevant to
this context are:

1. Knowledge implemented in one representational paradigm may be trans-
formed into another. For example, tuples in a relational database may
be transformed into objects in an object-oriented programing language.

2. Knowledge in a generally useful organization may be transformed into
a different organization which is more efficient for a specific application.
For example, a model of a device may be transformed into a set of rules
for diagnosing faults ofthat device, as per (Keller, 1991).

3. Declarative knowledge may be transformed into procedural knowledge,
i.e. a specification of a task may be compiled into a procedure for ac-
complishing that task. This is really an extreme form of the former
approach; the result is a knowledge element which only supports one
application, its execution, but presumably does so in the most effi-

58

Method-Specific Knowledge Compilation 9

cient way that the compiler can generate. (Tong, 1991) embodies this
approach.

4. Knowledge of patterns or categories can be inductively inferred from
elements. This can be also be seen as an extention of point 2, above;
knowledge of instances may be voluminous and difficult to apply to
new situations and thus this knowledge is compiled into descriptions or
rules which directly enable recognition, classification, etc. Virtually all
work done in the field of machine learning can be viewed as knowledge
compilation from this perspective.

In this work, we have limitted our attention to the first of
these topics. We believe that all of these approaches to knowledge com-
pilation are interesting and important. We intend to address all of these
concerns in our future research. However, for the purposes of supporting
large scale, heterogenous processing, it is clear that the first issue, that
of transforming the structural details of the representation, is inherently
fundamental; without a framework for such basic transformations, any of
the more complex, sophisticated approaches to knowledge compilation are
useless because they simply cannot access any knowledge to compile.

4. INTERACTIVE KRITIK

INTERACTIVE KRITIK is a legacy knowledge system which we have inte-
grated into the HIPED architecture. INTERACTIVE KRITIK is a computer-
based design environment. A major component of this system is KRITIK3,

an autonomous knowledge-based design system. When completed, INTER-

ACTIVE KRITIK is intended to serve as an interactive constructive design
environment. At present, when asked by a human user, INTERACTIVE KRI-

TIK can invoke KRITIK3 to address specific kinds of design problems. In ad-
dition, INTERACTIVE KRITIK can provide explanations and justifications of
KRITIK3'S design reasoning and results, and enable a human user to explore
the system's design knowledge.

KRITIK3 evolves from KRITIK, an early multi-strategy case-based de-
sign system. Since KRITIK is described in detail elsewhere (see, for example,
(Goel and Chandrasekaran, 1989; Goel et al., 1996a)), in this paper we only
sketch the outlines of KRITIK3. One of the major contributions of KRITIK

is its device modeling formalism: the Structure-Behavior-Function (SBF)
language. The remarkable characteristics of SBF models are: (i) they are
functional, i.e. they describe both basic components and complex devices
in terms of the function they achieve; (ii) there are causal, i.e. they describe
sequences of interactions which constitute the internal behavior of the de-
vice; and (iii) they are compositional, i.e. they describe how the function
of the device emerges from the functions of the components.

59

10 J. William Murdock ET AL.

KRITIK3 is a multi-strategy process model of design in two senses. First,
while the high-level design process in KRITIK3 is case-based, the reasoning
about individual subtasks in the case-based process is model-based; KRI-

TIK3 uses device models described in the SBF language for adapting a past
design and for evaluating a candidate design. Second, design adaptation
in KRITIK3 involves multiple modification methods. While all modification
methods make use of SBF device models, different methods are applicable
to different kinds of adaptation tasks.

The primary task addressed by KRITIK3 is the extremely common
functions-to-structure design task in the domain of simple physical devices.
The functions-to-structure design task takes as input the functional specifi-
cation of the desired design. For example, the functions-to-structure design
of a flashlight may take as an input the specification of its function of creat-
ing light when a force is applied on a switch. This task has the goal of giving
as output the specification of a structure that satisfies the given functional
specification, i.e., a structure that results in the given functions.

KRITIK3'S primary method for accomplishing this task is case-based
reasoning. Its case-based method sets up four subtasks of the design task:
problem elaboration, case retrieval, design adaptation, and case storage.

The task of problem elaboration takes as input the specification of the
desired function of the new design. It has the goal of generating a probe
to be used by case retrieval for deciding on a new case to use. KRITIK3

uses domain-specific heuristics to generate probes based on the surface fea-
tures of the problem specification. The task of case retrieval takes as input
the probes generated by the problem elaboration component. It has the
goal of accessing a design case, including the associated SBF model whose
functional specification is similar to the specification of desired design. KRI-

TIK3'S case memory is organized in a discrimination tree, with features in
the functional specifications of the design cases acting as the discriminants.
Its retrieval method searches through this discrimination tree to find the
case that most closely matches the probe.

The task of design adaptation takes as input (i) the specification of the
constraints on the desired design, and (ii) the specifications of the con-
straints on and the structure of the candidate design. It has the goal of
giving as output a modified design structure that satisfies the specified con-
straints. KRITIK3 uses a model-based method of design adaptation which
divides the design task into three subtasks: computation of functional dif-
ferences, diagnosis, and repair. The idea here is that the candidate design
can be viewed as a failed attempt to accomplish the desired specifications.
The old design is first checked to see how its functionality differs from the
desired functionality. The model of the design is then analyzed in detail to
determine one or more possible causes for the observed difference. Lastly,

60

Method-Specific Knowledge Compilation 11

KRITIK3 makes modifications to the device with the intent of inducing the
desired functionality.

The method of repair used by KRITIK3 is generate and test. This method
sets up two subtasks of the repair task: model revision and model verifica-
tion. The task of model revision takes as input (i) the specification of the
constraints on the desired design, and (ii) the model of the candidate de-
sign. It has the goal of giving as output a modified model that is expected
to satisfy the constraints on the desired design. KRITIK3 knows of several
model revision methods such as component replication or component re-
placement. KRITIK3 dynamically chooses a method for model revision at
run time based on the results of the diagnosis task. Depending on the mod-
ification goals set up by the diagnosis task, the system may also use more
than one model-revision method.

The task of model verification takes as input (i) the specification of the
constraints on the desired design, and (ii) the specification of the structure
of the modified design. It has the goal of giving as output an evaluation of
whether the modified structure satisfies the specified constraints. KRITIK3

qualitatively simulates the revised SBF model to verify whether it delivers
the functions desired of it.

The task of case storage takes as input (i) a specification of the case
memory, and (ii) a specification of a new case. It has the goal of giving as
output a specification of the new case memory with the new case appro-
priately indexed and organized in it. Recall that KRITIK3'S case memory is
organized in a discrimination tree. The system uses a model-based method
for the task of storing a new case in the tree. This method sets up the
subtasks of indexing learning and case placement. The SBF model of the
new design case enables the learning of the appropriate index to the new
case. This directly enables the task of case placement.

5. An Experiment with HIPED

We have been conducting a series of experiments in the form of actual sys-
tem implementations. Some of these experiments have focused on issues
most closely related to the data end of the data to knowledge compilation
process; these issues include data organization, access, transfer, etc. The
experiment we focus on here, however, is more closely connected to the
knowledge end of the process. This experiment examines the use of knowl-
edge compiled at run-time in the context of the operation of INTERACTIVE
KRITIK.

Figure 2 presents an architectural view of the experiment, in which
a legacy knowledge system for design requests and receives information
from a general-purpose database system. Since this experiment deals with

61

12 J. William Murdock ET AL.

only one knowledge system and only one database, we are able to abstract
away a great many issues and focus on a specific question: method-specific
knowledge compilation.

Figure 2. The portion of the architecture relating to the proposed solution

5.1. GENERAL METHOD

The overall algorithm developed in this experiment breaks down into four
steps which correspond to the four architectural components shown in Fig-
ure 2:

Step 1 The knowledge system issues a request when needed information is
not available in its local information source.

Step 2 The query processor translates the request into a query in the lan-
guage of the information source.

62

Method-Specific Knowledge Compilation 13

Step 3 The information source processes the query and returns data to the
query processor which sends the data to the method-specific knowledge
compiler.

Step 4 The method-specific knowledge compiler converts the data into a
knowledge representation format which can by understood by the knowl-
edge system.

All four of these steps pose complex problems. Executing step one re-
quires that a knowledge system recognize that some element is missing
from its knowledge and that this element would help it to solve the current
problem. Performing step two requires a mechanism for constructing queries
and providing communication to and from the external system. Step three
is the fundamental problem of databases: given a query produce a data
item. Lastly, step four poses a challenging problem because the differences
between the form of the data in the information source and the form re-
quired by the knowledge system may be arbitrarily complex. We focus on
the fourth step: method-specific knowledge compilation. The algorithm for
the method-specific knowledge compiler implemented in our experimental
system is as follows:

Substep 4.1 Database data types are coerced into to knowledge system
data types.

Substep 4.2 Knowledge attributes are constructed from fields in the data
item.

Substep 4.3 Knowledge attributes are synthesized into a knowledge ele-
ment.

The particular legacy systems for which we have implemented these al-
gorithms are INTERACTIVE KRITIK and a relational database system (Codd,
1970) developed under Oracle. Thus the experimental system serves as an
interface between INTERACTIVE KRITIK and our Oracle database.

5.2. AN ILLUSTRATIVE EXAMPLE

Our experiment takes place during a session in which INTERACTIVE KRI-

TIK is designing an electric light circuit. It has retrieved from its case-
memory a model of a circuit which produces light. However, in comparing
the functional specification of the retrieved case with the desired functional
specification, INTERACTIVE KRITIK determines that the retrieved case does
not produce enough light. Consequently, it applies its diagnosis methods
to determine components which might be responsible for the amount of
light produced. One of the results generated by the diagnosis mechanism
is that a higher capacity bulb will lead to the production of more light.
Consequently, INTERACTIVE KRITIK may be able to apply the component

63

14 J. William Murdock ET AL.

replacement method of model revision. However, in order to apply this
method, it must have knowledge of a light bulb of sufficient capacity. No
such bulb is available in its local knowledge base. In earlier versions of this
system, it would conclude that replacement of the bulb is impossible and
thus either attempt to replace a different component or attempt a different
model revision method altogether. However, in this version, INTERACTIVE

KRITIK has access to an external source of knowledge via the HIPED ar-
chitecture.

INTERACTIVE KRITIK sends a request for the desired light bulb to the
query processor. The request is made as a LISP function call to a function
named lookup-database-by-attribute which takes three arguments: a proto-
type, an attribute, and a value for that attribute. An example of such a call
from the system is a request for a more powerful light bulb for which the
prototype is the symbol 'L-BULB which refers to the general class of light
bulbs, the attribute is the symbol 'CAPACITY, and the value is the string
"capacity-more" which is internally mapped within INTERACTIVE KRITIK

to a value, 18 lumens.2 The query processor uses IDI to generate an SQL
query as follows:

SELECT DISTINCT RV1.inst.name
FROM PROTCLINST RV1, INSTANCE RV2
WHERE RVl.proto_name = '1-bulb'
AND RV1.inst_name = RV2.name
AND RV2.att_val = 'capacity-more'

IDI sends this query to Oracle running on a remote server. Oracle
searches through the database tables illustrated in Table 1. The first of
these tables, INSTANCE, holds the components themselves. The second ta-
ble, PROTO-INST, is a cross-reference table which provides a mapping from
components to prototypes.

If Oracle finds a result, as it does in this example, it returns it via the
method-specific knowledge compiler. In this case, the query generates the
string "bigbulb" as the result. The prototype name and the value are also
part of the result, but they are not explicitly returned by the database
since they are the values used to select the database entry in the first
place. The method-specific knowledge compiler converts the raw data from
the database to a form comprehensible to INTERACTIVE KRITIK by using

2 INTERACTIVE KRITIK makes use of both quantitative and qualitative values in its
reasoning methods. The details of the interactions between these two kinds of informa-
tion within the system are moderately complex and beyond the scope of this paper.
Obviously, the experiment would be more realistic if the external database used quanti-
tative values. This would add another step to the method-specific knowledge compilation
process (mapping quantitative to qualitative values) but would not significantly affect
the process as a whole.

64

Method-Specific Knowledge Compilation 15

TABLE 1. The tables for the Oracle database

Table INSTANCE Table PROTOJNST

NAME ATTRIBUTE ATT.VAL INST.NAME PROTO.NAME

littlebulb lumens capacity-less littlebulb l-bulb

bigmotor watts power-more bigmotor motor

bigbuib lumens capacity-more bigbuib l-bulb

the algorithm described in Section 5.1. In Substep 4.1, the string "big-
bulb" is converted from a fixed length, blank padded string, as returned
by Oracle, to a variable length string, as expected by INTERACTIVE KRI-

TIK. In Substep 4.2, the attributes of the new bulb are generated. The
values "bigbuib" and 'L-BULB are used as the knowledge attributes name
and prototype-comp; the values 'CAPACITY, 'LUMENS, and "capacity-more"
are combined into a CLOS3 object of a class named parameter and a list
containing this one object is created and used as the parameters attribute
of the component being constructed. Finally, in Substep 4.3 these three
attribute values are synthesized into a single CLOS object of the compo-
nent class. The end result of this process is an object equivalent to the one
defined by the following statement:

(clos:make-instance 'component
"bigbuib"
'L-BULB
(list (closrmake-instance 'parameter

:init-name 'CAPACITY
:parm-unit s 'LUMENS
:parm-value "capacity-more")))

These commands generate a CLOS object of the component class with
three slots. The first slot contains the component name, the second contains
the prototype of the component, and the third is a list of parameters. The
list of parameters contains a single item which is, itself, a CLOS object.
This object is a member of the parameter class and has a parameter name,
the units which this parameter is in, and a value for the parameter. This
object is then returned to INTERACTIVE KRITIK.

:init-name
:prototype-comp
:parameters

CLOS stands for Common LISP Object System. CLOS is a mechanism within Com-
mon LISP which can be used to represent information in an object oriented framework.

65

16 J. William Murdock ET AL.

Once INTERACTIVE KRITIK has received the description of the bulb, it
is consequently able to apply the component replacement method. It re-
places the bulb in the case retrieved earlier with the new bulb returned by
the query processor. The effects of this substitution are propagated through
the model and INTERACTIVE KRITIK verifies that the adapted model does
accomplish the requirements which were initially specified. Finally, INTER-

ACTIVE KRITIK presents the revised model to the user and stores it into
the case-memory for further reuse in a later problem-solving session.

6. Discussion

Building knowledge systems for practical design requires careful analysis of
many issues such as potential usefulness of the system to designers, usabil-
ity and learnability of the system, accuracy and precision of the knowledge
representations, and scope and scale of the system. Some recent research in
design education seems to suggest that KRlTlK-like SBF models are useful
for enabling design students to organize, comprehend, and articulate design
knowledge (Hmelo, 1997; Puntambekar and Hubscher, 1997). This educa-
tional work, however, does not use KRITIK or any other computer-based
knowledge system. In parallel, we have been incrementally converting KRI-

TIK from a laboratory system to a prototype tool for potential introduction
in a design classroom. INTERACTIVE KRITIK, which we described in the
last AI in Design conference (Goel et al., 1996b), provides a graphical ex-
planatory "front-end" to KRITIK. HIPED attempts to provide a database
"back-end" to INTERACTIVE KRITIK.

While the experiment described in Section 5 shows how data in a general-
purpose design database can be compiled into a specific kind of knowledge
required by a particular problem-solving method, it raises an additional is-
sue. If the number of the problem-solving methods is large, and each method
requires a knowledge compiler specific to it, then the HIPED architecture
would require the construction of a large number of method-specific data
to knowledge compilers. In the case of knowledge systems for design, which
typically contain many problem-solving methods, this itself would make for
significant knowledge engineering.

The issue then becomes whether we can identify primitive building
blocks from which we can rapidly construct individual method-specific
knowledge compilers. In the example discussed in Section 5, it appears
that the three steps of the specific method for converting data into knowl-
edge described can all reasonably be considered to be relatively generic
units of functionality. Consider Substep 4.1 in the example, coercion of
database types into knowledge system types: it is not unreasonable to ex-
pect that a wide variety of methods might have the same data coercion

66

Method-Specific Knowledge Compilation 17

requirements and thus be able to use the same data coercion routines in
their method-specific knowledge compilers. Further, many knowledge sys-
tems for design use representations which are characterized as knowledge
elements composed of a set of attribute-value pairs. The general frame-
work for Substeps 4.2 and 4.3 of the algorithm (building attribute-value
pairs and then combining them to form a knowledge element) probably can
be applied to a wide variety of knowledge-based methods. Furthermore,
to the extent that some methods have similar forms and mechanisms for
constructing these elements, they might be able to share specific routines.
Our experiment suggests that it may be possible to abstract generic com-
ponents of method-specific compilations. Doing so may partially mitigate
the problem of constructing large numbers of method-specific knowledge
compilers as individual knowledge compilers might be built from a small
and parsimonious set of components. But our experiments with HIPED
have not yet demonstrated this; more research is required to fully explore
this hypothesis. '"

The experiment described in Section 5 models only a small portion
of the general architecture described in Section 2 and addresses only one
of the applications of knowledge compilation presented in Section 3. In
a related experiment, we have worked with another portion of the archi-
tecture (Navathe et al., 1996). Here, five types of queries that INTERAC-

TIVE KRITIK may create are expressed in an SQL-like syntax. The queries
are evaluated by mapping them into data using facts about the databases
and rules that establish correspondences among data in the databases in
terms of relationships such as equivalence, overlap, and set containment.
The rules enable query evaluation in multiple ways in which the tokens
in a given query may match relation names, attribute names, or values in
the underlying databases' tables. The query processing is implemented us-
ing the CORAL deductive database system (Ramakrishnan et al., 1992).
While the experiment described in this paper shows method-specific com-
pilation of data into knowledge usable by INTERACTIVE KRITIK, the other
experiment shows how queries from INTERACTIVE KRITIK can be flexibly
evaluated in multiple ways.

The complexity involved in constructing knowledge systems for prac-
tical design makes integration of legacy knowledge systems and legacy
databases an attractive option. But, insofar as we know, past research on
information integration has almost exclusively focused on heterogeneity of
information, not on heterogeneity of processing. However, third-generation
knowledge systems for design are heterogeneous in that they use multiple
problem-solving methods, each of which uses a specific kind of knowledge
and control of processing. Thus the goal of constructing third-generation
knowledge systems for practical design requires support for heterogeneity

67

18 J. William Murdock ET AL.

of processing in addition to that of information. This itself is a hard and
complex goal that requires long-term research. Building on earlier work
on integrating knowledge systems and databases systems (Brodie, 1988;
McKay et al., 1990), HIPED identifies some issues in supporting heteroge-
neous information processing and takes a first step towards achieving the
goal.

Acknowledgements

This paper has benefited from many discussions with Edward Omiecinski. This
work was funded by a DARPA grant monitored by WPAFB, contract #F33615-
93-1-1338, and has benefited from feedback from Chuck Sutterwaite of WPAFB.

References

Barber, J., Jacobson, M., Penberthy, L., Simpson, R., Bhatta, S., Goel, A. K., Pearce, M.,
Shankar, M., and Stroulia, E. (1992). Integrating artificial intelligence and multimedia
technologies for interface design advising. NCR Journal of Research and Development,
6(l):75-85.

Batini, C, Lenzernini, M., and Navathe, S. B. (1986). A comparative analysis of method-
ologies for database schema integration. ACM Computing Surveys, 18(4):325-364.

Bhatta, S., Goel, A. K., and Prabhakar, S. (1994). Analogical design: A model-based ap-
proach. In Proceedings of the Third International Conference on Artificial Intelligence
in Design, Lausanne, Switzerland.

Brodie, M. (1988). Future intelligent systems: AI and database technologies working
together. In Mylopoulos and Brodie, editors, Reading in Artificial Intelligence and
Databases, pages 623-641. Morgan Kauffman.

Brown, D. and Chandrasekaran, B. (1989). Design Problem Solving: Knowledge Struc-
tures and Control Strategies. Pitman, London, UK.

Codd, E. (1970). A relational model for large shared data banks. CACM, 13(6).
Finin, T. and Wiederhold, G. (1991). An overview of KQML: A knowledge query and

manipulation language. Available through the Stanford University Computer Science
Department.

Genesreth, M. R. and Fikes, R. (1991). Knowledge Interchange Format Version 2 Refer-
ence Manual. Stanford University Logic Group.

Goel, A. K., Bhatta, S., and Stroulia, E. (1996a). Kritik: An early case-based design
system. In Maher, M. L. and Pu, P., editors, Issues and Applications of Case-Based
Reasoning to Design. Lawrence Erlbaum Associates.

Goel, A. K. and Chandrasekaran, B. (1989). Functional representation of designs and
redesign problem solving. In Proc. Eleventh International Joint Conference on Arti-
ficial Intelligence, pages 1388-1394. Morgan Kaufmann Publishers.

Goel, A. K., Gomez, A., Grue, N., Murdock, J. W., Recker, M., and Govindaraj, T.
(1996b). Explanatory interface in interactive design environments. In Gero, J. S.
and Sudweeks, F., editors, Proceedings of the Fourth International Conference on
Artificial Intelligence in Design, Stanford, California. Kluwer Academic Publishers.

Goel, A. K., Gomez, A., Grue, N., Murdock, J. W., Recker, M., and Govindaraj, T.
(1996c). Towards design learning environments - I: Exploring how devices work. In
Frasson, C, Gauthier, G., and Lesgold, A., editors, Proceedings of the Third Inter-
national Conference on Intelligent Tutoring Systems, number 1086 in Lecture Notes
in Computer Science, Montreal, Canada. Springer.

Goel (ed.), A. K. (1991). Knowledge compilation: A symposium. IEEE Expert, 6(2).

68

Method-Specific Knowledge Compilation 19

Gruber, T. R. (1993). A translation approach to portable ontology specification. Knowl-
edge Acquisition, 5(2):199-220.

Hennessy, D. and Hinkle, D. (1992). Applying case-based reasoning to autoclave loading.
IEEE Expert, pages 21-26.

Hmelo, C. (1997). Using structure-behavior-function models in design problems for sci-
ence learning. Presented to the NSF Design Education Workshop, Georgia Institute
of Technology, Atlanta.

Keller, R. M. (1991). Applying knowledge compilation techniques to model-based rea-
soning. IEEE Expert, 6(2).

Koch, G. and Loney, K. (1995). Oracle: The Complete Reference. Osborne/McGraw
Hill/Oracle, 3rd edition.

Lenat, D. and Guha, R. (1990). Building Large Knowledge Based Systems: Representation
and Inference in the CYC Project. Addison-Wesley.

Lenz, T., McDowell, J., Kamel, A., Sticklen, J., and Hawley, M. C. (1996). The evolution
of a decision support architecture for polymer composites design. IEEE Expert,
ll(5):77-83.

Marcus, S., Stout, J., and McDermott, J. (1988). VT: An expert elevator designer that
uses knowledge-based backtracking. AI Magazine, 9(1):95-112.

McDermott, J. (1982). Rl: A rule-based configurer of computer systems. Artificial
Intelligence, 19:39-88.

McKay, D., Finin, T., and O'Hare, A. (1990). The intelligent database interface. In
Proceedings of the Eight National Conference on Artificial Intelligence, pages 677-
684, Menlo Park, CA. AAAI.

Mittal, S., Dym, C, and Morjaria, M. (1986). PRIDE: An expert system for the design
of paper handling systems. Computer, 19(7):102-114.

Navathe, S. B. and Donahoo, M. J. (1995). Towards intelligent integration of hetero-
geneous information sources. In Proceedings of the 6th International Workshop on
Database Re-engineering and Interoperability.

Navathe, S. B., Mahajan, S., and Omiecinski, E. (1996). Rule based database integration
in HIPED: Heterogeneous intelligent processing in engineering design. In Proceed-
ings of the International Symposium on Cooperative Database Systems for Advanced
Applications. World Scientific Press.

Paramax (1993). Software User's Manual for the Cache-Based Intelligent Database In-
terface of the Intelligent Database Interface. Paramax Systems Organization, 70 East
Swedesford Road, Paoll, PA, 19301. Rev. 2.3.

Punch, W., Goel, A. K., and Brown, D. (1996). A knowledge-based selection mechanism
for strategic control with application in design, diagnosis and planning. International
Journal of Artificial Intelligence Tools, 4(3):323-348.

Puntambekar, S. and Hubscher, R. (1997). A structure-behavior-function analysis of the
design process. Presented to the NSF Design Education Workshop, Georgia Institute
of Technology, Atlanta.

Ramakrishnan, R., Srivastava, D., and Sudarshan, S. (1992). CORAL: Control, rela-
tions, and logic. In Proceedings of the International Conference of the Internation
Conference on Very Large Databases.

Stroulia, E. and Goel, A. K. (1995). Functional representation and reasoning in reflective
systems. Journal of Applied Intelligence, 9(1). Special Issue on Functional Reasoning.

Stroulia, E., Shankar, M., Goel, A. K., and Penberthy, L. (1992). A model-based approach
to blame assignment in design. In Gero, J. S., editor, Proceedings of the Second
International Conference on Artificial Intelligence in Design.

Tong, C. (1991). The nature and significance of knowledge compilation. IEEE Expert,
6(2).

69

PARTn

VISUALIZATION AND USER
INTERFACE TECHNIQUES FOR

INFORMATION RETRIEVAL

70

PART II: VISUALIZATION AND USER INTERFACE
TECHNIQUES FOR INFORMATION RETRIEVAL

Our Objectives in this part of the project are multifold:

• To investigate the possibility of "free form" textual queries for the purposes
of processing large amounts of textual information.
• To develop visualization and user interface techniques for users to
improve their performance in large scale information retrieval tasks.
• To evaluate our approach experimentally to determine its merit.

All of the above goals were accomplished in this research.
Additionally, a Ph.D. dissertation was completed [Veerasamy 97] under the
supervision of Professors Sham Navathe and Scott Hudson.

A. Free form textual queries for text databases.

A large number of queries in information systems for day-to-day applications,
industrial and government operations, as well as in military environments
are made against text data in document databases. A majority of users are
uninitiated in computer languages and need user interfaces for formulating
queries and getting them answered by the system. They must ideally have
interfaces available to them with free form text capabilities. In our research
we decided to investigate this problem further and designed an approach to
document retrieval/text retrieval that is unique in the following sense: a) it
is not keyword based, b) it makes use of visualization and a thesaurus to
improve upon the user's ability to formulate correct queries and c) it makes a
provision of informing the user why a certain set of documents were
retrieved and d) it provides the user with a means of influencing the system
so that relevance of documents for subsequent iterative retrievals will be
enhanced. As repository of text we used the data provided by the Text
Retrieval Conference. [TREC] which is also similar to that from Linguistic
Data Consortium of DARPA TIPSTER program. It contains news articles
from AP newswire, Wall Street Journal, Department of Energy releases, etc.
[see 2.3]. The queries considered used truly free form text: e.g., "How has
affirmative action affected the public works projects undertaken by the
construction industry?" The text retrieval engine called INQUERY was
obtained from the University of Massachusetts and used in the experiments.
The Wordnet thesaurus, available in the public domain was also employed in
the design of the user interface.

71

a. Efficiency and effectiveness of discovering relevant documents.
b. Effectiveness in supporting query reformulation.

The experiments were performed by using 24 of the 25 TREC-4 topics
on 36 subjects drawn from an undergraduate non-computer science major
class at Georgia Tech. Because of the variability of topics, subject differences
in the different groups, and subject-topic interaction, hard conclusions could
not be drawn regarding the usefulness of visualization in contributing to both
the above goals.

The details of Experiments 1 and 2 are given in [2.4]. The non-
conclusive nature of the first two experiments led us to the design of
experiments that were narrower in scope but that tested the effectiveness of
the visualization tool that displays the results graphically as a first stage on
the final outcome of the querying and on the query reformulation process. In
[2.5] it is shown that the visualization tool helps users in identifying
document relevance quicker by about 20%. This is made possible by set-at-a-
time perusal of graphical displays rather than document-at-a-time perusal of
textual displays. The experiments also showed that users with the
visualization tool did significantly better in accurate identification of
document relevance. The relevance judgement measure was broken into
two measures for a better understanding: interactive precision and
interactive recall.

While the effect of the visualization tool was marginally significant for
interactive precision, it was highly significant for interactive recall. Thus, in
[2.5] it is shown that the visualization tool helps users in identifying more
relevant documents out of the displayed documents; it also helps users in
identifying them more quickly.

Additional References:

A. Veerasamy, "Visualization and User Interface Techniques for Interactive
Information Retrieval Systems," Ph.D. Dissertation, Georgia Institute of
Technology, March 1997.

72

B. Visualization and User Interface Techniques

As a part of this work we developed a prototype that incorporated new
techniques of visualization and user interfaces for textual information
retrieval, [see 2.1, 2.2]. A ranked output information retrieval system is used
as the basis - in our case it is the INQUERY system from the University of
Massachusetts. We support querying, navigation and browsing on top of the
retrieval engine in a seamless fashion [2.2]. There are two overall goals of this
work. The first is to enable the user to understand why the top ranked
documents are retrieved and ranked in that fashion. The second goal is to
allow the user to influence the subsequent retrieval process by giving
feedback to the retrieval engine to adjust the weighting of query words. The
interface developed has potential applications in retrievals from digital
libraries, any large corpuses of text, and on the world wide web. Following are
the highlights of the user interface and visualization scheme described in [2.1]
and [2.2]:

• The user interface facilitates a user in constructing complex structured
queries by simple drag-and-drop operations.
• The visual feedback to the user in the form of a histogram (see examples in
the paper) of each of the non-noise words in the query against the top 100 or
150 documents retrieved illustrates how the presence/frequency of different
query words influences the ranking of the documents.
• An intuitive model where the user classifies a part of the information
retrieved into positive and negative aids the user by supplying a rich feedback
regarding his or her relevance criteria.
• To suit the continuously evolving and somewhat uncertain information
needs of the user, the interface provides for navigational features such as
browsing documents by specific authors, or browsing the table of contents of
publications.

We see the utility of the above techniques not only in actual text
retrieval but also in the retrieval of meta data or catalog information.

C. Experimental Evaluation and Validation

The prototype we developed was subjected to a thorough analysis at the
TREC-4, (Text Retrieval Conference) [See 2.3] where we competed against
about two dozen other prototypes for answering queries (topics) on the text
databases provided by TREC. We then conducted four different experiments
to test a variety of hypothesis with respect to our unique approach to user
interface and visualization.

The first two experiments were designed to test the usefulness of the
visualization tool to address two problems -

73

PUBLICATIONS (PART2):

[2.1]. Visual Interface for Textual Information Retrieval Systems",
Aravindan Veerasamy, Scott Hudson, Shamkant Navathe. In
Proceedings of IFIP 2.6 3rd Working Conference on Visual
Database Systems 1995, Elsevier, North Holland, pp. 333-345.

[2.2]. "Querying, Navigating and Visualizing a Digital Library Catalog",
Aravindan Veerasamy, Shamkant Navathe.
In Second International Conference on the Theory and
Practice of Digital Libraries ,June 11-13, 1995, Austin, TX

[2.3]."Interactive TREC-4 at Georgia Tech",
Aravindan Veerasamy. In Fourth Text REtrieval Conference,
Oct, 1995, Gaithersberg, MD

[2.4]. "Evaluation of a tool for visualization of information retrieval
results", Aravindan Veerasamy and Nick Belkin. In Proceedings
of the SIGIR 1996, the 19th Annual International Conference on
Research and Development in Information Retrieval, ACM, New
York.

[2.5]. "Effectiveness of a graphical display of retrieval results",
Aravindan Veerasamy and Russell Heikes. In
Proceedings of the SIGIR 1997, the 20h Annual
International Conference on Research and Development in
Information Retrieval.. ACM, New York.

74

Visual Interface for Textual Information Retrieval
Systems* *

A. Veerasamy, S. Hudson and S. Navathe
College of Computing, 801, Atlantic Drive, Georgia Institute of Technology, Atlanta,
Georgia 30332-0280, USA.
Email: {veerasam, hudson, sham}@cc.gatech.edu

Abstract

A prototype user interface implementation for text information retrieval system is de-
scribed. Using a visualization scheme, the interface provides visual feedback to the user
about how the query words influence the ranking of retrieved documents. The interface
also helps the user in constructing complex structured queries by simple drag-and-drop op-
erations. An intuitive model where the user classifies the information provided to him/her
as being positive and negative aids him/her in supplying rich relevance feedback informa-
tion to the system. Our prototype interface has been built on top of INQUERY [CCH92].
Preliminary experience with the interface shows it to be a valuable tool in aiding the
interactive search process between the user and the system. To test the effectiveness of
the interface, we plan to conduct studies on users with real information need searching a
large corpus of articles.

Keywords

Visualization of results, visual query languages, query processing, information retrieval

1 User Interface issues for Information Retrieval
systems

User Interface issues and interaction techniques for full text information retrieval systems
have in general received much less attention than system issues like document representa-
tion and retrieval algorithms. We have developed an interface that facilitates the user in
visually constructing powerful queries for ranked output retrieval systems. The interface

»This work was supported in part by ARPA Grant No. F33615-93-1-1338 under the Intelligent Inte-
gration of Information Program

appeared in the Proceedings of the Third IFIP 2.6 Working Conference on Visual Database Systems,
1995

75

includes a scheme for visualizing the query results in a form that enables the user to see
the relationships between the query results and the query. While a majority of online
library catalog systems use a boolean model of retrieval, a vast majority of existing ex-
perimental information retrieval systems retrieve a ranked set of documents in decreasing
order of relevance in response to a free-form textual query. In ranked output systems,
the documents and the queries are modeled by a set of weighted index terms. The index
term weighting function for the documents primarily takes into consideration

• the frequency of occurrence of the index term in the document,

• the number of documents in the corpus containing that index term.

The effectiveness of a retrieval system is measured by two metrics: recall (the ratio of
the number of relevant documents retrieved to the total number of relevant documents
in the corpus) and precision (the ratio of the number of relevant documents retrieved to
the total number of documents retrieved). The reader is referred to [BC87, Rij79, SM83]
for a comprehensive description of evaluation metrics of information retrieval systems,
document representation and retrieval techniques.

While processing a free-form textual query, most ranked output Information Retrieval
systems automatically extract index terms from the query and weight them. The weighted
query index terms are then matched against the weighted index terms of documents to
retrieve a ranked set of documents in decreasing order of relevance. Each document is
weighted, the higher the weight of a document, the more likely it is to be relevant to the
query. Most of the existing library information systems (On-line Public Access Catalogs,
OPAC) follow a boolean retrieval model. In this model, the documents retrieved in
response to a boolean query are not ranked. If a document satisfies the boolean query
specification, it is retrieved. Compared to boolean systems, ranked output systems are
a significant improvement since the query can be in a free-form text as opposed to a
strict boolean syntax. Also, the retrieved documents are ranked, thereby placing the
more useful documents at the top of the list. This is a particularly useful feature since it
has been shown that users of boolean systems spend a considerable effort in reducing the
size of the result set [Spi93]. On the other hand, ranked output systems introduce a new
problem: For a naive user, the logic behind the ranking of documents in response to a
query is not as apparent and straightforward as a boolean system. The interface we have
developed is aimed at alleviating this problem. It helps the user in understanding how
the system computed the ranking of retrieved documents by visualizing the relationship
between query terms and the results of the query.

The interface also aids the user in formulating complex structured queries by graph-
ically manipulating objects on the screen. A simple mechanism of classifying any infor-
mation on the screen into positive and negative instances lends itself to easy formulation
of structured queries. The interface is built using Tcl/Tk [Ous94] on top of INQUERY
[CCH92], a ranked output retrieval system based on Bayesian inference networks. The
interface supports two types of feedback:

• feedback from the user to the system and

76

• feedback from the system to the user.

It is interesting to note that the term "feedback" in the field of Information Retrieval
typically refers to user's feedback to the system, while in the field of Human Computer
Interfaces, "feedback" usually refers to the system's feedback to the user. The user's
feedback to the system and the different levels of granularity at which the feedback can be
provided is discussed in section 4. The system's feedback to the user and the visualization
technique is discussed in section 5.

2 Related Work

Numerous studies on user interaction with online library access catalog systems with a
boolean retrieval model have been conducted [Spi93, SS92, Dal90, Fid91a, Fid91b, Fid91c].
Spink [Spi93] studies the different forms of user feedback during a retrieval session. Of the
total number of feedback actions by the user, 45% were aimed at adjusting the size of the
retrieved set of documents, and about 40% were related to relevancy of documents. Fidel
[Fid91a, Fid91b, Fid91c] discusses the issue of user interaction by studying the process
of search term selection and searching styles in online library access catalogs. Dalrymple
[Dal90] looks at the feedback process from a user-centered perspective. Bates [Bat90]
describes a boolean retrieval system which integrates an online thesaurus. None of the
above studies involve a ranked output system supporting free-form textual queries. All of
the systems deal with boolean retrieval model only. We believe that there is a significant
difference in the way users interact with a boolean system and a ranked output system.
The reader is referred to [Har92] and [HB92] for a comparative discussion of boolean
systems and ranked output systems. While building our interface we have borrowed
valuable ideas from the studies mentioned above. In particular, the need to integrate
an on-line thesaurus with the search interface in an easy-to-use fashion and a simple
interaction scheme to include words from documents into the query have been influenced
by the results of above-mentioned studies.

Walker and Beaulieu [Wal87, HB92] describe their OKAPI system which is a ranked
output retrieval system for library catalogs. Similarly, Fox [FFS+93] describes their MAR-
IAN sysem which is also a ranked output system for library catalogs based on the vector-
space model. While OKAPI has facilities for relevance feedback and query expansion
using a thesaurus, it largely lacks any means of providing system feedback to the user
about how the ranking was computed. The interface we have developed integrates rele-
vance feedback information from the user as well as feedback from the system illustrating
the relationship between query results and query words.

A number of visualization schemes for information retrieval systems have also been
proposed. The perspective wall [CRM91] describes a visualization scheme which supports
browsing of documents. While such a system will not handle qualitative document classi-
fications such as library subject catalogs, it is very useful for visualizing documents based
on data which is linear in nature (like date of publication). Other visualization schemes

77

such as [Kor91, Spo94, HKW94] have facilities for viewing a large document space. But
visualizing the document space along more than 3-4 dimensions simultaneously becomes
very cumbersome using the above systems. Also, most of them do not provide support for
querying with relevance feedback and none of them provide support for query expansion
using a thesaurus. The visualization scheme in our interface can gracefully handle much
higher number of query word dimensions.

2.1 Novelty of our approach

The novelty of our system is in integrating a diverse set of interaction features in a seamless
fashion into a single system thereby facilitating the interactive and iterative nature of the
information seeking process. The following features are integrated in our system:

• Using a visualization scheme, the interface provides visual feedback to the user about
how the query words influence the ranking of retrieved documents.

• By simple drag-and-drop operations of objects on the screen, the interface facili-
tates a naive end-user in constructing complex structured queries and in providing
relevance feedback. This feedback is utilized by the system in a manner described
later.

• The interface integrates an online thesaurus which provides words related to the
query that can be used by the user to expand the original query.

Belkin and his group's work [BMC93, BMA+91, HB94] on user interfaces for informa-
tion retrieval systems elucidates the issues in user interface and interaction techniques for
full text retrieval systems. Belkin [BMA+91] mentions that "This type of analysis led to
another important conclusion, namely that information systems for end users must sup-
port a variety of goals and tasks, but through some common interface or seamless access
mechanism to a variety of relevant information sources and system functionalities". Our
interface takes a step in that direction by integrating different pieces of information with
a visualization scheme and simple interaction techniques.

3 Interactive Construction of Queries

Searching a database for information is a highly interactive process with the user con-
stantly refining the query after examining the results of previous iteration until he/she is
either satisfied with the results or is frustrated with the process and gives up. In existing
information retrieval systems, the interaction proceeds by the user providing feedback on
which of the retrieved documents are relevant to his/her information need. The system
uses this information to modify the original query resulting in an improved ranking of
retrieved documents. It has also been shown by Spink [SS92] that during iterative query
reformulation, users tend to expand the query using search terms from various sources

78

such as a thesaurus, previously retrieved documents and user's background knowledge.
Expanding the query with terms from such sources can contribute to retrieval of more
relevant documents in the next iteration.

Our interface encourages the interaction between the user and the system by providing
the user with simple interaction technique to let him/her supply relevance feedback at
different levels of granularity: whole documents, document portions, phrases and individ-
ual words. Almost any information appearing on the screen can be used for feedback.
This is achieved by simple "drag-and-drop"ping the feedback object into either a "Pos-
itive Objects" window colored green or a "Negative Objects" window colored red. This
scheme provides a simple abstraction to the user for classifying any type of information
without having to worry about what action to take for what type of information. A typi-
cal user session along with the response of the interface for every user action is described
below using an example (please refer to Figure 1). The database being queried contains
a collection of titles, authors and abstracts of thousands of CACM articles.

• The user types in his free form textual query in the query window. In the example
shown in figure 1, the query is "image audio and text data compression".

• As every query word is typed in, the system consults an on-line thesaurus and
displays words and phrases related to the query word in an adjacent window.

• At any point during the session the user can drag-and-drop any of the related
words/phrases into the positive and negative windows. Internally the system ex-
pands the query by treating the positive words/phrases as synonyms of the corre-
sponding query word. The negative words/phrases are included in the query with
a NOT operator. For example, if for a query word "bank", the phrase "financial
institution" is classified as positive and "river bed" is classified as negative, the
corresponding internal query would be "#SYNONYM(bank #2*(financial institu-
tion)) #NOT(#2(river bed))". The end-result of this classification is a possible
improvement in the precision measure since documents containing the phrase "river
bed" will be weighted lower than other documents, and a possible improvement in
the recall measure since documents containing the phrase "financial institution" are
also retrieved. The interface facilitates construction of such structured queries by
simple drag-and-drop operations. In the example in figure 1, three words related
to the query word "compression", namely, "compaction, "shortening" and "conden-
sation" have been classified as positive. Internally the systems treats these three
words as synonyms of "compression".

•

•

After the user types in the query, the system evaluates the query and displays the
titles of top-ranked documents in the "Query Results" window.

The user examines the query result. Double-clicking any title with the mouse will
bring up the full document.

*#2 is the proximity operator in INQUERY specifying that the words should appear within a distance
of 2 within each other

79

Querying, Navigating and Visualizing a Digital Library
Catalog

Aravindan Veerasamy, Shamkant Navathe
College of Computing

801, Atlantic Drive
Georgia Institute of Technology

Atlanta, Georgia 30332-0280, USA.
Phone: 1-404-894-8791

E-mail: {veerasam, sham}@cc.gatech.edu

ABSTRACT

We describe the design of an User Interface for a ranked out-
put Information Retrieval system that integrates querying, nav-
igation and visualization in a seamless fashion. Highlights of
the system include the following:

• Using a visualization scheme, the interface provides visual
feedback to the user about how the query words influence the
ranking of retrieved documents.

• By simple drag-and-drop operations of objects on the screen,
the interface facilitates a naive end-user in constructing com-
plex structured queries and in providing relevance feedback.

• To suit the evolving information needs of the user, the inter-
face supports navigational features such as browsing docu-
ments by specific authors and browsing the Table of Contents
of publications.

• The interface integrates an online thesaurus which provides
words related to the query that can be used by the user to ex-
pand the original query.

By providing a rich set of features, the interface coherently
supports a wide spectrum of information gathering tactics for
different classes of users.

KEYWORDS: Visualization of results, visual query languages,
query processing, information retrieval

WALK-THROUGH OF A TYPICAL USER SESSION

A typical user session along with the response of the interface
for every user action is described below using an example (re-
fer to Figure 1).

• The user types in his/her free form textual query in the query
window. In the example shown in figure 1, the query is "ozone
depletion and melanoma"

• As every query word is typed in, the system consults an on-
line thesaurus and displays words and phrases related to the
query word in an adjacent window.

• At any point during the session the user can "drag-and-drop"
(using the mouse) any of the related words/phrases into the
positive and negative windows. Internally the system expands
the query by treating the positive words/phrases as synonyms
of the corresponding query word. The negati ve words/phrases
are included in the query with a NOT operator. For exam-
ple, if for a query word "bank", the phrase "financial institu-
tion" is classified as positive and "river bed" is classified as
negative, the corresponding internal query would be '^#SYN-
ONYM(bank Wl\ financial institution)) #NOT(#2(river
bed))". The interface facilitates construction of such struc-
tured queries by simple "drag-and-drop" operations of the mouse.
In the example in figure 1, a phrase, namely "skin cancer" that
is related to the query word "melanoma" has been classified
as positive. Internally the systems treats the phrase as a syn-
onym of "melanoma".

• After the user types in the query, the system evaluates the query
and displays the titles of top-ranked documents in the "Query
Results" window.

• The user examines the query result. Clicking any title with
the mouse will bring up the full document.

• Figure 2 is a visualization of the query results for the base
query "ozone depletion and melanoma". The leftmost col-
umn of bars corresponds to the top-ranked document, with the
columns progressing to the right representing progressively
lesser ranked documents. We can see that almost all of the
150 documents were retrieved because they contained the query
words "ozone" and "depletion". Only 15 of the top 150 docu-
ments have anything to do with melanoma. Further, of those

l#2() is the proximity operator in 1NQUERY specifying that the words
inside braces should appear within a distance of 2 of each other in the
document.

80

15 documents, only one discusses ozone (the top-ranked doc- and the system. Almost any information on the screen can
ument - leftmost column in Figure 2.) Thus we can clearly be used by the user to provide feedback information. An on-
see that either there are not many documents dealing with melanomaline thesaurus, WordNet [2], is integrated with the interface
and ozone or the ozone-layer concept drowns out melanoma
during retrieval.

The user can classify any document as being relevant or non-
relevant by "drag-and-drop"ping the document into positive
and negative windows. In the example in figure 1, the user
has classified two documents titled "CFC-free integral skin
foams for steering wheels." and "Video comparator system
for early detection of cutaneous malignant melanoma" as pos-
itive. The document titled "Symposium on chemistry of the
Atmosphere" has been classified as negative.

The user can also highlighta portion of a document and "drag-
and-drop" that portion into the positive and negative windows.
The words in the highlighted document portion are used to ex-
pand the query in the next iteration.

During the next iteration, the reformulated query with the feed-
back information is processed by the system resulting in an
improved ranking of documents.

Figure 3 is a visualization of the results of the revised query
(i.e., thequery with relevance feedback information). The fig-
ure shows that there are four documents dealing with melanoma
and ozone. (Note that the documents which deal with melanoma
and it's synonym skin cancer are displayed in the same his-
togram titled "melanoma", since melanoma and skin cancer
represent the same query concept). Thus there are three addi-
tional documents retrieved due to the effect of classifying the
phrase "skin cancer" as a synonym of "melanoma". But still
there are not many documents about melanoma compared to
ozone depletion. Our experience with this visualization scheme
has shown it to be a useful tool for identifying different facets
of the query, as in this case, the facets are melanoma and ozone.

Using any document as a starting point, the user can browse
through the list of other articles in the same journal issue or
conference proceedings with a help of a Table-of-Contents which
is generated automatically. This is useful in many cases such
as when the user comes across a special-issue of a journal de-
voted to the search topic.

The user can also browse through the list of articles written by
the same author. For example, an author who has written an
article about the effects of ozone layer depletion on skin can-
cer has probably authored more articles along the same lines,
and the user might want to see them.

CONCLUSION & FUTURE WORK
A prototype interface [4] written in Tcl/Tk [3] using a ranked
output information retrieval system, INQUERY [1] for a li-
brary catalog, Compendex containing about 300,000 docu-
ments has been implemented. The interface facilitates the in-
herently interactive nature of the information seeking process.
"Drag-and-drop" operations (using the mouse) form the basis
of interaction encouraging the user to provide feedback infor-
mation to the system and helps in the dialog between the user

to form a single system.

The interface also supports a visualization scheme which il-
lustrates how the query results are related to the query words.
Visualizing the results of the query keeps the user more in-
formed on how the system computed the ranking of documents.
With this information, the user is better equipped to reformu-
late the query for the next iteration. The interface also has fa-
cilities to browse the Table of Contents of publications and to
browse the list of articles written by a specific author. It is our
opinion that integrating all of the above features in a seamless
interface leads to an interplay between different items that is
much more beneficial than the sum of the individual items in
isolation.

We are in the final stages of implementation, and in future,
we intend to test the effectiveness of the interface by conduct-
ing studies on how library users, experts looking for detailed
information as well as naive users, interact with the interface
and how they react to ranked output systems as opposed to ex-
isting boolean systems. We plan to include a domain-specific
thesaurus for the engineering domain from Compendex and a
collection-specific word-association thesaurus if possible.

ACKNOWLEDGEMENTS
We are thankful to Dr. Bruce Croft for letting us use the IN-
QUERY retrieval system. We are indebted to the Dean of Geor-
gia Tech Library Ms. Miriam Drake and Engineering Infor-
mation Inc without whom it would have been impossible to
use Compendex data for the experiment. Many thanks to Dr.
Marti Hearst whose Tcl/Tk code for the SMART system was
helpful as a spring board for us to write the interface. Sup-
port in part by ARPA contract No. F33615-93-1-1338 is also
appreciated.

REFERENCES
1. J.P. Callan, W.B. Croft, and S.M. Harding. The inquery

retrieval system. In Third International Conference on
Database and Expert Systems Applications, September
1992.

2. George A. Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine J. Miller. Introduc-
tion to WordNet: An on-line lexical database. Journal of
Lexicography, 3(4):235-244,1990.

3. John K. Ousterhout. Tel and the Tk Toolkit. Addison-
Wesley, 1994.

4. A. Veerasamy, S. Navathe, and S. Hudson. Visual in-
terface for textual information retrieval systems. In To
appear in Proceedings of the Third Conference on Visual
Database Systems. IFIP 2.6, 1995.

81

£ PoxiUve lin&wce^g (SI «^""3

PüMUVC Olijftls

-- Video coiß|>»]

J5j- H»;«|»<»ve tastorasgTf.

,'CfC (reemt j «ai''",-
CCaiujKliirirt

$f
OHdatMMIKl '

.--■:■ . I
I

}oiop« dq^letiao aad-»elanoiH

, ■ 5»

| || sltifi *d*|ym 1

More .' ■ j ösar Query {«**« 'tuxtOO i H«p t:XJt (K8Mj

Ouery Results

0j£74336 CFC-1**e Integral sWn foam* fir steering wheels.

3.572407 FstarezoMMleBJetkn. Current status.

isritm Video owiparator system far early detection of cutaneous matiyarrt melanoma

5567316 Ev

3Ä38SZ: fterturtatfocf 'of &:cttR8J»;systM due to stratospheric ozone depSetton.

3.563181 Ozor»» de -7 TOMS measurements

3.S63T81 Status update on the ozone depletion isst».

9561010 Ozone depieäon tampöons.

3J559903 ,1,1,4A4 Hexafluorobatane, a new non-czone-deptetkig blowing agent for rigid PUR foams.

Figure 1: Sample querying session. The window titled "Positive Objects" is colored green and the window titled "Negative
Objects" is colored red. AH Incantations" of an object in the display are colored green/red whenever it is classified as
positive/negative.

82

ozone

depletion ||

melanoma

Total sum: nilllllllininillliiiiiiiiiuiiiiiiiniiiiniiiiiiiiiiiiiiiiiiiiDiyiHiiN n ilium m

ozone

Figure 2: Visualization of results for the base query.

depletion lliiiiiiiiiiiiiiiiiiiii Hill II 111 III Uli llll III

melanoma ll I I

Total sum: lIIIlllffllfllllllM

Figure 3: Visualization of results for query with feedback information.

83

Interactive TREC-4 at Georgia Tech
Aravindan Veerasamy
veercisam@cc.gatech.edu

College of Computing
801, Atlantic Drive

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

Phone: 404-894-8791
Fax: 404-894-9442

Abstract
At Georgia Tech, we investigated the effectiveness of a visualization scheme for In-
formation Retrieval systems. Displayed like a bar-graph, the visualization tool shows
the distribution of query words in the set of documents retrieved in response to a
query. We found that end-users use the visualization for two purposes:

•

•

to gain specific information about individual documents - such as the distribu-
tion of different query words in that document.

to gain aggregate information about the query result in general - such as getting
a sense of the direction of the query results.

In general they used the visualization tool as much as the title and full text in the
process of deciding if a document addresses the given search topic. In structured
post-session interviews with searchers, we also obtained information about what the
searcher liked, what was frustrating to them, and what they wanted in the system.

1 Introduction

At the TREC-4 interactive experiments at Georgia Tech, we were interested in in-
vestigating the effectiveness of a visualization scheme for IR systems that we have
developed. The visualization scheme, as given in Figure 2, is intended to provide more
information to the user about the query results in addition to just the title and full
text. In ranked output systems, the naive end-user has little knowledge about why the
system retrieved and ranked the documents in a given way in response to a free-form
text query. This problem does not arise in boolean systems since there is no element
of surprise in why a particular document was retrieved. The above-mentioned lack of
knowledge in ranked output systems can be quite disturbing when a user is not able
to get the set of documents he/she needs and does not know enough about the system

84

to modify the query to get the documents he/she needs. It is with this in mind that
we have developed a visualization scheme that shows the distribution of query words
in the retrieved documents. This visual display of distribution information provides
a good overview of the retrieved set of documents with respect to the free-form user
query.

For TREC-4 we were interested in investigating how end-users used the visual-
ization scheme. We were also interested in Unding what aspects of the system were
frustrating, what aspects they liked and what they wanted in the system. We have
yet to do a thorough statistical analysis of the trace data to quantitatively determine
the ways in which users with visualization tool acted different from the users without
the visualization tool. What we report here is our observations of user interactions,
information from structured interviews, and questionnaires.

In the next section we give a brief description of our system. Then we describe
our experimental design followed by our observations as it relates to the visualization
tool. Then we discuss user's frustrations, likes and wants.

2 System Description

For our study, we used the INQUERY retrieval engine from University of Mas-
sachusetts, Amherst [CCH92]. We built a simple graphical user interface on top
of INQUERY using Tcl/Tk [Ous94]. There are two versions of our system - one with
the visualization, and one without. In our base system, as shown in Figure 1, there
are three windows: the top left window is for entering and editing the query. The
titles of retrieved documents are displayed immediately below that window. Thirty
titles can be displayed in one screen. One can scroll down to a maximum of 150
document titles. Mouse-clicking a title brings up the full text of that document in
the window at the bottom right. By clicking the "Next Query Word" button in the
full text window, one can position the full text display such that the next occurrence
of query word in the document is at the top of the window.

One can save documents and mark documents for relevance feedback by clicking
the "Save?" and "Rel?" buttons immediately to the left of the title in the title display
window. The only operator that is allowed is the adjacency operator: A hyphen
between two words specifies that the two words must appear right next to each other
in the same order in a document in order for the word-combination to contribute to
the retrieval of that document. There is no negation operator. Automatic stemming
and stopping are performed.

The visualization tool is displayed in another window as shown in Figure 2. It

85

consists of a series of vertical column of bars. There is one column of bars for each
document. The leftmost vertical column of bars corresponds to the document ranked
1 and the rightmost vertical column corresponds to the document ranked 150 with all
the intermediate ranks lying in between. In each vertical column there are multiple
bars - one each for each query word. The height of the bar at the intersection of
query word row and a document column corresponds to the weight of that query
word in that document. Thus if there are a handful of query words that convey
the crux of the query and is very important for a document to contain these query
words, one can quickly see from the visualization which retrieved documents have
those important words. One can also see how many of the retrieved documents have
those words in combination to get a feel for the overall goodness of query results. The
effects of modifying the query, like adding a query word, would clearly be shown in
the visualization. One can quickly take stock of how useful the query modification
turned out. Moving the mouse cursor over the vertical columns would highlight
the column directly beneath the mouse cursor and simultaneously highlight the title
corresponding to that document in the title display window.

Apart from the query words typed in by the user, the visualization also shows the
distribution information for words added by the system due to relevance feedback. In
summary, all the words internally used by the system in computing the query results
are shown in the visualization. The words in the visualization are also stopped and

stemmed.

3 Experimental Setup

The searchers for our study were undergraduate student volunteers from a course on
library searching at Georgia Tech. All the searchers had prior computer experience - a
majority of them more than 4 years. All the students were majoring in an engineering
discipline. They had differing levels of experience with the Georgia Tech Electronic
Library catalog - a boolean online public access catalog.

All the users were asked to fill out a background questionnaire. They were given
a tutorial on how to use the system. They were then asked to do a practice search on
topic 224 for 15 minutes. Following that they were asked to find as many documents
as they can that address the given information problem without too much rubbish
(as specified by the interactive track guidelines). This was followed by another inter-
mediate tutorial and then a search for a second topic. Immediately after each of the
two real searches, they filled out a search evaluation questionnaire. Finally, there was
a structured interview.

86

Figure 1: Sample querying session. The window in the top-left corner is the query
entry window. Immediately below that is another window where the titles of retrieved
documents are displayed. To the bottom right is another window where the full text
of documents are displayed.

87

IMB!I.IUJU1UH1 GH

SS-
3m
?M

affinro*-acöon* • ||ll llf

affect* • Hill* I

canstruct*-indu? - . ■
»~ IIIIIIII ill

ill II I I

• ■III I II».»»-*»- ■»

11 I. I III

ill* I I l«lf<- •-■ •

construct*

project*

public*

Isp Total sum:

m

Hiii HI iiiinl^iliiiüilfei i JI n i il ih

iMllllllllllBllllllllllMlllllllilllllhllllllllll •ll.lll-fillllV'l

ii.ii ll.Ml.l

it> Jfc >!, ' jfi ill ' ek. I!

Figure 2: Visualization of results. The highlighted vertical column corresponds to
document ranked 14. The title of document ranked 14 document will also be high-
lighted in the title display window. Clicking the highlighted vertical column brings
up the full text of that document.

88

The searchers were divided into three groups. In each group there were 12
searchers. In the first group (hereafter named "w:w", since both first and search
topics are searched WITH visualization), the searchers used the visualization tool for
all the searches and the tutorial. In the second group (hereafter named "wo:w", since
the first search topic is searched WITHOUT and second topic WITH visualization),
the initial tutorial, the practice search and the first search was done without the vi-
sualization tool. The intermediate tutorial introduced the visualization tool and the
search for the second topic was done with the visualization tool. In the third group
(hereafter named "wo:wo", since both the search topics are searched WITHOUT the
visualization), all the tutorials and searches were done without the visualization tool.
The intermediate tutorial for the w:w and wo:wo groups was a dummy tutorial to
compensate for the intermediate tutorial of the wo:w group.

Since each searcher searched for two topics and there were 12 searchers in each
group, all the 24 topics were covered by each of the three groups. The 24 topics were
randomly divided into 12 pairs and each pair was searched by 3 searchers, one each
from the w:w, wo:w and wo:wo groups. The idea was to compare the performance
among the three groups to find out the effects of the visualization scheme. Only 24
of the 25 topics for the interactive track were given to end-users in the study. The
remaining one topic (topic 223) was searched by the author using the visualization
tool.

The searchers were asked to think aloud as they used the system. For the most
part, there was an observer in the same room using a different computer and simulta-
neously observing the searcher. Based on such observations while the user session was
in progress, we felt that huge searcher differences in interpreting the query combined
with huge differences in the nature of the search topics will greatly confound the ef-
fects of the visualization tool. As a result, we decided to run a second study. In the
second study, we picked topic 242 for the practice search and the practice search was
extended to 30 minutes. The intermediate tutorial was removed. We picked topics
203 and 236 for all the searchers. There were two groups of searchers for the second
study - the first group had the visualization tool and second group did not have the
visualization tool. There were 18 searchers in each group. By keeping the two search
topics constant for all these searchers, we expected to eliminate the effects of search
topic difference. It turns out that the searcher variability in interpreting the search
topic is so huge among searchers that it is not fair to compare different searchers
using different systems unless the search topic is extremely clear and specific.

89

4 End-users view of the visualization tool

A vast majority of the users mentioned visualization as one of the aspects of the
system that they liked. They mentioned using the visualization tools in the following
ways.

• Some searchers mentioned using it to see the importance of query words in the
retrieved documents - as given by the height of the bar. They mentioned that
they were more likely to look at the full text of a document if it has a higher
concentration of the important query words.

• Most of the searchers mentioned using it most frequently to see the co-occurrence
of important query words in the retrieved documents. They mentioned it being
easier to use the visualization tool to look for the co-occurrence information
than going through the full text of documents in search of occurrences of the
important query words.

• Many searchers felt that the visualization in conjunction with the document
title gives a fairly good idea of what the document is about. If the title looks
promising and the visualization shows that the document has the right combi-
nation of query words, one is tempted to look at the full text of the document.

• They mentioned using it to get a quick overview of the number of retrieved
documents a query words appears in. They mentioned using it as a checkpoint
to see if a query has turned out the way they had expected it to. If not, they
were tempted to readjust the query to get a better result. This happens often
when some of the crucial query words are not well represented in the retrieved
documents. In that case, one is tempted to add synonyms or words related to
those crucial query concepts.

• Some of the searchers mentioned that the visual nature of the distribution infor-
mation was much easier to identify things than reading text information. This
suggests that the mental effort of reading textual information as being much
higher than interpreting a simpler visual pattern, and given a choice, the users
are more likely to choose the latter.

• Disadvantages: A few searchers mentioned that relying heavily on the visu-
alization can also hurt as follows: They mentioned that using the bar-graph to
pick out a document containing certain query words may not be indicative of
the content of the document - just as the title may not be a good indicator of
content. An exemplar case is searcher 35 on the topic of "status of nuclear pro-
liferation treaties". Since almost all of the retrieved documents had something

90

to do with "nuclear proliferation", the searcher mentioned using the visualiza-
tion tool to pick those documents containing the query word "status" - only to
see that the usage of "status" in the document was not in the context of nuclear
proliferation treaties. Then the searcher started paying little emphasis on the
presence of "status" in documents. Although relying on that information was
initially detrimental, one tends to learn when and how to rely on the visualiza-
tion. We believe that the presence in retrieved documents of adjectives, adverbs
and verbs from the query may not be good content indicators especially when
they have a high collection frequency. And relying on the visualization to select
documents that have these adjectives, adverbs and verbs from the query may
not help.

In summary, the visualization tool seems to help in the following ways:

• to gain more information about specific documents in addition to the title before
looking at the full text. Higher concentration of important query words in a
document suggests a closer look at the document.

• to gain aggregate information about the query result. The absence of impor-
tant query words in a vast majority of the retrieved documents suggests query
reformulation by adding synonyms and other related concepts.

5 Likes, Frustrations and Wants of users

Apart from the visualization, we were also interested in finding if there are any specific
facilities that the users wanted, what features they liked, and what aspects were frus-
trating. While interpreting the following, we wish to reiterate that all the searchers
had some amount of experience with the Georgia Tech Electronic Library catalog
which is a character-based-command-driven interface to a boolean system. Some of
the features they liked may arise out of the fact that they have had little experience
with ranked output systems and the only other major information retrieval system
they know is a character based interface to a boolean system.

5.1 Likes

• A vast majority of the searchers with the visualization mentioned that the
visualization tool and relevance feedback as the two major aspects of the system
they liked. Searchers without the visualization mentioned relevance feedback
as the most important feature they liked.

91

• A number of searchers found the fact that all the information (like the user
query, titles of documents and the document full text) is displayed simultane-
ously in one screen to be very useful. In the Georgia Tech library system, one
has to switch between screens to get different types of information. There seems
to be a significant mental overload in the context switch between screens. Hav-
ing simultaneous access to all information seems to bring about a rich interplay
between the different sources of information.

• many searchers mentioned that the mouse-based graphical nature of the inter-
face is a significant improvement over a command line based interface.

• many searchers also mentioned that the free-form textual queries without having
to worry about any syntax leads to a free flow of thought. "I like the fact that
I can type in whatever comes to my mind ... knowing that it will ignore all the
junk words like a, an, the, etc.".

• The "Next Query Word" feature was also liked by many searchers. They liked
it because they did not have to scroll through a long document looking for
occurrences of query words. (All the occurrences of query words in a document
are highlighted by the system).

5.2 Frustrations

•

•

•

A number of searchers mentioned that it was frustrating when the system takes
a long time to get the full text of a large document. Similarly, they were also
frustrated when it takes a long time to evaluate a query with a large number
of relevance feedback documents. The longest delay for evaluating a query was
about 2 minutes (when there are about 30 relevant documents). Most of the
query evaluations took less than 20 seconds. They said that they understand
that the system has to process a lot information (when there a number of
relevant documents), but it was frustrating nevertheless.

Some searchers said that it was frustrating to spend some time reading through
the full text of a document and when they are halfway, realizing that they had
already seen the same/similar document.

While some searchers seemed to like having access to 150 retrieved documents,
some others mentioned that 150 documents is too much especially when most of
the 150 are not relevant. They seem to have the opinion that if some documents
are definitely not relevant to the query, then they should not be shown. Thus,
this problem is not alleviated even if one reduces the number of documents

92

displayed. They seem to be quite sensitive about precision. They are not as
sensitive about recall - since they are usually satisfied if they get a few docu-
ments concerning the topic. Based on our observations, we believe that when
the non-relevant documents consistently come from a particular subject area,
and when the user is not in a position to remove those documents, they tend
to get more frustrated. Using subject classification schemes (where available)
to negate disinteresting subject areas would help in this regard.

• In our system, when the title for a document is not available, the message "No
title for this document" is displayed instead of the title in the title display
window. Many of the federal register documents do not have a title and this
is quite annoying to some searchers since they do not have any idea about the
document content. This makes it difficult to decide whether to request the full
text or not. In cases where the full text is requested, the document happens
to be large and hence takes a lot of time to retrieve, thereby adding to the
frustration.

• Some federal register documents do not have anything worthwhile - they consist
of a listing of subject areas or table of contents. Some searchers wondered why
these documents were in the database in the first place.

• Some searchers mentioned a general dislike towards federal register documents
partly because they felt that many of them did not have any important piece
of information, partly because in general they have no title, partly because it
took too long to retrieve them.

• Some searchers were frustrated when a document that they know as non-relevant
keeps coming up in the query result. The fact that they were not able to delete
the document from the display seemed to add to the frustration.

5.3 Wants

Many of the frustrations mentioned above seemed to directly translate into wants
for removing the causes of frustration. In addition to those wants, we observed the
following:

• Many searchers expressed a desire to remove certain query words that were
added by the system from relevance feedback documents - especially when they
are proper names and when they are not necessarily what they are looking for.

93

• A number of searchers wanted a keyboard equivalent of mouse actions. This is
not to say that they did not want mouse actions. It seems to be a significant
effort for these searchers to move the right hand out of the keyboard, reach over
to the mouse, look at the screen to position the mouse cursor, click the mouse
button and move back to the keyboard.

• When asked if they felt a need to have access to an online thesaurus, some
searchers expressed a desire for it and some did not. Some of those who did
not want a thesaurus mentioned that relevance feedback seemed to alleviate the
need for a thesaurus.

• Many searchers wanted to be able to specify that the system should definitely
avoid retrieving certain documents in subsequent query iterations. They wanted
to have a negative relevance feedback where the system avoids all documents
like a particular nonrelevant document.

6 Acknowledgments

The tremendous help from Prof. Nick Belkin regarding the experimental setup and
questionnaire design is highly appreciated. Many thanks to Prof. Scott Hudson
and Prof. Shamkant Navathe who were instrumental at every stage of the interface
development. We appreciate the help of Prof. Jan Crowe who was very cooperative
in letting the students of her class participate in the experiments. Special thanks to
Prof. Bruce Croft for letting us use the INQUERY retrieval system. Support from
the ARPA contract No. F33615-93-1-1338 is appreciated.

References

[CCH92] J.P. Callan, W.B. Croft, and S.M. Harding. The inquery retrieval system.
In Third International Conference on Database and Expert Systems Appli-
cations, September 1992.

[Ous94] John K. Ousterhout. Tel and the Tk Toolkit. Addison-Wesley, 1994.

94

Evaluation of a Tool for Visualization of
Information Retrieval Results

Abstract
We report on the design and evaluation of a visualization tool for Information Re-

trieval (IR) systems that aims to help the end user in the following respects:

• As an indicator of document relevance, the tool graphically provides specific

query related information about individual documents.

• As a diagnosis tool, it graphically provides aggregate information about the

query results that could help in identifying how the different query terms influ-

ence the retrieval and ranking of documents.

Two different experiments using TREC-4 data were conducted to evaluate the effec-

tiveness of this tool. Results, while mixed, indicate that visualization of this sort

may provide useful support for judging the relevance of documents, in particular by

enabling user to make more accurate decision about which documents to inspect in

detail. Problems in evaluation of such tools in interactive environments are discussed.

1 Introduction

The disadvantages of Boolean IR systems, especially in terms of end-user query for-

mulation, are well known. Best-match (i.e. ranked output) systems address several of

these problems by allowing users to submit unstructured queries, and by ranking the

retrieved documents in (presumed) order of relevance. However, such systems also

95

introduce new problems, or exacerbate problems that are not so severe in Boolean

systems.

For instance, understanding why a document (or set of documents) was retrieved

is relatively straightforward in exact-match systems, since all members of the set are

required to contain exactly the query specification. Furthermore, the ordering within

the set of retrieved documents is typically based on relatively well-understood formal

characteristics of the documents, such as date of publication or alphabetical order

by title or author. In best-match systems, on the other hand, neither the matching

rule nor the ranking rule is necessarily easily understandable. The former is usually

based on characteristics and algorithms which don't have simple relationships with

the unstructured query; the latter are intended to reflect complex conceptual relation-

ships between the query and the individual documents, and between the documents

themselves.

Furthermore, query reformulation may be more difficult in Boolean than in best-

match systems. Obtaining a manageable output set size in Boolean systems (the most

typical re-formulation task) may be less demanding than attempting to rearrange the

list of retrieved documents in a best-match system by manipulating an unstructured

query. This is of course especially difficult when the rules for ordering and matching

are not well understood.

Current best-match IR systems take relatively little account of these issues. In

response to a user's query, most systems display surrogates (title, source, author ...)

of the top 'n' retrieved documents, in a list, with some number(s) indicating the rank,

or reason for being in that rank, i.e. a retrieval status value (RSV). Some systems

display by default more information about the first retrieved document; most require

96

the user to request such information (e.g. the full text of the document) explicitly.

The only explanation of why the documents are ranked the way they are is typically

the RSV, about which there is no further information than the number itself. More

explanation may not be necessary in situations where the top retrieved documents

are all clearly relevant. But when this is not the case, and the user needs to modify

the query in order to get better results, then understanding the causal relationship

between query and document ranking becomes very important. Having an accurate

idea of why a list of documents was retrieved, of how they were ranked, and of what

is sub-optimal about the ranking could be useful in effective query reformulation.

Of course, knowledge about the relationships between query and ranking of re-

trieved documents is not of itself sufficient for effective query reformulation. It is

also necessary that the user be able to effectively manipulate the query after the

problem has been identified. For instance, just knowing that an important query

concept is missing in most of the retrieved documents is not sufficient for effective

query reformulation. One must then be able to come up with the right words (or

other techniques) for increasing the importance of the concept in the query. Without

the ability to take corrective action once the problem is diagnosed, the diagnostic

information is of little value.

A possible means for addressing problems of this sort is to display to the user

something about the documents which relates them directly to characteristics of the

query, and which relates them to one-another. Highlighting query terms in the text

display of retrieved documents attempts to accomplish the former, and the indication

of RSV is an attempt to accomplish the latter. However, neither of these techniques

appears to give sufficient information to guide effective query reformulation. More

97

information of each type needs to be displayed in order to provide effective support

for this task. Graphical displays of the characteristics of retrieved documents (visu-

alizations) which are relevant to their retrieval and ranking is one obvious approach

to this problem.

A further problem in IR systems in general has to do with the multi-stage nature

of presentation of results. The initially-presented surrogates are meant to provide a

concise picture of what a document is about. Based on these surrogates, the user may

request more detailed information about particular documents which look promising

(or for which the surrogate information is equivocal). In some cases, this might be

the "full" bibliographic information about the item, in others an abstract, and in

many systems now, it could be the full text of the item. Thus, as the user progresses

through the stages of display, that which is displayed is more complete and infor-

mative, allowing increasingly accurate relevance judgments. But, the information in

the later stages of display is also more time-consuming to peruse. Therefore, it is

useful for the searcher to be reasonably certain that it is worthwhile doing this in-

spection. The information displayed in the earlier stages thus serves as a filter which

supports the user in deciding which documents do not need further inspection (either

because they are obviously good or obviously bad), and which documents do justify

the further effort.

It seems, then, that displaying a great deal of information at the surrogate stage

of display would be a useful device. In this case, the user has more information on

which to judge the relevance or usefulness of the document. The advantage is that

when the user requests the second-stage display, it is more likely that that document

will be relevant to the user than if there were less information in the first stage. The

98

disadvantages to this strategy, of course, are that since there is more text to display

in the first stage, fewer items can be presented, and more time must be spent in

perusing the first-stage display. Thus, the total number of documents seen by the

user may well be fewer, although the quality of the decision-making may be higher.

If, on the other hand, one chooses to display less information at the initial sur-

rogate stage, then there is of course less information on the basis of which one can

make a decision about whether to look at the more complete display. Hence, the

proportion of second-stage documents which turn out to be relevant is likely to be

low. The advantage of seeing more documents, more quickly, in the first stage is thus

offset by the additional time that is spent perusing non-relevant documents in the

second stage.

A possible means to addressing this problem is to display information about the

document in the first stage in some form that does not require as much perusal

time and screen space as text. Graphical displays of the characteristics of documents

which are significant in supporting the decision to peruse or not (visualizations), could

support set-at-a-time perusal of documents, rather than document-at-a-time perusal

of text displays.

It will not escape the reader that the suggested solutions to the two classes of prob-

lems that we have raised here are rather similar, and could, indeed, be instantiated

by the same sort of display. We present here a visualization tool which is intended

to address these problems in IR systems, and a preliminary evaluation of this tool.

The remainder of this paper is organized as follows. We first present a description

of the visualization tool, and a rationale for the features of this tool with respect

to the problems in IR interaction that we have discussed above. We then discuss

99

some related work in IR visualization that addresses this type of problem, and draw

some comparisons between that work and ours. We follow with a description of the

experiments we conducted to evaluate the visualization tool, and the results of those

experiments. We conclude with some comments on the implications of our results,

on future work, and on the implications of our evaluation experience for evaluation

of interactive IR in general.

2 Visualization tool

In this section, we briefly describe the visualization tool and then discuss how its

features are intended to help the end user in selecting relevant documents and in

formulating better queries (resulting in more optimal document ranking).

2.1 Description

The visualization tool is an adjunct to a basic interface for IR. This interface is

structured as a indicated in Figure 1, with a query window, a display of titles retrieved,

and the full text of a document. This serves as the baseline interface interaction with

which is compared to the visualization tool. A screen snapshot of the visualization

tool is shown in Figure 2. The visualization corresponds to the query "how has

affirmative-action affected the construction-industry construction projects and public

works".

The visualization consists of a series of vertical columns of bars. There is one

column of bars for each document. The leftmost vertical column of bars corresponds

to the document ranked 1 and the rightmost vertical column corresponds to the

100

document ranked 150 with all the intermediate ranks lying in between. In each

vertical column there are multiple bars - one each for each query word. The height of

the bar at the intersection of query word row and a document column corresponds to

the weight of that query word in that document. Thus if there are a handful of query

words that convey the crux of the query and it is very important for a document

to contain these query words, one can quickly see from the visualization which of

the retrieved documents have those important words. One can also see how many

of the retrieved documents have the multiple words in combination (in this example,

the number of documents containing the term "affirmative action" in combination

with "construction industry" or any of its related terms) to get a feel for the overall

goodness of query results. In figure 2, we can see that "affirmative action" co-occurs

with "construction industry" or "construction" or "public" or "project" only in about

20 documents, "construction industry" and its related terms appear in almost all the

documents whereas "affirmative action" appears in only about 20 documents. The

effects of modifying the query, such as adding a query word (for example, a synonym

of "affirmative action"), are clearly shown in the visualization. One can quickly take

stock of how useful the query modification turned out. Moving the mouse cursor over

the vertical columns highlights the column directly beneath the mouse cursor and

simultaneously highlights the title corresponding to that document in a title display

window.

Apart from the query words typed in by the user, the visualization also shows the

distribution information for words added by the system due to relevance feedback.

Thus, all the words internally used by the system in computing the query results

are shown in the visualization. The words in the visualization are also stopped and

101

stemmed. The basic interface, and the visualization tool, utilize the INQUERY re-

trieval engine, version 2.1p3 [CCH92]. We use all of the default features of that

system, including their relevance feedback, stemming and stoplist algorithms, but do

not use any of the structured query facilities.

2.2 Response to problems of IR interaction

In support of query reformulation, the visualization makes the connection between the

query and retrieved documents explicit by graphically displaying the contribution of

each of the query words to the retrieval of each document. The higher the contribution

of a particular query word to the retrieval of a document, the taller the bar at the

intersection of the corresponding query word and document. The absence of a bar

at the intersection illustrates the absence of the term in the document. Absence of

an important query concept in a number of retrieved documents points to a problem

situation which the user needs to work on. The visualization also makes relations

between the documents themselves explicit, since the characteristics which have led to

their rank (the number and contribution of matching terms) are explicitly displayed.

In support of informative first-stage display, the visualization provides a great deal

of information useful for deciding whether to view the full text of a document in a

highly condensed way, and allows many document surrogates to be displayed at one

time. The presence or absence of specific significant words in any document can be

quickly seen, and it is possible to identify sequences of documents which do, or do not

have important contributions from (implicitly discussions of) specific query words.

For the example search topic ("How has affirmative action affected the construc-

102

Figure 1: Sample querying session. The window in the top-left corner is the query
entry window. Immediately below that is another window where the titles of retrieved
documents are displayed. To the bottom right is another window where the full text
of documents are displayed.

103

lau
^^

-»'■;- «f""""'»:;*

■altirnr--acttoir:v. liny; ||
; -'■••-.:- /■ _ -

■'■?r--'-

affectr t IBIII» I

canstructr-indu:
tr IHlIIlKlf

«mstwct^ ; f nilllf nil

E I! i" i i II nil!

• Il| I'" *•

tlflltliblitlllll

I II! inSilJ lllIEHllI I I IE fi \ \\ I

ii.iKilIifiiiililiBiiiithilftltifi; Julii itii
^^*^^^^^fe^*^ ^BäipÄt^fsjt8äi

project* -

public* *«t*«Cv «Mlv^^JpV«^9*Of«»Vrr9t#fM«# J»f •#' f «tiff 9*9* f *f <* • W«a
 ^ s r s , " f ' -, -i
 ,?„... */-*v <*.._«.. , ,., .. „v , „. , , , ... , /, ,..VV M$£®k»

Total sum:- . .., ,,,„,,,,„„£ III i Miiiiii i M>MVi*f t*isi ii iiMiiuiuiMi «»«****«

■i
-•-:-■- 15=rv."" - - 1' • " r
J-.

;- ^ ..- ;^^ SH ma.

Figure 2: Visualization of results. The highlighted vertical column corresponds to
document ranked 14. The title of document ranked 14 document will also be high-
lighted in the title display window. Clicking the highlighted vertical column brings
up the full text of that document.

104

tion industry?"), there are two facets that are central: "affirmative action" and "con-

struction industry". From the visualization tool, we can immediately see that most

of the documents are concerned with the "construction industry" and only a portion

of the documents have the term "affirmative action". We can also see that the "af-

firmative action" concept is spread sparsely throughout the top 70 documents. The

visualization tool provides a wider coverage of documents because now the user may

be willing to look at a document that is ranked at the bottom if it has both the cen-

tral concepts of the query. By guiding the user to promising documents that contain

all the important query concepts, the visualization tool acts as an efficient filter that

indicates document relevance. Note that the visualization tool not only provides new

information (about the presence of query concepts in documents), but also provides

that information in a graphical format. The graphical format of presentation has

some important advantages in that it does not take as much time for a user to iden-

tify and interpret information as it would for an equivalent text display. Thus the

visualization tool not only guides the user to relevant information, it also indicates

the non-relevant documents that the user can skip over.

From the visualization, one gets an immediate idea of how the different query

words influence the document ranking (as given by the height of the bars). One

can see that the concept "affirmative action" is not well represented in the retrieved

documents. This suggests that synonyms and words related to that concept must be

added to the query to reinforce that query concept in subsequent search iterations.

From the visualization tool, one can infer that the system interprets "public" and

"project" as two separate words and that the contribution of those two words to

the retrieval of almost all documents is uniformly low (as given by the height of the

105

bars). One can probably improve the situation by making "public projects" a phrase,

thereby retrieving documents that have these two words in close proximity. Gaining

such overall information about the query results by reading the document text is at

best cumbersome if at all possible.

The visualization scheme graphically displays the significance of the query words

in each of the retrieved documents thereby providing document surrogate information

that is directly related to the query. By displaying the importance of the different

query words in the retrieved documents, the visualization provides surrogate infor-

mation in addition to other surrogates in the database. Therefore, a user has more

relevance indicators to judge which of the documents are relevant and which are not

- thereby increasing interactive precision. This is not achieved at a cost of heavy

perusal time since the time taken to interpret the visualization is only a fraction of

the time it takes to peruse equivalent text information. The visualization may thus

be used as a first filter to disregard those documents that do not have the important

query concepts and hence clearly non-relevant. The user examines the titles and other

text surrogates of the potentially relevant documents that have the important query

concepts. Based on the text surrogates, the user may decide to request the second

stage of display for promising documents. With the visualization tool, when the user

is looking at the documents ranked in the 20's, he can also simultaneously identify

that the documents ranked in the 70's (say) contain all the important query concepts.

Simultaneously identifying a whole set of documents as potentially relevant (or non-

relevant) is not possible with text displays. This simultaneous relevance judgement

of sets of documents increases document coverage greatly without demanding perusal

time.

106

3 Related visualization work

A number of visualization schemes for information retrieval systems have been pro-

posed. The perspective wall [CRM91] describes a visualization scheme which supports

browsing of documents. While such a system can not handle qualitative document

classifications such as library subject catalogs, it is very useful for visualizing doc-

uments based on data which is linear in nature (like date of publication). A nice

way of integrating different visualization schemes for efficient navigation through

the hypermedia space has been proposed by Sougata [MFH95]. These schemes

are primarily useful for navigational tasks. Other visualization schemes such as

[Kor91, Spo94, HKW94] have facilities for viewing a large docurront space. But

visualizing the document space along more than 3-4 dimensions simultaneously be-

comes very cumbersome using their systems. The visualization scheme in our tool

can gracefully handle much higher number of query word dimensions. Also, most

of them do not support querying with relevance feedback Many systems are tailored

towards easy construction of queries [Spo94, ACRS93, AB93] but do not pay much

attention to the display of query results.

The TileBars work by Marti Heart [Hea95] visually shows the query term ditri-

bution and overlap in retrieved documents. The term distribution in retrieved docu-

ments is shown right besides the title of the document. In a number of respects, the

reasons and motivations for her work are similar to those of our visualization work

[VNH95, VN95, Vee95]. There are some important ways in which TileBars differs

from the visualization that we propose.

• TileBars provides more document surrogate information than just the impor-

107

tance of query words in documents. Tilebars provide information on how the

different query facets overlap in different sections of a long document. Our visu-

alization scheme does not provide information at that fine levels of granularity.

• However such additional information comes at a cost to usability: To obtain

maximum benefits from tilebars, the information need should be decomposed

into more-or-less orthogonal facets. It remains to be seen how cumbersome

it is for a naive end user to decompose her/his information need. There are

advantages in letting the user specify the information need as free-form text.

• In TileBars, it is not as easy (as the visualizaiton we propose) to gain an overall

picture of the query word distribution for a whole set of documents in one glance.

Being able to identify the general pattern and knowing which query concepts

are not well represented in the retrieved documents as a whole is extremely

beneficial in query reformulation. With TileBars, obtaining such aggregate

information about a whole set of documents in tedious at best.

• While our visualization scheme is equally effective for both long and short doc-

uments, TileBars seems to be best suited for long documents.

4 Experiments to test the effectiveness of visual-
ization

Below, we discuss two experiments to test the effectiveness of the visualization scheme.

The basic scheme of both experiments is to test the effectiveness, usability and ac-

ceptability of the visualization tool by comparing searching with an interface using

the visualization, versus searching with the same interface, but without the visualiza-

108

tion tool. The underlying retrieval engine used in these experiments was INQUERY

version 2.1p3, from the University of Massachusetts, Amherst, generously made avail-

able to us by Prof. Bruce Croft [CCH92]. We developed the graphical user interface

using Tcl/Tk on top of INQUERY.

The experiments were conducted as part of the TREC-4 interactive track [Har96].

Thus, the task for the searchers in the experiment was the TREC-4 interactive track

task:

• Find as many documents as you can which address the given information prob-

lem, but without too much rubbish. You should complete the task in about 30

minutes or less.

The "information problems" were chosen from the 25 adhoc topics used for the

TREC-4 interactive track, and the database was the TREC Disks 1 and 2 database

of the full texts of about 550,000 documents.

Both experiments were designed to test the usefulness of the visualization tool for

addressing the two problems that we have discussed and that motivated the design

of the tool:

• efficiency and effectiveness in discovering relevant documents; and,

• effectiveness in supporting query reformulation.

In order to test the former, we predict that searchers using the visualization tool will

make better decisions about which documents to look at (or not look at) than those

without visualization. We operationalize this difference with the following dependent

variables:

109

• the number of documents saved per search (s-p-s). Since search times are more-

or-less constant (about 30 minutes) across searchers, this measure reflects effi-

ciency in being able to see more documents.

• the proportion of documents whose full text was viewed that were judged rel-

evant by TREC evaluators (interactive tree precision or i-t-p). This measure

indicates the quality of the documents which were chosen for viewing.

• the proportion of documents whose full text was viewed that were saved by

the searcher (interactive user precision or i-u-p). This measure also indicates

quality of documents which were chosen for viewing, but is indicative of the

relationship of the display to the searcher's own concept, of relevance to the

problem, rather than being dependent upon the external relevance judgments.

• precision of the search, measured in the required manner for the TREC-4 inter-

active track; that is, as the proportion of documents saved by the searcher that

were judged relevant by the external judges. This measure is indicative of the

effectiveness of retrieval performance, and is the only variable we used to gauge

the effect of visualization on query reformulation.

For all of these measures, higher numbers mean better performance.

The subjects for both experiments were undergraduate student volunteers who

were registered in a one-credit hour course on library searching in the College of

Computer Science at Georgia Tech. All subjects had prior computer experience, the

majority with more than four years. All subjects were majoring in an engineering

discipline, and had varying levels of experience with the Georgia Tech Electronic

110

Library Catalog. They had no other IR experience than that offered by the class.

Two different groups of subjects were used in the two different experiments.

All the subjects in both experiments followed the same general introductory and

tutorial procedure. They were asked to fill out a background questionnaire about

their computer and IR experience, major, and so on.(takes about 5 minutes). They

then had a hands-on tutorial (about 1 hour) on how to use the version of the system

which the would be using for the first experimental search. They were then asked to

do a practice search on TREC topic 224 ("What can be done to lower blood pressure

for people diagnosed with high blood pressure? Include benefits and side effects.")

for 15 minutes. They then did the assigned searching tasks (details differ between

the two experiments), during which they were instructed to "think aloud", which was

recorded on audio tape. All the user interaction with the system was logged. After

each search, they completed a search evaluation questionnaire. At the end of the

session, a structured interview on their use of the system was administered. For the

most part, there was an observer in the same room using a different computer and

simultaneously observing the searcher.

4.1 Experiment 1

Thirty-six subjects were randomly divided into three groups of twelve each. Twenty-

four of the 25 TREC-4 interactive track topics were randomly divided into twelve

pairs. Each of the twelve pairs of search topics was randomly assigned to one of the

searchers in each group, one to be searched in the "first" condition, the other to be

searched in the "second" condition for the group of which the searcher was a member.

The topic pairs were searched in the same order in all groups. Thus, the same twelve

111

of the 24 topics were searched in the first condition for all three groups, and the other

twelve were searched in the second condition for all of them.

The three groups were defined according to the combination of conditions or treat-

ments. Group wo:w (for WithOut:With) did their In the first group (hereafter named

"w:w", since both first and second search topics are searched With visualization), the

initial tutorial, the practice search and the first search was done without the visualiza-

tion tool. An intermediate tutorial introduced the visualization tool and the search for

the second topic was done with the visualization tool. Group "w:w" (for With:With)

used the visualization tool for all the searches and the introductory tutorial. Group

"wo:wo" (for WithOut:Without) did all the searches and the introductory tutorial

without the visualization tool. In both the w:w and wo:wo groups, an intermediate

tutorial on the interface with which they were working was introduced between the

two searches to compensate for the intermediate tutorial of the wo:w group.

This "within subjects" design was used in order to control for user differences, and

to account for any possible learning effects from search 1 to search 2. It was predicted

that performance on the various measures would improve in the wo:w group, more

than in either the wo:wo or w:w groups.

4.2 Experiment 2

In this experiment, 36 subjects were randomly divided into two groups, one with

the visualization tool ("viz"), the other without ("noviz"). Three search topics were

chosen for searching by all eighteen searchers in each of the two groups, always in the

same order. The searchers in the two different groups followed the same pattern of

112

participation as those in experiment 1, but without any intermediary tutorial, and

with the practice search time extended to 30 minutes. We picked topic 242 ("How has

affirmative action affected the construction industry?") for the practice search. The

first "experimental" search was on topic 236 ("Are current laws of the sea uniform?

If not, what are some of the areas of disagreement?"), and the second was topic 203

("What is the economic impact of recycling tires?").

This "between-subjects" design was used to control for the effects of search topic

difference, and to have larger numbers of subjects in the two conditions. It was

predicted that performance in the viz group would be better than performance in the

noviz group for each topic.

5 Results

In this paper, we report only on results with respect to the performance measures we

have defined. Results from the questionnaires with respect to use and usability of the

two systems, and with respect to interaction measures and "thinking aloud" will be

reported in subsequent publications.

5.1 Experiment 1

The results of experiment 1, displayed in Table 1, are something of a disappointment.

There are no significant differences (using the Wilcoxon Matched-Pairs Signed-Ranks

Test, one-tailed at pj= .05) between any of our four measures between the without-

and with-visualization treatments in the wo:w group. Furthermore, there are no

significant differences between any of the matched without-visualization/visualization

113

groups (i.e. between the second searches of wo:w and wo:wo groups, the first searches

of wo:w and w:w groups, and both searches of the wo:wo and w:w groups). There

is no consistent pattern on any of these measures from first to second search (i.e.

there appears to be no learning effect, nor does it appear that one of the sets of

twelve topics is in general more difficult than the other, nor is it the case that any

of the groups does consistently better or worse for either search). These very mixed

results lead us to think that our experimental design in this case suffers from two

significant problems. The first is that the results suffer from great inter-subject and

inter-topic variability; the second is that we have too few subjects for each condition

to adequately test significance of any differences that may exist.

The results of experiment 1 led to the design of experiment 2, whose results are

displayed in Table 2. The rows in Table 2 are in the order that the topics were

searched. In order to test the significance of these results, it is necessary to compare

them topic-by-topic, without cumulation, to maintain the assumption of indepen-

dence, since each searcher did three searches (including the practice search, 242) in

the same condition. To test for significance of results, we used the Mann-Whitney U

test with p j= .05, one-tailed. For precision, there is no significant difference between

nonviz and viz for any of the three topics. For s-p-s, the trend is in favour of viz in

all three cases, but significantly so at the chosen level only for topic 242 (although

for topic 236 it only just misses). For i-t-p, again the trend is nominally in favor of

viz, but is again significant only for topic 242. For i-u-p, the same trend holds, and

again viz is significantly better than noviz only for topic 242.

For three of the four measures we can see that there are obvious topic differences

which cannot be accounted for by a learning effect, since the direction is wrong. Two

114

points are important to note here. First, it appears that topic 242 was "easier" than

the other two topics, and that topic 242 benefited most from visualization. Second,

it is clear that differences in topics are likely to affect results averaged over topics

significantly, unless there are also quite large numbers of searchers for each topic.

Although for these three topics, three of the measures follow a consistent pattern

between noviz and viz, the differences are really very small.

Interpreting these results is somewhat difficult, although they are a bit more

promising than those of experiment 1, with respect to the potential of the visualization

tool investigated here. It is of some interest that only topic 242 showed significant

differences between the noviz and viz groups. This might be explained by that topic's

being for some reason more suited to visualization than the other two. Although

the numbers of relevant documents for the three queries are rather similar (242: 38,

236: 43; 203: 33), on the basis of median precision reported by all of the TREC-4

interactive track participants, topic 242 is "easier" than topics 203 and 236 (0.2368 vs

0.1515 vs 0.0465, respectively). This of course follows the pattern of precision results

by the searchers in experiment 2, but it is not clear how this would explain the

apparently beneficial effect of visualization for this topic. An alternative explanation

might be that visualization of this sort is helpful for naive searchers, but loses its

effect as they become more experienced with the IR system. On the basis of the data

we have available, there is no way to decide between these alternatives.

In any event, it seems reasonable to accept, on the basis of the results of experiment

2, that there could indeed be some value to visualization of the sort we have tested

here. However, this statement certainly must be very tentative, and subject to much

more testing. The results of experiment 1 do not lead to any such conclusion. It must

115

be said, however, that the very mixed nature of these results may well be an effect of

the experimental design, and in particular of the inability to take proper account of

what may be very large topic differences and searcher differences. Of course, another

possible reason for the seeming lack of effect of visualization is the implementation

that we chose. This issue needs further investigation.

6 Conclusions

The study reported here intended to demonstrate the potential of visualization to

support particular kinds of interactions in IR, and to test one implementation of such

visualization. Although the results of our experiments are mixed, at best, it appears

to us that some of them are positive enough to justify further such experiments. But

there are some other serious implications of our results.

We are not aware of other work reporting comparisons of visualization tools for

IR with equivalent non-visualization interfaces. Our experience suggests that it is

important to conduct more such studies, in particular to move beyond assuming

the efficacy of visualization to demonstrating it in experimental environments. But

our study also demonstrates the severe problems that arise in conducting interactive

IR experiments. These include the problems of finding enough subjects to account

for inter-subject differences, and of being able to account for inter-topic differences.

Balancing these two demands is an exceedingly difficult problem, which is currently

severely exercising the TREC-5 interactive track participants. Another evaluation

problem which raised by our study is how we are to measure the effectiveness of

visualization tools. The problems with using precision as a measure for evaluating

116

interactive IR are now well-known, especially if precision is decided according to

relevance judgments from experts, rather than the searchers. It is also the case

that for certain functions of visualization, precision is an inappropriate measure.

But we do not have available a suite of accepted alternative measures for evaluating

the effectiveness of systems with respect to these functions. So, in our case, it was

necessary for us to invent some new measures which appear appropriate to the IR

tasks that we wished to support. Whether these were good choices also needs to be

further investigated.

In conclusion, we find that this study has given some support for the general idea

of visualiztion as a tool for enhancing user interaction with search results, and for

the specific tool with which we implemented this idea. We also find that the level of

support for these statements from this study is not high, and that it is necessary to

conduct further studies, with better designs, before we can become confident in the

value of visualization for these purposes, as opposed to other tools for interaction.

Finally, we find that our study has shown, again, the necessity of developing better

measures and methods for the evaluation of interactive IR systems, and the necessity

of rigorous comparative evaluation of visualization in IR.

Acknowledgments
Support from the ARPA contract No. F33615-93-1-1338 to the first author is appre-

ciated. The work of the second author was in part supported by NIST Cooperative

Agreement No. 70NANB5H0050.

References

[AB93] H.C. Arents and W.F.L. Bogaerts. Concept-based retrieval of hypermedia

117

information - from term indexing to semantic hyperindexing. Information
Processing Management, 29:387-396, 1993.

[ACRS93] M. Aboud, C. Chrisment, R. Razouk, and F. Sedes. Querying a hyper-
text information retrieval system by the use of classification. Information
Processing Management, 29:387-396, 1993.

[CCH92] J.R Callan, W.B. Croft, and S.M. Harding. The INQUERY retrieval sys-
tem. In Third International Conference on Database and Expert Systems
Applications, September 1992.

[CRM91] S. Card, G. Robertson, and J. Mackinlay. The information visualizer,
an information workspace. In Proceedings of CHI 91 Human Factors in
Computer Systems., 1991.

[Har96] Donna Harman. TREC-4, Proceedings of the fourth Text REtrieval Con-
ference. GPO, 1996.

[Hea95] Marti A. Hearst. TileBars: Visualization of term distribution informa-
tion in full text information access. In Proceedings of CHI 95, Denver,
Colarado., 1995.

[HKW94] Matthias Hemmje, Clemens Kunkel, and Alexander Willet. LyberWorld -
A visualization user interface supporting full text retrieval. In Proceedings
of the 17th Annual International Conference on Research and Development
in Information Retrieval, pages 249-259, 1994.

[Kor91] Robert Korfhage. To see, or not to see - is that the query? In Proceedings
of the 14ih Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 134-141, 1991.

[MFH95] Sougata Mukherjea, James. Foley, and Scott Hudson. Visualizing com-
plex hypermedia networks through multiple hierarchical views. In ACM
SIGCHI, 1995.

[Spo94] Anslem Spoerri. InfoCrystal: A visual tool for information retrieval and
management. In Human Factors in Computing Systems CHI 94 Confer-
ence Companion, pages 11-12, 1994.

[Vee95] A. Veerasamy. Interactive TREC-4 at Georgia Tech. In The Fourth Text
REtrieval Conference (TREC-4), 1995.

[VN95] A. Veerasamy and S. Navathe. Querying, navigating and visualizing a dig-
ital library catalog. In Proceedings of the Second International Conference
on the Theory and Practice of Digital Libraries, 1995.

[VNH95] A. Veerasamy, S. Navathe, and S. Hudson. Visual interface for textual
information retrieval systems. In Proceedings of the Third Conference on
Visual Database Systems. IFIP 2.6, pages 333-345, 1995.

118

Effectiveness of a graphical display of retrieval results

Aravindan Veerasamy
College of Computing, 801, Atlantic Drive

Georgia Institute of Technology

Atlanta, Georgia 30332-0280

Email: veerasam@cc.gatech.edu

Russell Heikes
Statistics Center

School of Industrial Systems and Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332

Email: russell.heikes@isye.gatech.edu

Abstract
We present the design of a visualization tool that graphically
displays the strength of query concepts in the retrieved docu-
ments. Graphically displaying document surrogate informa-
tion enables set-at-a-time perusal of documents, rather than
document-at-a-time perusal of textual displays. By pro-
viding additional relevance information about the retrieved
documents, the tool aids the user in accurately identifying
relevant documents. Results of an experiment evaluating
the tool shows that when users have the tool they are able
to identify relevant documents in a shorter period of time
than without the tool, and with increased accuracy. We
have evidence to believe that appropriately designed graph-
ical displays can enable users to better interact with the
system.

1 Introduction

The overall concern of all components of an IR system is to
present the user as much relevant information as possible.
While there has been a lot of work on effective algorithms
for retrieving and ranking relevant documents, not much at-
tention has been paid to study the effectiveness of user inter-
face components of IR systems. Apart from retrieval mech-
anisms, interactive IR systems must also be concerned with
the design of appropriate display mechanisms that present
the retrieved information in the "best possible manner". We
discuss what constitutes "best possible" display by examin-
ing a typical user interaction with an IR system. A typical
interaction with current IR systems proceeds as follows:

• User in an Anomalous State of Knowledge [BOB82]
expresses his information need as a query that is in-
terpretable by the system.

• The system matches the query with the stored docu-
ments and retrieves a set of documents. In the case
of ranked output systems, the result is ranked in the
decreasing order of relevance. Boolean systems may
rank the documents in a chronological order.

• At the first stage of display, a set of document sur-
rogates for the retrieved documents are displayed to

the user,
bination
etc.

■. These surrogates typically consist of a com-
L of titles, author, source, date of publication,

• The user inspects the document surrogates and re-
quests more information (such as the full text if avail-
able) about those that look relevant. This leads to a
second stage of display that provides as much informa-
tion about the document (in many cases, the complete
document itself) as is available in the system.

• After going through a sufficient number of documents,
the user quits the session or reformulates the query to
retrieve a better set of documents.

In this scheme, the first stage display of document surrogates
is meant to provide a concise and accurate indication of
document content. The second stage display of documents
provides more information about the document. In cases
where the document full text may not be available for the
second stage (such as a typical online library catalog), users
proceed to a third stage where they examine a paper-copy
in library bookshelves where the complete document may
be available.

Thus as the user progresses from the initial to the later
stages of display, that which is displayed is more complete
and informative, allowing increasingly accurate relevance
judgments. However, since more information is displayed
about a document in later stages of display, they are also
more time-consuming to peruse. Furthermore, requesting
second stage of display may be more costly since some sys-
tems charge a certain fee to deliver the full text of docu-
ments. Apart from the human frustration of waiting for the
delivery of full text, one may have to pay for it monetarily
since certain systems charge the user based on connect-time
and the volume of downloaded data. Therefore, it is advan-
tageous for the searcher to be reasonably certain about the
relevance of a document before requesting a second stage of
display.

For the user to make accurate relevance judgments based
on the first stage display, the form and content of first stage
of display should provide good indication of what document
is about. The form of the first stage display should be such
that it is quickly perusable - the purpose of the first stage
display (of providing a quick and concise indication of doc-
ument content) is lost otherwise. The content of the first
stage display should be such that users can make accurate
judgments about document relevance.

We can expect an improvement in the accuracy of rele-
vance judgment if more content from the documents are dis-

119

m

.* tin a-: . ii in i h ii i 11 I

Tow »um:

Kill I lit It • ■• ••tl I I III! I •

mlilli iioi'ir ill: 111l11l1l11tll1ll.ilU ii r Ulli

8*"i«t' liilllllnliiEililiiillliilMllllililiilillliliilil IIKIH Hull

•titn »i«»t«MM«Mii*tnit» »it mitfati« «ifltu in«»

 fft"
TT

!IIIIIMIIfl|IIMI<IMIf'IIUI*MfMIUHMHf

3SSSSS5SS2ES3

Figure 1: Visualization of results. The highlighted vertical
column corresponds to document ranked 14. The title of
document ranked 14 document will also be highlighted in
the title display window. Clicking the highlighted vertical
column brings up the full text of that document.

played. For example, we can expect greater accuracy with
a first stage display that shows document titles, authors
and subject keywords compared to one that shows just the
document titles. When this additional document content is
displayed in textual form, the increased accuracy may how-
ever bring along a negative effect on perusal time (increase
in perusal time). This is because more time is consumed
perusing the additional content.

A possible means to addressing this problem of display-
ing more information in the first stage without increasing
perusal effort and perusal time is to display information in
some form that does not require as much perusal time and
screen space as text. Graphical displays (visualizations) of
the characteristics of documents which are significant in sup-
porting the decision to peruse or not, could enable set-at-a-
time perusal of documents, rather than document-at-a-time
perusal of text displays.

In the remainder of this paper, we describe a visualiza-
tion tool meant to address this issue; describe and present
the results of an experiment evaluating the tool; and draw
some conclusions about its effectiveness as a first stage dis-
play.

2 Visualization tool

The visualization tool is an add-on to a basic interface for
an IR system. There is a query window. The titles and
ranks of retrieved documents (first stage of display) is shown
below the query window. Figure 1 shows the visualization
tool corresponding to the query "How has affirmative-action
affected the construction-industry, construction projects and
public works".

The visualization consists of a series of vertical columns

of bars. There is one column of bars for each document.
The left-most vertical column corresponds to the document
ranked 1 and the right-most vertical column corresponds to
the document ranked 150. In each vertical column there are
multiple bars - one each for each query word. The height
of the bar at the intersection of a query-word-row and a
document-column corresponds to the weight of that query
word in that document. Moving the mouse cursor over the
vertical columns highlights the column directly beneath the
mouse cursor and simultaneously highlights the title cor-
responding to that document in the title-display window.
The visualization window is scrollable, in case the number
of query words exceeds the available vertical space. The
words in the visualization are also stopped and stemmed.
Thus the combination of the visualization tool and the ti-
tle display forms the first stage of display in our system.
The basic interface, and the visualization tool utilize the
INQUERY retrieval engine, version 2.1p3 [CCH92].

2.1 Response to the need for a concise display of docu-
ment content

In the Introduction, we discussed the need for a concise
first stage display which can also be perused quickly. We
believe this visualization scheme to qualify for such a first
stage display. It provides information valuable in deciding
the relevance of document such as the weight of query con-
cepts in the retrieved documents. The information is also
displayed in a highly condensed way, and allows many doc-
ument surrogates to be perused at one time. Textual dis-
play of document surrogates force the user to peruse them
a document-at-a-time. However, with this visualization one
can infer global patterns such as the following. Suppose
we are faced with a search topic where a query term 'q'
is so important that all relevant documents will have that
query word. We would then ask the following questions:
To identify relevant documents, we might ask "Which docu-
ments have the important query word 'q' ?". To evaluate the
goodness of the query, we might ask "Does the important
query word 'q' appear in most of the retrieved documents?".
When comparing the contribution of two query words, one
might ask questions such as "What is the contribution of
query word q2 compared to q5?". Answers for such ques-
tions seem to emerge from the visualization quickly. Such
global perception of data is not possible with text displays
that emphasize the parts rather than the whole. We refer
to this kind of global perception as "set-at-a-time perusal",
since the information gained is about a set of documents.

The presence or absence of specific significant words can
be quickly seen, and it is possible, in one glance, to identify
sequences of documents which do, or do not have important
contributions from specific query words. For the example
search topic ("How has affirmative action affected the con-
struction industry'?"), there are two facets that are central:
"affirmative action" and "construction industry". From the
visualization tool, we can immediately see that most of the
documents are concerned with the "construction industry"
and only a portion of them have the term "affirmative ac-
tion" . We can also see that the "affirmative action" concept
is spread sparsely throughout the top 70 documents. The
graphical format of presentation has some important advan-
tages in that it is more condensed and can be more easily
and quickly perused than an equivalent text display.

120

3 Related work

A number of visualization schemes for information retrieval
have been proposed [CRM91, MFH95, Kor91, Spo94, HKW94,
ACRS93, AB93] But most of these do not address either the
display of query results or the problem of support of rele-
vance assessment. An exception is TileBars [Hea95], but
there are some important ways in which TileBars differs
from the visualization proposed here.

• TileBars provide information on how the different query
facets overlap in different sections of a long document.
Our visualization scheme does not provide information
at that fine levels of granularity.

• To make the best use of such additional information in
TileBars, the user has to decompose the information
need into more-or-less orthogonal facets of a query.
However, in our visualization, the user can type in the
information need as a free-form textual query.

• TileBars presents the document surrogates in a list,
making it more difficult than in our tool to gain an
overall picture of the query word distribution for a
whole set of documents in one glance.

• TileBars seems best suited for long documents, while
our visualization scheme seems to be equally effective
for short and long documents.

There are a handful of studies that have investigated the
effectiveness of document surrogates as content-indicators to
enable human relevance judgments [Jan91, Sar69, RRS61,
Tho73, MKB78]. None of them studied the effectiveness of
graphical displays (visualizations) of document surrogates
as content indicators. A result common to all of these stud-
ies is that "accuracy" in relevance judgments increases with
increasing information (e.g. Title < Abstract < Full text).
On the whole, we find that there has been a lack of studies to
evaluate the effectiveness of graphical displays of document
surrogates as indicators of relevance. This is mainly due to
the fact that only recently has it been technologically and
economically feasible to render such displays in real-time by
the computer. Our study is an attempt to fill that gap.

4 Experimental Setup

In this section, we discuss an experiment to test the effec-
tiveness of the visualization tool as a first stage display, and
as a tool to aid effective query reformulation. The part on
query reformulation will be discussed in a subsequent paper.
We used a portion of the TREC [Har96] database consist-
ing of all of diskl and disk2 except the "Federal Register"
documents. We did not use the Federal Register documents
because a high proportion of them did not have a title. We
used INQUERY 2.1p3 as the search engine [CCH92]. The re-
trieval mechanism of the search engine is based on bayesian
inference networks using the word occurrence statistics in
documents. All of the TREC information topics that we
used were very detailed in their description of information
need. We picked ten information topics for this study. The
criterion used to pick the topics will be discussed below.

A slightly modified version of the Description field (mainly
removing the introductory words such as "Document will
report") was submitted to the retrieval system. 120 docu-
ments from the top 150 retrieved documents were obtained
and split into two groups as follows: High precision group
consisting of 60 documents ranked 1 through 60 and a low

precision group consisting of 60 documents ranked 91 through
150. We controlled for precision1 as a factor in the ex-
periment since we felt that precision might impact the pe-
rusal time: Users might more quickly identify non-relevant
documents, than the relevant documents. Earlier studies
[Sar69, RRS61, MKB78] indicate that precision also influ-
ences the ability to judge non-relevance.

Each of the two precision groups were further split into
two groups: documents with odd ranks and the documents
with even ranks. Thus, there were 4 groups of 30 documents
for each information topic: High.precision_even_ranks,
High.precision.odd-ranks, Low.precision.even-ranks and
Low_precision_odd_ranks. The criterion used to pick the in-
formation topics for this study was that the "description"
field when used as the query statement must retrieve a set
of documents that had a distinct split in the precision val-
ues between the high precision group (ranks 1 through 60)
and the low precision group (ranks 90 through 150). Since
we did not want any overlap in precision values between
the high precision group and the low precision group for all
the ten chosen topics, we discarded the documents ranked
61 through 90. The precision values in the high precision
group for all the chosen topics ranged from 0.43 to 0.6 while
those of the low precision group ranged from 0.03 to 0.23.

The experiment we describe was aimed at investigating
the effect of visualization on two problems for users:

• accurately identifying relevant documents

• effectively reformulating queries

In this paper, we report on results relevant to only the first
of these, but because both problems were addressed in the
same experimental design, we describe the entire experi-
ment.

In the experiment, users were given two different types
of tasks:

• Task of judging relevance: The users were given the
information topic and the search statement used to
retrieve documents. They were asked to judge the rel-
evance of each of the 30 documents that were displayed
to them as one of

— relevant to the information topic.

— non-relevant to the information topic.

— Unsure.

For the purposes of the current experiment, clicking
the left mouse-button over a document title in the
title-display window or over a vertical column in the
visualization window marks the document as relevant.
Clicking the right mouse button over the title (or the
column in the visualization window) marks the doc-
ument as non-relevant. Middle-clicking it marks the
document as "Unsure". Also, left-clicking a query
word in the visualization window marks all documents
containing that query word as relevant. Right-clicking
a query word marks all documents that do not contain
that word as non-relevant. Full text or any other infor-
mation about the documents was not made available
to users.

• Query reformulation task: Here the users were asked
to "modify the preconstructed query into a form that
will retrieve more relevant documents". For half of

Precision is the density of relevant documents

121

the topics, users had the visualization tool and for the
other half users did not have the visualization tool -
making it a within-subjects, between-topics study.

For the "relevance judgment" task, precision (two levels:
high and low) and visualization (two levels: with or without)
were controlled in this within-subjects, within-topics study.
The even ranked document group was shown with the visual-
ization tool and the odd ranked document group was shown
without the visualization tool. The users were not told that
the 4 different document groups had two different precision
levels. Instead, they were told that the query was issued
against 4 different databases and the top 30 documents from
each database was presented to them as 4 separate tasks
- two with and the other two without visualization. For a
given topic, the first task was always a "relevance judgment"
task with a high-precision group. The next task was a query
reformulation task. The third, fourth and fifth tasks were
relevance judgment tasks for the other three groups of 30
documents. The first task was always a relevance judgment
task because we wanted the users to have a good feel for
the retrieved set of documents before they embarked on the
query reformulation task. The first task of relevance judg-
ment was always done with a high-precision document group
because, in the real-world the users almost always inspect
the top-ranked high-precision document range before they
go down the ranks to inspect the low-precision range. Each
user did the 5 tasks (4 relevance judgment tasks for the 4
document groups, and one query reformulation task) for 6
information topics, and finally did the search reformulation
task for 4 more topics. The 6 topics for which the users did
both the relevance judgment and query reformulation were:

• Topic 77: Document will report a poaching method
used against a certain type of wildlife.

• Topic 115: Document will report specific consequence(s)
of the U.S.'s Immigration Reform and Control Act of
1986.

• Topic 134: Document will report on the objectives,
processes, and organization of the human genome project.

• Topic 136: Document will report on attempts by Pa-
cific Telesis to diversify beyond its basic business of
providing local telephone service.

• Topic 145: Document will describe how, and how ef-
fectively, the so-called "pro-Israel lobby" operates in
the United States.

• Topic 197: Document will discuss legal tort reform (a
civil wrong for which the injured party seeks a judg-
ment) with regard to placing limitations on monetary
compensation to plaintiffs.

The order in which the six topics were presented were
balanced across the 37 subjects. The order in which the
two visualization conditions appeared for a given topic were
also balanced. The order in which the two precision groups
appeared in a given topic was not balanced due to the con-
straint that a high precision group is always the first condi-
tion.

The human subjects in this experiment were Georgia
Tech undergraduate students enrolled in a one-credit hour
class on library searching. Students who participated in the
study got full scores in two homework assignments. The
complete experiment was split over two days. Subjects were
asked to sign a consent form upon arrival. They were then

given a demo of the system by the experimenter. They then
had a hands-on tutorial where they practiced both the "rel-
evance judgment" task and the "query reformulation" task.
Then, they did the 5 tasks for each of the three informa-
tion topics marking the end of the experiment for the first
day. On the second day, they did the 5 tasks for each of the
other 3 topics, followed by the "query reformulation" task
for 4 other topics.

The subjects were given monetary incentive to do well
in the experiment. They were evaluated as follows: We
knew a-priori, the relevance of all the documents as given
by the TREC assessors. For the relevance judgment task,
for each document the user obtained a +1 point if their rel-
evance judgment matches the TREC assessor's judgment, a
-1 point if their judgment does not match, and 0 points if
they are "Unsure". The user has to judge all of the 30 dis-
played documents. Thus, for the 4 groups of 30 documents,
for the 6 topics, each subject made a total of 4x30x6 = 720
judgments.

TREC judgment
Rel Not-rel

Rel RuRt RuNt
User judgment Not .rel NuRt NuNt

Unsure UuRt UuNt
The time taken by the subject to complete a task was also
noted down. The top 10 quickest subjects with the most
points were given monetary awards as follows: All partici-
pants were ranked on increasing order of time and decreas-
ing order of points scored. Each participant's rank on both
the categories (time and points) were added to get the sum-
rank. The participant with the lowest sum rank was con-
sidered the best performer. Hence, to do well, one must be
both accurate and quick. The top performer was given $50,
the second and third performers were given $30 each, the
fourth through sixth performers were given $20 each and
the seventh through the tenth performers were given $10
each. The participants were told of the rating scheme, so
we can assume that they optimized for time and accuracy
equally.

Since we claim that graphical display of additional docu-
ment surrogates does not increase perusal time significantly
(due to the set-at-a-time perusal of documents), we pre-
dict that the time taken to complete the task for the vi-
sualization group will not be significantly higher than the
non-visualization group. We also predict an increase in ac-
curacy of relevance judgments for the visualization group,
because we claim that very pertinent document surrogate
information (i.e., the weight of query words in the retrieved
documents) is being displayed in addition to the standard
text surrogates such as title and source.

Effectiveness of the visualization tool was measured by
what the subjects optimized upon: time, accuracy and the
combined time-accuracy rank, where accuracy is the number
of correct judgments minus the number of incorrect judg-
ments after discarding the Unsure judgments, i.e., Accuracy
= RuRt+NuNt-RuNt-NuRt. However, since the accuracy
measure includes the correct judgments, Type I errors and
Type II errors all in one score, we split the accuracy measure
into distinct components. Here we borrow the analogs of two
traditional IR measures "recall" and "precision" and extend
them to the interactive situation. In the traditional recall
and precision measures, the number of documents that the
system judges to be relevant is artificially determined by a
cut-off point of top 'X' documents. Let RsRt be the number
of documents judged relevant by the system and relevant by
the TREC assessor (the user with the original information

122

need). Let RsNt be the number of documents judged rele-
vant by the system and non-relevant by the TREC assessor.
Let NsRt be the number of documents judged non-relevant
by the system and relevant by the TREC assessor and. Let
NsNt be the number of documents judged non-relevant by
the system and non-relevant by the TREC assessor.

While traditional "Recall" refers to the ratio of truly
relevant documents that the system judged as relevant (i.e.,
RsRt/(RsRt + NsRt)), we define "Interactive Recall" as the
ratio of the truly relevant documents that were judged as rel-
evant by the user (i.e., Interactive Recall = RuRt/(RuRt +
NuRt + UuRt)). While traditional "Precision" refers to the
ratio of documents judges as relevant by the system that
were truly relevant (i.e., RsRt/(RsRt + RsNt)), we define
"Interactive Precision" as the ratio of the documents judged
as relevant by the user that were truly relevant (Interactive
precision = RuRt/(RuRt + RuNt)). Here, a "truly rele-
vant" document is a document that was judged relevant by
the TREC assessor. Thus, if we are trying to build an ef-
fective first stage display mechanism, we would strive for a
display mechanism which would enable a user to pick (and
read the full-text of) all of the relevant documents and only
the relevant documents displayed. When a user picks a non-
relevant document as relevant, it would be time and money
wasted perusing a non-relevant document. As a corollary,
not being able to pick a relevant document, would be a miss-
ing out on relevant information.

However, "Unsure" documents pose a problem. It can
be handled in two ways: If we assume that a user always
reads the full text of an Unsure document, we should treat
the Unsure documents as being judged relevant by the user.
Conversely, if a user always skips over an Unsure document,
we should treat the Unsure document as being judged non-
relevant by the user. Below, we present the analysis with
both the interpretations. Thus, if we assume the user to
inspect the Unsure documents, we treat the Unsure docu-
ments as relevant.
Interactive Recall = (RuRt + UuRt) / (RuRt + NuRt +
UuRt)
Interactive Precision = (RuRt + UuRt) / (RuRt + UuRt +
RuNt + UuNt)
If we assume the user to not inspect the Unsure documents,
we treat the Unsure documents as not-relevant,
Interactive Recall = RuRt / (RuRt + NuRt + UuRt)
Interactive Precision = RuRt / (RuRt + RuNt)

In summary, our hypotheses are:

• Visualization will not increase the time taken to com-
plete the relevance judgment task.

• Visualization will improve the Accuracy of relevance
judgments.

• Visualization will improve Interactive Recall.

• Visualization will improve Interactive Precision.

5 Results

Statistical analysis of the experimental data empirically shows
that our hypotheses about the relevance judgment task are
valid. Since there were 37 subjects, and all subjects did 6
topics with 4 tasks (for each of the 4 groups within the topic)
per topic, there were a total of 37 x 6 x 4 = 888 observa-
tions. The approach used in all analyses was to construct
a least squares, linear additive model of each performance

measure as a function of the main effects and interactions
of the manipulated experimental variables.

The need for consideration of possible learning/ordering
effects, due to the same subjects providing multiple responses
at various experimental conditions, is minimized by the bal-
ancing of the order in which different experimental condi-
tions are presented to the subjects. However, due to the
requirement that within a topic, the high precision condi-
tion always be presented first, this balance could not be
achieved for this factor. To account for this, the model
included a term representing the observation order within
subject/topic combination. The design thus allows for in-
dependent estimation of all effects except precision and ob-
servation order. The analysis presented will focus on the
statistical significance of each term assuming the presence
of the the other term in the model (i.e on the adjusted sums
of squares in the Analysis of Variance (ANOVA) tables), as
this provides evaluation of the marginal effect.

The residuals of the models constructed were analyzed
to assure reasonable compliance with the normality, inde-
pendence and constant variance assumptions required for
validity of ANOVA,

For the dependent variable "time", the residuals indi-
cated a higher variance for conditions resulting in larger
values of time, and hence we transformed time values into
log\o{time in seconds) to check for statistical significance.
The ANOVA tables for logio(time), accuracy and final score
are shown in Tables 1, 2 and l> respectively. The means and
standard errors are shown in table 4. As can be seen from
the tables, viz is significantly better than noviz for logtime,
accuracy and final score. It is also clear that low precision
condition does significantly better than high precision for
logtime, accuracy and final score. The interaction effects of
precision and visualization are shown in figures 2, 3 and 4
with a 95% confidence interval around the means. When
precision is high, visualization does not significantly affect
logtime, but when precision is low, there is a decrease in
logtime of 0.08. This corresponds to a reduction of 17.2 sec-
onds, nearly a 20% decrease in average time required. Thus
we can conclude that the visualization tool helps users in
identifying document relevance more quickly. It is also in-
teresting to note (from Table 1) that the interaction effect
of topic with visualization was not statistically significant,
although the main effect of topic was significant. Thus, vi-
sualization helps improve speed of judgment irrespective of
topic.

For the accuracy measure, there is no significant inter-
action between precision and visualization as shown by the
almost-parallel lines in figure 3. Precision has a huge im-
pact on accuracy, again consistent with previous studies
[Sar69, MKB78]. While the effect of visualization on accu-
racy is significant, it is not as huge as the effect of precision.
Users can identify document relevance more accurately with
the visualization tool than without. The ability of users
to identify non-relevant documents as non-relevant is much
higher than their ability to identify relevant documents as
relevant. This is reflected in the significantly very high ac-
curacy value for low precision than for high precision. It is
also interesting to note that (from Table 2) the interaction
between topic and visualization was statistically significant.
However, the main effect of visualization was much greater
than the topic*viz interaction effect.

Final score is a rank measure, which reflects the users
ability to accurately and quickly identify document relevance.
It is plotted in figure 4. Lower values are better for final
score. As with accuracy, precision has a much higher impact

123

than visualization, but both variables have a significant ef-
fect. Visualization tool improves Final Score and so does
low precision. There is a higher proportion of non-relevant
documents in the low precision condition. This implies that
users can more quickly and accurately judge a non-relevant
document as non-relevant compared to judging a relevant
document. It is also interesting to note (from Table 3) that
the interaction between topic and visualization was statis-
tically significant. However, the main effect of visualization
was much greater than the topic*viz interaction effect.

Table 4: Least Square Means and Standard errors for Log-
time, Accuracy and Final score

Precis Viz Logtime Accur FinScor
Low Without 2.01 15.72 353.2
Low With 1.93 17.54 288.4
High Without 2.04 5.72 576.1
High With 2.04 6.87 560.2

STD ERR OF EST 0.009 0.35 9.4

Table 1: ANOVA for Iogl0(time in seconds).
Source DF Adj SS Adj MS F P
topic 5 1.59993 0.31999 21.28 0.000
precis 1 0.45954 0.45954 30.56 0.000
viz 1 0.36761 0.36761 24.44 0.000
precis*viz 1 0.29215 0.29215 19.43 0.000
topic*viz 5 0.15612 0.03122 2.08 0.067

Table 2: ANOVA for Accuracy.
Source DF Adj SS Adj MS F P
topic 5 10566.13 2113.23 95.04 0.000
precis 1 11842.00 11842.00 532.55 0.000
viz 1 490.54 490.54 22.06 0.000
precis*viz 1 24.67 24.67 1.11 0.293
topic*viz 5 1248.65 249.73 11.23 0.000

Log(base 10) of time in seconds

Logtime for Low
Logtime for High

fecaion ■
decision •

[able 3 : ANOVA for Final Score.
Source DF Adj SS Adj MS F P
topic 5 7187688 1437538 90.98 0.000
precis 1 6789177 6789177 429.68 0.000
viz 1 362841 362841 22.96 0.000
precis*viz 1 133133 133133 8.43 0.004
topic*viz 5 352669 70534 4.46 0.001

As discussed before, accuracy combines the following
four items into one: ability to judge relevant and non-relevant
documents (RuRt + NuNt), type I error, i.e., wrongly re-
jecting relevant documents, and type II error, i.e., wrongly
accepting non-relevant documents. We feel that identifying
non-relevant documents (NuNt) in and of itself is not as
important as the other 3 items. For, it is important

• to minimize Type I errors, or else one runs the risk of
missing out too many relevant documents.

• to minimize type II errors, or else one runs the risk
of wasting too much money and effort in examining
non-relevant documents.

We can capture all the interesting data with interactive re-
call and interactive precision as described in the previous
section. In our tables, when users are assumed to treat un-
sure documents as relevant, the interactive precision and
interactive recall are denoted by "iprecwu" and "irecwu"
respectively. Correspondingly, when unsure documents are
assumed to be treated as non-relevant, interactive precision

Figure 2: Interaction effects of precision and visualization
on logtime.

Accuracy =RuRt +NuNt-BuNt-NuRt

Accuracy for Low precision -
Accuracy for High precision -

 -\

H

Figure 3: Interaction effects of precision and visualization
on accuracy.

124

Final score (Lower values are better) = Time tank + Accuracy rank

Fnal score for Low precision ■
final scored e (or High precision

No Viz Viz

Figure 4: Interaction effects of precision and visualization
on Final Score.

cision when Unsure documents were treated as non-relevant
(iprecwou) at the 0.05 level, however, it was significant when
Unsure documents were treated as relevant (iprecwu) (See
figure 5). Although statistically significant, the absolute in-
crease in interactive precision is very minimal (about 0.015).
However, visualization had a significant effect on interactive
recall (both when unsure documents were treated as non-
relevant (irecwou) and when unsure documents were treated
as relevant (irecwu)). Also, in the absolute sense, the im-
provement in interactive recall due to visualization is ap-
proximately 0.07 +/- 0.02 (about a 15% increase). Clearly
this is of sufficient magnitude to be of practical importance.

Table 5: ANOVA for Interactive Precision "iprecwou" (Un-
sure documents treated as non-relevant)

Source
topic+ord
viz
topic+ord*viz

DF Adj SS Adj MS
5 8.15469
1 0.03065
5 1.70775

1.63094
0.03065
0.34155

163.81 0.000
3.08 0.081

34.31 0.000

and interactive recall are denoted by the mnemonics "iprec-
wou" and "irecwou" respectively.

In considering the interactive precision measure there
are a large number of cases where the values result in re-
sponses of zero divided by zero when users did not pick any
of the displayed documents as relevant. Rather than elim-
inate these cases, the raw data (i.e., RuRt, RuNt, NuRt,
NuNt, UuRt, UuNt) was aggregated over high and low pre-
cision levels for the same viz condition and the interactive
precision and interactive recall measures then computed.
Thus, for example, for topic 77, the RuRt values for the
high_precision_viz case for subject 1 was added to the RuRt
value of the low .precision, viz case of the same subject 1 and
same topic 77. Now we end up with 444 observations in-
stead of the original 888 observations. This eliminated the
need for the "precision" term in the model, although the
variability due to this factor is included in the error term.
One of the terms is labeled "topic+ord" because the "topic"
term also includes some "condition order" effects since for
different topics, the four conditions appeared in different
orders. The design is now orthogonal to the remaining fac-
tors. However for interactive precision when unsure docu-
ments are considered non-relevant (iprecwou), there remain
2 cases where the response variable is still zero divided by
zero. The result is a design where estimated effects are min-
imally dependent. Also, there are some quantization errors
introduced in the interactive precision measure due to the
denominator value being too close to zero2. The statistical
significance of visualization for Interactive precision and in-
teractive recall (with unsure documents treated as relevant
and non-relevant) are shown in tables 5, 6, 7 and 8, and
table 9 shows the estimated means.

Visualization had no significant effect on interactive pre-

2 For interactive precision when unsure documents are considered
non-relevant (iprecwou), there were 2 cases where the denominator
had a value of 1, 5 cases of value 2, 6 cases of value 3. For interactive
precision when unsure documents are considered relevant (iprecwu),
there were 0 cases of denominator values 0 and 3, 1 case of values 1 and
2. Given that there were 444 observation points, these quantization
errors are not expected to distort the results much.

Table 6: ANOVA for Interactive Precision "iprecwu" (Un-
sure documents treated as relevant)

Source
topic+ord
viz
topic+ord* viz

DF Adj SS Adj MS
5 6.90892
1 0.04166
5 1.02194

1.38178
0.04166
0.20439

180.62 0.000
5.45 0.021

26.72 0.000

Table 7: ANOVA for Interactive Recall "irecwou" (Unsure
documents treated as non-relevant)

Source DF Adj SS Adj MS F P
topic+ord
viz
topic+ord*viz

6 Conclusions

5 3.04486
1 0.62601
5 0.72200

0.60897
0.62601
0.14440

34.92 0.000
35.89 0.000
8.28 0.000

We have presented a visualization tool designed to be an
effective first stage display of retrieved documents. The
results about the query reformulation task and a detailed
analysis of all the experimental factors can be found in the
thesis by Veerasamy [Vee97]. User experiments empirically
show that when precision is low, the visualization tool helps
users in identifying document relevance quicker by about
20%. Our hypothesis was that the time taken to judge rel-
evance would not be higher for visualization because we
claimed that graphically displaying additional information
would not take additional time to peruse by enabling set-at-
a-time perusal. While this argument is certainly validated
by the experimental results, we however see that visualiza-
tion seems to decrease the time taken. We see only one
explanation to this: Users consult visualization before they
consult the titles, thereby not looking at the titles of those
documents which are clearly non-relevant. Thus they save

125

Interactive recall

Table 8: ANOVA for Interactive Recall "irecwu" (Unsure
documents treated as relevant)

Source DF Adj SS Adj MS F P
topic+ord
viz
topic+ord*viz

5 2.35410
1 0.42787
5 0.41879

0.47082
0.42787
0.08376

30.21 0.000
27.46 0.000

5.37 0.000

0.64

0.62 -

0.6 -

0.58 -

0.56 ■

0.54 ■

0.52 -

0.5 -

0.48 -

0.46 -

0.44 -

0.42

With unsure as nonrel: RuRt/(RuRt + NuRt + UuRt) -
With unsure as rel: (RuRt * UuRI)/(RuRt + NuRfp- UuRt) -

Table 9: Least squares means of iprecwou, iprecwu, irecwou,
irecwu

viz iprecwou iprecwu irecwou irecwu
Without

With
Std error

0.6117 0.5753
0.6284 0.5947
0.007 0.006

0.4454 0.5484
0.5209 0.6108
0.009 0.008

Interactive precision

With unsure as nonrel: RuRt/(RuRt + RuNt) -*-■■
With unsure as rel: (RuRt ♦ UuRtV(RuRt + UuRt + RuNt + UuNt) -«-

0.64 •

0.63 • •

0.62 •

0.61 ■

0.6

^--,

0.59 ^_^--—-"""^

0.58 ^^-^^^ •

0.57 ■

Figure 5: Effect of visualization on interactive precision
(when Unsure documents are treated as relevant and non-
relevant documents).

Figure 6: Effect of visualization on interactive recall (when
Unsure documents are treated as relevant and non-relevant
documents).

the time needed to read titles for those non-relevant doc-
uments. This is in agreement with the study by Saracevic
[Sar69] which shows that minimal information is needed to
say that a document is non-relevant. However, to say that
a document is relevant, much more information is needed.
This is also confirmed by the fact that the magnitude of
time-decrease due to visualization is much higher in the low
precision condition than in the high precision condition. On
the whole we see confirmation of our argument about set-
at-a-time perusal of documents in graphical displays.

The experiment also shows that users with the visual-
ization tool did significantly better in accurate (both in
terms of the aggregate "Accuracy" measure and in terms of
the broken down measure of "Interactive Recall") identifica-
tion of document relevance. The result about the influence
of precision over relevance judgment Accuracy is in agree-
ment with previous studies by Saracevic [Sar69], and Mar-
cus et.al. [MKB78]. Their studies, like ours, also show that
users are better able to judge non-relevance than relevance.
However we do not see an interaction between precision and
visualization on Accuracy. Thus visualization seems to help
increase Accuracy to the same extent irrespective of the den-
sity of relevant documents. There is a marked difference in
a user's ability to judge the relevance of relevant documents
and non-relevant documents. Given this difference, we feel
that precision (i.e., the density of relevant documents among
the displayed documents) should be a variable that must be
controlled in experiments that measure a user's ability to
judge relevance. Further, care should be taken in making
claims purely based on a compound measure such as "Ac-
curacy" that combines both the ability to correctly identify
relevant documents and the ability to correctly identify non-
relevant documents.

We broke down the accuracy measure into two compo-
nents: interactive precision and interactive recall to gain
a better understanding of the relevance judgment process.
While the effect of visualization tool was marginally signif-
icant for interactive precision, it was highly significant for
interactive recall. Thus, we can safely say that the visualiza-

126

tion tool helps users in identifying more relevant documents
out of the displayed documents. It also helps users in iden-
tifying them more quickly.

In an earlier paper [VB96], we discussed the difficulty
of conducting interactive user experiments in IR. We men-
tioned the difficulty of huge inter-topic differences, inter-
subject differences, the large number of subjects needed to
account for these differences and how these factors severely
affect the interactive track of TREC participants. There
was also the problem of using appropriate measures to eval-
uate different user interface components and the lack of es-
tablished metrics for these purposes. It is worthwhile not-
ing how we approached these problems in the experiment
described in this paper. At the outset, we had to be ex-
tremely specific in our claims about where the visualization
tool would be of help. Having narrowed the scope of the ex-
periment to these claims, we had to devise a scheme where
inter-subject and inter-topic variability could be kept to a
minimum. By restricting the task to relevance judgment of
documents, we could safely construct a within-topic, within-
subject experiment that would not threaten the extensibility
of our inferences to the real world.

In addition, we do not know of any established perfor-
mance metrics that measure the effectiveness of interactive
display mechanisms in helping users identify all and only the
relevant documents among the displayed documents. In the
absence of established interactive metrics, we had to come
up with our own measures of effectiveness of graphical dis-
plays (such as interactive precision and interactive recall).
It remains to be seen if such choice of metrics are appropri-
ate and if they are of real impact in terms of the quality of
interaction of end-users. The lack of convincing answers to
the above questions points to the acute need for more inter-
active experiments to study human interaction with ranked
output IR systems and to study the effectiveness of emerging
display mechanisms such as visualizations.

Acknowledgments
We deeply appreciate the help of Neff Walker who helped
us in the design of the experiment. Many thanks to Nick
Belkin who has been constantly supportive of the work and
providing valuable feedback to revisions of this paper. Sup-
port from ARPA contract No. F33615-93-1-1338 to the first
author is appreciated.

References

[AB93] H.C. Arents and W.F.L. Bogaerts. Concept-
based retrieval of hypermedia information - from
term indexing to semantic hyperindexing. In-
formation Processing Management, 29:387-396,
1993.

[ACRS93] M. Aboud, C. Chrisment, R. Razouk, and
F. Sedes. Querying a hypertext information re-
trieval system by the use of classification. In-
formation Processing Management, 29:387-396,
1993.

[BOB82] N.J. Belkin, R.N. Oddy, and H.M. Brooks. ASK
for information retrieval: Parts I and II. Journal
of Documentation, 38(2,3), 1982.

[CCH92] J.P. Callan, W.B. Croft, and S.M. Harding. The
INQUERY retrieval system. In Third Interna-
tional Conference on Database and Expert Sys-
tems Applications, September 1992.

[CRM91] S. Card, G. Robertson, and J. Mackinlay. The in-
formation visualizer, an information workspace.
In Proceedings of CHI 91 Human Factors in
Computer Systems., 1991.

[Har96] D.K. Harman, editor. The Fourth Text RE-
trieval Conference (TREC-4). NIST Special Pub-
lication, 1996.

[Hea95] Marti A. Hearst. TileBars: Visualization of term
distribution information in full text information
access. In Proceedings of CHI 95, Denver, Co-
lorado., 1995.

[HKW94] Matthias Hemmje, Clemens Kunkel, and Alexan-
der Willet. LyberWorld - A visualization user in-
terface supporting full text retrieval. In Proceed-
ings of the 17th Annual International Conference
on Research and Development in Information Re-
trieval, pages 249-259, 1994.

[Jan91] Joseph W. Janes. Relevance judgements and the
incremental presentation of document represen-
tations. IPM, 27(6):629-646, 1991.

[Kor91] Robert Korfhage. To see, or not to see - is that
the query? In Proceedings of the 14th Annual In-
ternational ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
134-141, 1991.

[MFH95] Sougata Mukherjea, James. Foley, and Scott
Hudson. Visualizing complex hypermedia net-
works through multiple hierarchical views. In
ACM SIGCHI, 1995.

[MKB78] Richard S. Marcus, Peter Kugel, and Alan R.
Benenfeld. Catalog information and text as in-
dicators of relevance. JASIS, pages 15-30, Jan
1978.

[RRS61] G.J. Rath, A. Resnick, and T.R. Savage. Com-
parisons of four types of lexical indicators of con-
tent. American Documentation, pages 126-130,
April 1961.

[Sar69] Tefko Saracevic. Comparative effects of titles,
abstracts and full texts on relevance judgements.
In Proceedings of the ASIS, pages 293-299, 1969.

[Spo94] Anslem Spoerri. InfoCrystal: A visual tool for in-
formation retrieval and management. In Human
Factors in Computing Systems CHI 94 Confer-
ence Companion, pages 11-12, 1994.

[Tho73] C.W.N. Thompson. The functions of abstracts
in the initial screening of technical documents by
the user. JASIS, 24:270-276, 1973.

[VB96] Aravindan Veerasamy and Nick Belkin. Evalu-
ation of a tool for visualization of information
retrieval results. In Proceedings of the 19th An-
nual International ACM SIGIR Conference on
Research and Development in Information Re-
trieval, 1996.

127

[Vee97] A. Veerasamy. Visualization and User Inter-
face Techniques for Interactive Information Re-
trieval Systems. PhD thesis, Georgia Insti-
tute of Technology, Available at ftp.cc.gatech.edu
in /pub/people/veerasam/thesis.ps.gz, March
1997.

128

PART in

METADATA MANAGEMENT FOR
INTELLIGENT QUERY

PROCESSING

129

PART III: METADATA MANAGEMENT FOR INTELLIGENT QUERY
PROCESSING

In this part of the project we focused our attention on two problems -

a. Improving the efficiency of query processing by avoiding unnecessary
computation and using the semantics of data.

b. Capturing semantic constraints at the instance level and maintaining them
during the evolution of the database. These constraints constitute semantics
that can be related to the various views of the database.

Whereas in parts 1 and 2 of the project we dwelled on the querying and
integration of databases and the formulation of queries against text databases,
in this part of the project we addressed an area known as semantic query
optimization.

Most of the work to date on semantic query optimization has relied
upon schema level semantic constraints. Instance-based constraints reflect a
finer granularity of constraints that can be effectively utilized to provide
additional information during query processing. Using instance based
constraints, one may be able to avoid certain scans and searches which are
known not to produce a meaningful answer to a given query. In [3.1], Pittges
proposes Metadata View Graph (MVG) as a data structure to store these
constraints and relate them to various query execution plans so that a
constraint may be evaluated while computing certain intermediate results of
a query. The paper also describes how these constraints are stored at compile
time, maintained during run-time in response to updates to the databases,
and used for query optimization. It thus makes a contribution at three levels:
(i) creates a framework to define instance based constraints, (ii) provides a
foundation that directs and integrates existing methods of constraint
discovery, and (iii) proposes efficient techniques for a run-time retrieval of
these constraints.

Metadata may be classified into semantic metadata which is in the form
of rules (e.g. if employee_type = manager and dept_number >10 then
75000 <salary <100000) and structural metadata, which is in the form of
indexes which relate query execution plans with view nodes and view caches.
In [3.2], the inherent conflict of maintaining the semantic metadata before
query execution and structural metadata during query execution, when the
two overlap, has been tackled. The above conflict introduces inefficiencies in
the processing of the update logs. [3.2] proposes strategies of overlapping
update paths in the metadata view graphs.

This part of the research project resulted in the Ph.D. dissertation of Jeff
Pittges [Pittges 1995] where algorithms have been presented for metadata view

130

graph construction, maintenance of this metadata and an efficient processing
of updates. This work is unique in terms of its incorporation of instance level
semantics of databases.

Additional References:
J. Pittges," Metadata View Graphs: A Framework for Query Optimization and
Metadata Management," Ph.D. Dissertation, Georgia Institute of Technology,
November 1995.

131

PUBLICATIONS (PART3):

[3.1]. Jeff Pittges. " Maintaining Instance-Based Constraints for
Semantic Query Optimization," In Proceedings of the Sixth IFIP TC-2
Working Conference on Data Semantics (DS-6) , Stone Mountain,
Georgia, May 1995

[3.2]. " Maintaining Semantic and Structural Metadata in
the Metadata View Graph," J. Pittges, L. Mark, and S. Navathe. In
Proceedings of the Seventh International Conference On
Management of Data, Pune, India, December 1995.

132

Maintaining Instance-Based Constraints
for Semantic Query Optimization

Jeff Pittges

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332-0280
(404) 853-9381

pittgesQcc.gatech.edu

http://www.cc.gatech.edU/grads/p/Jeff.Pittges/pittges.html

May 3, 1995

Abstract

Semantic Query Optimization has traditionally relied upon scheme-based integrity
constraints that are valid for all instances of a database. Instance-based constraints,
which are only valid for certain states of a database, contain more information than
scheme-based constraints because they are specific to the current contents of the
database. This makes instance-based constraints more useful to semantic query op-
timization. However, instance-based constraints are highly sensitive to any changes
made to the database and must therefore be updated and validated before they can be
applied.

A Metadata View Graph (MVG) is a metadatabase that stores instance-based
constraints, along with statistical and structural metadata, for logical views of the
database. Constraints at this level are even more useful to semantic query optimiza-
tion because they are specifically tailored to the intermediate results of a query. This
paper reviews existing methods for constraint discovery, describes how constraints are
stored in the Metadata View Graph at compile-time, and describes how the MVG
Framework retrieves and maintains instance-based constraints at run-time. The paper
then analyzes how to apply updates to instance-based constraints in order to refresh
them.

Keywords: Metadata View Graph, Instance-Based Constraints, Semantic Query
Optimization, Constraint Discovery, Metadata Maintenance.

133

1 Introduction

Semantic query optimization [HZ80, Kin81, S089, CGM90, SSD92, HK93] uses transforma-
tion rules to reformulate a query into a semantically equivalent query that is more efficient
to execute. Traditionally, transformation rules have been derived exclusively from scheme-
based integrity constraints that are valid for all instances of a database. Transformation
rules based on this type of constraint are desirable because the rules remain valid when
changes are made to the database since changes cannot violate the integrity constraints.
Unfortunately, scheme-based constraints are typically so general that they are of little use.
For example, an integrity constraint may require an employee's salary to be greater than

zero.

Recently, a number of researchers [YS89, SSS92, SHKC93, HK94] have proposed methods for
discovering instance-based constraints (also referred to as dynamic constraints in [YS89] and
derived constraints in [SSS92]) which are only valid for particular instances of the database.
Instance-based constraints contain more information than scheme-based constraints because
they represent the actual contents of the database. For example, an instance-based constraint
may assert that the salary of all employees is greater than or equal to $22,000 and less than
or equal to $85,000. Although this constraint is more useful than the integrity constraint
given above, instance-based constraints are sensitive to changes made to the database, so
they must be maintained whenever the database is updated.

A Metadata View Graph is a metadatabase that maintains instance-based constraints for
logical views of the database. Constraints at this level are even more useful to semantic
query optimization because they are specifically tailored to the intermediate results of a
query. For example, one view might represent graduate students and another view might
represent faculty. Both views would maintain an instance-based constraint on salary, but
the salary range for graduate students would be much less than the salary range for faculty
members. Therefore, when given a query involving graduate students, the semantic query
optimizer could use the salary constraint for graduate students to reformulate the query.

In addition, capturing instance-based constraints for views of the database allows the query
context to influence the optimization process during semantic query optimization. The
profitability [S087] of a rule can be adjusted for each view. Therefore, although the same rule
may appear in several views, the rule can be applied differently based on the query context
represented by each view. The rules for a particular view can be ordered by associating
a context-sensitive salience (priority) with each rule. In this way, the views partition the
semantic constraints which allows the constraints to be precisely tailored to particular data
sets. Partitioning reduces the number of rules which must be searched during semantic query
optimization and improves rule selection by prioritizing rules according to the query context.

The rest of this paper is organized as follows. Section 2 describes the Metadata View
Graph Framework. This section provides a structural description of the Metadata View
Graph, reviews existing methods for discovering instance-based constraints, and describes
how instance-based constraints are stored in the Metadata View Graph. The section also

134

describes how instance-based constraints are retrieved at run-time and used to select the
best query execution plan. Section 3 presents the general problem of maintaining instance-
based constraints, presents various representations that allow instance-based constraints to
be maintained, and analyzes the problem of applying updates to instance-based constraints
in order to refresh them. The last section summarizes the contributions of this paper and
describes future tasks for this research.

2 The MVG Framework

The Metadata View Graph Framework [PMN95] supports the integration of various ap-
proaches to query optimization. As shown in Figure 1, the framework consists of an opti-
mizer and a metadatabase. The MVG Framework has been developed with two objectives
in mind: (1) improve query optimization, and (2) provide for a highly extensible query opti-
mizer. Query optimization is improved by maintaining metadata, especially instance-based
constraints which improve semantic query optimization, multiple query optimization, incre-
mental query computation, and dynamic plans. Three types of knowledge are required by the
query optimizer: (1) procedural knowledge specific to each type of query optimization, (2)
control knowledge which integrates the various types of query optimization together, and (3)
domain knowledge (metadata about the database). The MVG Framework maintains these
three types of knowledge separately in order to facilitate a highly extensible architecture.
The optimizer and metadatabase can be extended incrementally as new approaches to query
optimization are developed.

This research focuses primarily on the metadatabase (the Metadata View Graph) which
was inspired by considering six types of query optimization: syntactic, physical, semantic,
dynamic, multiple, and caching and incremental query computation. Therefore, we treat
the query optimizer as a black box that is capable of performing these six types of query
optimization. Within that black box, the optimizers can be developed independently and
loosely coupled, which requires less integration effort but reduces run-time efficiency, or the
optimizers can be tightly coupled, which requires greater integration effort (each optimizer
may have to be rewritten) but improves run-time efficiency. Although we envision a set of
rule-based optimizers [Fre87, GD87, GM93], the actual implementation is irrelevant to our
work on Metadata View Graphs.

2.1 Metadata View Graphs

A Metadata View Graph (MVG) is a collection of networks, as shown in Figure 2, for
organizing and storing metadata (i.e., a metadatabase). The Metadata View Graph consists
of four components: (1) a lexicon, (2) a semantic network, (3) a view network, and (4) a
QEP Network of query execution plans.

135

Query

Control Logic

Syntactic
Query

Optimization

Physical
Query

Optimization

Semantic
Query

Optimization

Multiple
Query

Optimization

Incremental
Query

Computation

Query
Execution

Plans

Metadata and
Query Execution Plans

Metadata View Graph
(Metadatabase)

Figure 1: The MVG Framework.

The lexicon contains an entry for each term (word or phrase) recognized by the system (i.e.,
the system's vocabulary). A lexical entry provides information about the term, including a
set of pointers to the semantic nodes that represent the term. In general, a lexicon will store
any information about a term that is useful to the system.

Semantic networks represent domain knowledge about the concepts "understood" by the
system. Each concept is represented as a node. Two nodes are linked together to represent
their relationship to each other. In Figure 2, the semantic network is represented by nodes oi
through a8 and Si through 54. Nodes a\ through a$ represent the attributes that participate
in one or more of the base relations (nodes Ri through R3). The attribute nodes are linked
directly to their corresponding base relations.

The attribute names and types are specified in the data definition of the database. These
nodes form the foundation of the semantic network. The network can be extended by
defining nodes and links for application specific concepts and relationships. For example,
two nodes representing STUDENT and ADVISOR could be connected by the links ADVISED-
BY and ADVISOR-OF. The lexicon and semantic network are not relevant to the research
presented in this paper.

136

Query Exteution Packte

Dynamic
Plan

Semantic
Plan
Index

Query Execution Packet

Dynamic
Plan

Semantic
Plan
Index

Query

Query Execution Packet

Dynamic
Plan

Semantic
Plan
Index

Figure 2: Conceptual Representation of a Metadata View Graph.

The View Network is an extension of Roussopoulos' Logical Access Path schema [Rou82].
The View Network stores semantic, statistical, and structural metadata that is useful to
the query optimizer. The view nodes in the network, vi through V14, represent logical views
(intermediate results) and store metadata specific to the particular data set. A view is a
projection of attributes which can be defined recursively as follows. All base relations are
views. Additional views are the result of applying an operation (e.g., selection, projection,
join) to a view or to a pair of views. The views represented by these nodes may or may
not be materialized. The links represent logical operations and semantic relationships. The
View Network, nodes Ri through A3 and v\ through vi4, is essentially a collection of query
graphs overlaid on top of each other where Ri through R3 represent base relations and Vi
through U14 represent the results of performing the operations specified by the links.

The View Network is a unified structure that applies to all of the application queries being
served by the Metadata View Graph. The top level of the hierarchy consists of base relation
nodes which anchor the Metadata View Graph and serve to connect the semantic network

137

to the View Network. The remaining nodes represent logical views. A view node is denned
by the links connecting the node to the base relations. Figure 3 illustrates an example View
Network along with a semantic network and lexicon.

The QEP Network stores two types of query execution plans, dynamic plans [GW89, CG94]
and semantic plans. A semantic plan is a query execution plan that is semantically equivalent
to the original query. Semantic plans are generated during semantic query optimization and
depend on integrity constraints and instance-based semantic constraints.

A dynamic plan links several query execution plans together with choose-plan operators. An
example of a dynamic plan is shown in Figure 4. Choose-plan operators allow a decision to
be postponed until run-time when the run-time conditions are known. In order to select the
best plan from the dynamic plan, the dynamic plan is traversed and the best path is chosen
at each choose-plan operator. The statistics stored at the view nodes can guide the decision
process. Therefore, the dynamic plan contains pointers to the view nodes with relevant
metadata. If the statistics at a view node are out of date, the statistics must be updated
before a decision can accurately be made.

The QEP Network maintains a separate query execution packet (i.e., a dynamic plan and
semantic plan index) for each application query. Figure 4 illustrates how the query execution
plans are linked to the logical access paths of the View Network so that the relevant view
nodes can be retrieved for each plan. When a query is received at run-time, the query's
execution packet is retrieved from the QEP Network and the metadata at the view nodes is
used to select the best plan. When a semantic plan is selected as a candidate, the constraints
it depends on must be updated and verified against the current state of the database before
the plan can be executed. If one of the dependencies has been violated, then the plan is no
longer guaranteed to be correct.

2.2 Using Metadata View Graphs

Metadata View Graphs are used at compile-time and run-time. Metadata is collected at
compile-time and stored in the View Network. Metadata is retrieved at run-time and used
to select the best query execution plan.

2.2.1 Compile-Time

The following high-level algorithm describes how the View Network and the QEP Network
are constructed incrementally when a query is compiled.

1. When a query is received at compile-time, the query is optimized with conventional
optimization techniques in order to generate a set of logical access paths.

138

2. The logical access paths are used to construct a separate View Network for the query
being compiled. The existing MVG View Network is searched for (partial) matching
view nodes.

3. The logical access paths are translated into query execution plans. The cost of each
plan is estimated and the plans are filtered to remove any non-competitive plans.

4. Constraints and statistics are collected for the view nodes in the query's View Network.
If a node already exists in the MVG View Network, metadata may not have to be
collected for that node if the node's metadata is up to date.

In order to collect metadata, each logical access path will have to be executed. If the
query being compiled contains variables, the query history will be used to substitute
values for the variables. These are the variable bindings most likely to occur in future
queries.

5. The constraints collected in step 4 are used by the optimizer to generate additional
query execution plans. Semantic query optimization, multiple query optimization, and
incremental query computation can apply the instance-based constraints that were
collected.

6. If a new set of query execution plans are produced in step 5, the plans are evaluated
using the statistics that were collected. The non-competitive plans are discarded and
the query's View Network is modified to include any additional view nodes. Steps 4
and 5 are repeated until no new query execution plans are generated.

7. A query execution packet is created for the query. A dynamic plan is constructed for the
non-semantic query execution plans, and an index is created for the semantic plans.
The dynamic plan and the semantic plan index are stored in the query's execution
packet.

8. The query's View Network is unified with the MVG's View Network (i.e., if a view
node in the query's View Network does not already exist in the MVG's View Network,
the node is added to the MVG's View Network at the correct location and the MVG
View Network is reorganized).

Constraint Discovery

Our research does not address constraint discovery. This section describes existing methods
for constraint discovery and discusses the advantages provided by the Metadata View Graph
Framework.

Two primary problems hinder constraint discovery: (1) determining where to search, and (2)
determining what to search for. Focusing on views of the database reduces the search space
and produces more useful constraints. Searching smaller data sets, as opposed to searching
the entire database, improves the performance of the discovery methods. Therefore, the view
nodes of the Metadata View Graph determine where to search.

139

Two basic methods are used to determine what to search for: (1) query-driven methods,
and (2) data-driven methods. Query-driven methods use a top-down process to search for
constraints that would have been useful for previous queries. Data-driven methods use a
bottom-up process to search (random) data sets for constraints. Metadata View Graphs
provide a framework for integrating the top-down and bottom-up processes.

Query Driven Methods

[SSS92] presents a query-driven method for discovering constraints. Given a query, the
semantic query optimizer identifies the template transformation rules that would have been
useful to the optimizer, and the system discovers constraints that fit the rule templates. This
strategy reduces the search space by only considering data sets that are relevant to queries
that have been received. The disadvantage of this strategy is that a query will only benefit
from the constraints that have been discovered if the query is similar to a previous query.

Reverse Engineering Method

After a query has been executed, [YS89, HK94] inspect the query result and attempt to
discover relationships with other queries. For example, if the (intermediate) results of two
queries are identical, then there must be some constraints relating the two queries. This is
a type of query-driven approach that requires two similar queries before any constraints are
discovered. In addition, this method requires that the results of previous queries be stored
and matched against future queries.

Data Driven Methods

[SHKC93] has proposed a data-driven approach that uses grid files to inspect combinations
of attribute values for a given data set. The zeros in the grid file indicate constraints. The
advantage of this approach is that constraints can be found regardless of the query history.
However, since it is impractical to search the entire database, there is no guarantee that the
discovered constraints will apply to a query.

MVG Guidelines

The View Network is constructed for the application queries that have been compiled by
the system, thus providing queries for the query-driven methods. In addition, the View
Network identifies relevant data sets for the data-driven methods. Therefore, the View Net-
work provides a foundation for integrating the top-down and bottom-up constraint discovery
processes.

The semantic query optimization transformation types should be used to guide the discovery
process. This guideline will focus the data-driven methods on constraints that are useful
given the current structure of the database.

For example, one transition type attempts to introduce an index into the query condition.
Therefore, the indexed attributes of each base relation should be explored since constraints
involving these attributes could lead to rules that introduce indexes. Another transformation

140

attempts to eliminate operations such as a join between two views. In some cases, range
constraints for the join attributes of each view can determine that the result of a join is
empty in which case the operation can be eliminated.

The structure of the View Network, which consists of chains of nodes organized in a sub-
sumption hierarchy, can also be used to guide the data-driven techniques. The constraints
that exist at higher level nodes can be propagated to the nodes below, provided they apply
to the nodes below, and then tightened to reflect the contents of the more restricted view.
At the top level, the scheme-based integrity constraints that already exist for a database can
be restricted to reflect the actual contents of the base relations.

Run-Time

When a query is received at run-time, the query's execution packet (i.e., the query's dynamic
plan and its semantic plan index) is retrieved from the QEP Network along with any relevant
view nodes from the View Network. The semantic plans are indexed so that the run-time
bindings of the query can be used to select the semantic plans that match the conditions
of the query. A semantic plan contains a set of pointers to the instance-based constraints
it depends on (i.e., the constraints used to generate the plan). These dependencies must
be verified for the current state of the database before a semantic plan can be executed. If
any of the constraints that a plan depends on are no longer valid, the semantic plan is not
guaranteed to be correct.

Each intermediate result in a query execution plan indexes a (possibly empty) set of view
nodes with relevant metadata (i.e., metadata that is useful for predicting statistics about
the intermediate result). When plans are being compared, the statistics at the view nodes
are used to estimate the cost of each plan. However, before the plans can be evaluated, the
metadata must be refreshed to reflect any updates made to the database.

The query optimizer selects the best non-semantic plan from the query's dynamic plan. If it
is cost effective to update the instance-based constraints, then the constraints are updated
and the semantic plans are evaluated. The best query execution plan is selected for execution.
The Metadata View Graph adds the query to its query log along with a time-stamp and any
other data which may have been collected during execution of the query.

Although this scheme moves most of the optimization effort to the compile phase, it does
not preclude run-time optimization. For example, if several queries are received within a
reasonable time frame, multiple query optimization can be performed.

2.3 Selecting a Query Execution Plan at Run-Time

Consider the two base relations and the template query, Qi, shown below. A template query
contains one or more variables. Instantiations of a template query are received at run-time
with all of the variables bound.

141

Relation Attributes
Students snum, class, GPA, advisor
Employees enum, salary, dept, pos

<2i: Select GPA
From Employees, Students
Where pos = student AND dept = vari

AND enum = snum

Query Qx requests the grade point averages of the students in the vary department who are
employeed. Figure 3 illustrates part of a view network that supports this query. In this
example, there are four departments (Psychology, Math, Computer Science, and Business).
The View Network is not required to contain a view node for every department. Only the
most frequently accessed views, based on the query history, will be represented in the view
network. For example, only three class views (u9 - un) are represented for the Student base
relation.

Lexicon

-• Pos Advisor •-
-• Dept Class •-
-• Salary GPA •-
• Enum Snum •

Employees (Enum, Salary, Depc, Pos)

(15,000)

n"pos
fac

5
(2990)

(Tpos -
dean

6
(10)

D~dept
psy

0~pos -
scaff

7
(7000)

OTdepc =
math

1

(2000)

2
(2500)

U~pos =
student

8
(sooo)

ff" depc

3
(7500)

C :depc = cs ->
•JS class = grad

Students (Snum, Class, GPA, Advisor)

(20.000)

□"class
grad

9
IS000)

ff"class *
senior

10
(3000)

fl~class
frosh

11

(4500)

U"dept
bus

4

(3000)

View Network

Figure 3: Example Lexicon, Semantic Network, and View Network.

Figure 4 shows the Query Execution Packet for query Q\. The packet contains the dynamic
plan and the semantic plan index. There is one choice to be made in the dynamic plan. The

142

two selections can be performed in either order. The first two filter operations point to the
view nodes that contain statistics to determine which path to take. Once varx is bound at
run-time, the choice is obvious. If DEPT = CS, then POS = STUDENT produces a smaller
intermediate result (5000 tuples) than DEPT = CS (7500). For the other three departments,
however, selecting the department first produces the smaller intermediate result.

View Network

V„ -«

T
C81 (C12 C19> (C22 C59>

Semantic Plan Index

Get Set
Employees

I
t

File Scan
i
T

Filter
pos - student

T
Filter

dept ■ cs

Get Set
Students

Filter
B-Tree Scan
class > grad

Join
Enunt ■ SnuRi

Project GPAs

Semantic Plan SP .

Project GPA

Dynamic Plan

Figure 4: A global persepctive of selecting a query execution plan at run-time.

Semantic plans are indexed by the bindings of the variables. The packet contains four
semantic plans, SPi, SP2, SP3, and SP4, corresponding to the variable bindings vari = PSY,
vari = MATH, and vari = CS respectively. There are two semantic plans for the PSY binding.
Each plan points to the set of constraints that the plan depends on.

Assume an instantiation of query Qi is received at run-time with vari bound to CS. The
semantic plan index would return plan SP4 which depends on constraint C35 which is stored
at view node V3. The semantic plan SP4 is shown in Figure 4. Constraint C35, shown in
Figure 3, states that if the department is CS then the class must be GRAD. In other words,
only graduate students from the computer science department are employed.

143

Assuming there is an index on the CLASS attribute of the Student base relation, the semantic
plan SP4 can use that index to reduce the size of the join between the Student base relation
and the view of employed computer science students. Furthermore, because the semantic
plan was designed for a specific binding of vari, the choose-plan operator can be omitted
since a drastic change in the database would be required before the number of students would
be greater than the number of computer science employees.

Note that constraint C35 is not an integrity constraint. Undergraduate computer science
students can be employed. Therefore, if the database were updated to include an employed
undergraduate from the computer science department, the semantic plan SP4 would no
longer be valid. Consequently, the constraint C35 must be updated and verified against the
current state of the database before the semantic plan can be selected for execution. If an
update invalidates a constraint, then none of the semantic plans that depend on the invalid
constraint can be executed because the plans are not guaranteed to be correct.

3 Maintaining Instance-Based Constraints

When a semantic plan is selected from the QEP Network, the constraints that the plan
depends on must be refreshed and verified for the current state of the database. Constraints
may be out of date if one or more updates have been received by the system since the last
time the constraints were refreshed. However, only a subset of the updates will apply to
a view node based on the definition of the node (e.g., GPA > 3.5). Therefore, the updates
must be filtered to remove the irrelevant updates (i.e., those updates that do not apply to
the view node being updated) [BLT86]. An example is provided below.

Consider the Student base relation and the view node shown in Figure 5. The view node
shown in this example contains seven constraints, a tuple count, a distribution profile, and
a view cache pointer (since the pointer is nil, there is no view cache for this node). The
view is defined for students with a GPA of 3.0 or greater. The constraints and tuple count at
the view node can be verified by selecting the tuples from the base relation (as shown) that
satisfy the definition of the node (i.e., GPA > 3.0). An update contains a unique time-stamp,
which indicates when the update was received, along with the tuple to be inserted or deleted.
Updates to the database are maintained in a set of logs, one log per base relation. In order
to refresh the metadata at this node, the updates in the base relation update log must be
filtered to select the updates that satisfy the definition of the node. Each update with a GPA
of 3.0 or greater can then be applied to each metadatum at the node.

Before the updates can be filtered and applied to the metadata, the update logs and the
view nodes to be updated must be retrieved from disk. The cost of these disk accesses
dominates the cost of the update process. Therefore, maintaining metadata can be divided
into three subproblems: (1) managing the update logs, (2) managing the view nodes, and
(3) refreshing the metadata at a view node. The rest of this paper analyzes the problem of
refreshing constraints once the updates and the constraints are in main memory.

144

Students (Snum, Class, GPA, Advisor) Base Relation Update Log

2 Grad 3.8 Smith

3 Frosh 3.2 Jones

6 Soph 2.7 Smith

8 Grad 3.6 Davis

9 Frosh 2.9 Davis

11 Grad 4.0 Davis

12 Senior 3.9 Jones

16 Junior 3.3 Smith

21 Soph 3.7 Jones

View Node !

0"GPA >= 3 .0

cl 2 <= Sno <= 21 T3

S Frosh <= Class <= Grad T12

C3 3.2 <= GPA <= 4.0 T3

C4 Davis <= Advisor <= Smith T9

CS Class = Grad -> GPA >= 3.6 T2

C6 Advisor = Jones -> GPA >= 3.2 T5
C7 Sno = 11 -> GPA = 4.0 T4

Tuple Count: 15 T12

distributions T9

View Cache: nil

4 Junior 3.1 Smith T3
22 Soph 2.8 Jones T4
10 Grad 3.9 Jones T5
1 Grad 4.0 Davis T8
14 Frosh 3.3 Smith T9
13 Senior 3.7 Smith T11
5 Grad 3.9 Jones T12
7 Soph 3.2 Davis T15
18 Junior 1.8 Smith T16
20 Grad 3.6 Davis T17
23 Frosh 2.7 Davis T19

Filtered Log

4 Junior 3.1 Smith T3
10 Grad 3.9 Jones T5
1 Grad 4.0 Davis T8
14 Frosh 3.3 Smith T9
13 Senior 3.7 Smith T11
5 Grad 3.9 Jones T12
7 Soph 3.2 Davis T15
20 Grad 3.6 Davis T17

Figure 5: The Student base relation, base relation update log, view node, and filtered log.

3.1 Representing Constraints

Constraints are represented in First Order Predicate Logic. However, constraints must main-
tain additional information in order to be maintained efficiently. This section begins by con-
sidering the affects that insertions and deletions have on instance-based constraints, and then
the section considers several representations that improve the maintainability of instance-
based constraints.

3.1.1 Update Affects

The Metadata View Graph stores semantic query execution plans that depend on certain
conditions. Consider a semantic plan, SPi, that requires that all graduate students have a
GPA greater than 3.0. If all of the graduate students in the database have a GPA of 3.2 or

145

greater, then the instance-based constraint, C\\ CLASS = GRAD =>■ GPA > 3.2, indicates

that the semantic plan SP\ is valid.

Assume there is only one graduate student with a 3.2 GPA and assume that the student is
deleted. The deletion does not have to be applied to C\ because no deletion could violate
the required condition, CLASS = GRAD =» GPA > 3.0. In general, unless a constraint implies
existence, deletions do not have to be applied to valid constraints because deletions cannot
invalidate the required conditions with respect to the semantic plans that are stored in the

Metadata View Graph.

However, assume a graduate student with a 2.8 GPA is inserted into the database. The
insertion must be applied to C\ because the update violates the required condition for SP\
thus invalidating the plan. Now assume that the graduate student with GPA 2.8 is deleted
and assume that the remaining graduate students all have a GPA greater than 3.0. The
required condition for SP\ is now satisfied. Therefore, this deletion should be applied to C\

in order to validate the plan.

When insertions are made to the database, it is easy to modify constraints because all of
the necessary information is contained in the update. However, when deletions occur, the
constraint must represent additional information in order to recompute the correct constraint.

3.1.2 Efficient Representations

Consider a student base relation with four attributes: student number (Snum), class (e.g.,
frosh, grad), GPA, and advisor. Consider a view node defined for GPA > 3.9 and assume
that constraint C\ is stored at the view node. Assume that student 4 is a graduate student
advised by Smith with a 3.92 GPA. If student 4 is inserted at time T2, constraint C\ can be
modified as shown below. However, if student 4 is deleted at time T3, the constraint cannot
be recomputed.

T\\ C\. Class = Grad =£■ Advisor = Jones

T2: Insert: Snum = 4, Class = Grad, GPA = 3.92, Advisor = Smith

T2: C\\ Class = Grad =$■ (Advisor = Jones) OR (Advisor = Smith)

T3: Delete: Snum = 4, Class = Grad, GPA = 3.92, Advisor = Smith

T3: C\. Class = Grad =>• Advisor = Jones

When student 4 is deleted, the constraint should be modified as shown at T3. However, with
this representation, the system must materialize the view (GPA > 3.9) in order to discover
that there are no graduate students in the view who are advised by Smith. We will consider
two solutions to this problem.

146

1. Recompute the constraints at run-time during query execution by testing all of the
tuples in the intermediate result. This can be done by saving the intermediate result,
possibly to disk, and recomputing all of the constraints at a node, or by recomputing
a few constraints on the fly while the query is being executed.

2. When the attribute of a term can be enumerated, as in the example above, keep a
counter for each term.

The first solution requires additional processing during run-time to recompute the con-
straints. We can assume that the processing cost is negligible or that the processing is
performed when the system is idle. However, the problem with this solution is that the con-
straints are recomputed during or after query execution. Therefore, the constraints cannot
be used for the given query.

Consider semantic plan SPi which requires that all graduate students have a GPA greater
than 3.0. Assume that SP\ is valid at time 7\. At time T2, a graduate student with a 2.8
GPA is inserted which invalidates semantic plan SPi. At T3, however, the graduate student
with GPA 2.8 is deleted. At this point, semantic plan SP\ is valid, but the plan cannot be
used because constraint C\ cannot be recomputed until the query is executed.

Therefore, the constraints will have to be recomputed every time a deletion affects the
view node. Consequently, a constraint may thrash between being valid and invalid and the
semantic plans that depend on the constraint will never be usable even though the required
conditions are met.

The second solution is preferable, but this representation does not apply to attributes with
non-enumerable values. Consider the following representation for constraint C\. This rep-
resentation maintains the number of tuples that apply to each condition. At time Ti, there
are 10 graduate students in the view and all 10 are advised by Jones.

Ti: d: Class = Grad (10) => Advisor = Jones (10)

T2: Insert: Snum = 4, Class = Grad, GPA = 3.92, Advisor = Smith

T2: C\\ Class = Grad (11) =» (Advisor = Jones (10)) OR (Advisor = Smith (1))

T3: Delete: Snum = 5, Class = Grad, GPA = 3.94, Advisor = Jones

T3: d- Class = Grad (10) =4> (Advisor = Jones (9)) OR (Advisor = Smith (1))

T4: Delete: Snum = 4, Class = Grad, GPA = 3.92, Advisor = Smith

T4: d: Class = Grad (9) =► Advisor = Jones (9)

Student 4 is inserted at T2 and the constraint is modified. There are now 11 graduate students
in the view, 10 are advised by Jones and 1 is advised by Smith. Student 5 is deleted at T3

147

and the constraint is modified accordingly. Once again there are 10 graduate students in
the view, but now there are 9 students advised by Jones and 1 advised by Smith. Finally,
student 4 is deleted at T4. The constraint is modified to reflect that all 9 graduate students
in the view are advised by Jones.

This representation works well for attributes with values that can be enumerated. Some
constraints have attribute values that cannot be enumerated. For example, consider the
range constraint on GPA shown below.

Tw: C2: GPA >= 3.56

Tn: Insert: Snum = 4: GPA = 3.5

Tn: C2: GPA >= 3.5

T12: Delete: Snum = 4: GPA = 3.5

Initially, the lowest GPA for the given view is 3.56. When student 4 is inserted at time Tn,
the lowest GPA becomes 3.5. However, when student 4 is deleted at 7\2, there is no way
to determine the exact value of the lowest GPA in the view without materializing the view.
However, constraint C2 still represents a lower bound on GPA. The constraint asserts that
all of the GPAs are greater than or equal to 3.5, but the constraint does not represent the
exact value of the lowest GPA.

The representation shown below maintains a boundary value list of the lowest GPAs. This
representation can be used to determine the exact lower bound provided the boundary value
list is not empty.

T10: C2: GPA >= (3.56, 3.57, 3.57, 3.58, 3.59)

Tu- Insert: Snum = 4: GPA = 3.5

Tn: C2: GPA >= (3.5, 3.56, 3.57, 3.57, 3.58, 3.59)

r12: Delete: Snum = 4: GPA = 3.5

T12: C2: GPA >= (3.56, 3.57, 3.57, 3.58, 3.59)

Initially the boundary value list contains the 5 lowest GPAs in the view. When student 4 is
inserted at Tn, student 4's GPA is the lowest GPA in the view. Therefore, student 4's GPA is
added to the front of the boundary value list. When student 4 is deleted at Ti2, one instance
of the value 3.5 (student 4's GPA) is removed from the boundary value list.

148

If the boundary value list becomes empty, because all of the values are deleted and no
insertions replace them, then the view must be materialized in order to determine the exact
lower bound. The last value in the boundary value list can be retained in order to provide
a lower bound for the constraint. In this case, the retained value must be flagged as invalid
so that it can be removed when the boundary value list is recomputed. If an insertion is
received with a GPA less than or equal to the retained value, then the inserted GPA will
replace the invalid GPA and the constraint will once again reflect the exact lowest GPA in the
view.

For example, consider constraint C2 shown above and assume that the students with GPA
3.56, 3.57, 3.57, 3.58, and 3.59 are deleted in that order. C2 will become C2: GPA >= (3.59),
and the value 3.59 will be flagged as invalid. C2 now represents an inexact lower bound.
Now assume that a student with GPA 3.55 is inserted. The value 3.59 will be replaced by
3.55 and C2 will represent the lowest GPA in the view, C2: GPA >= (3.55).

Consider constraints Cz and C4 shown below. Each of these constraints involve attributes
that require boundary value lists.

C3: (GPA > 3.54) AND (GPA < 3.58) =$■ Advisor = Jones (3)

C4: (SALARY > 12K) AND (SALARY < 15K) =*► (GPA > 3.2) AND (GPA < 3.8)

The counter (3) associated with CVs condition (Advisor = Jones) indicates that three stu-
dents satisfy the constraint. Without boundary value lists for GPA, as shown below, the
system cannot determine the middle GPA without materializing the view. Constraint C4

would require four boundary value lists, one list for each term.

C3: (GPA > (3.54, 3.55)) AND (GPA < (3.55, 3.58)) =* Advisor = Jones (3)

3.2 Refreshing Constraints

This section presents an algorithm for applying an update to an instance-based constraint
in order to refresh the constraint. Consider constraint C5, shown below, which asserts that
if a student's GPA is greater than 3.9, then the student is advised by Jones.

C5: GPA > 3.9 =>• ADVISOR = JONES

The left hand side of a constraint is a list of terms. Each term represents a condition. The
right hand side of a constraint is also a list a terms, but the terms on the right hand side
represent assertions. Constraint C5 has one condition on the left hand side (GPA > 3.9) and
one assertion on the right hand side (ADVISOR = JONES).

An update applies to a constraint if it satisfies all of the conditions on the left hand side.
As soon as one condition is not satisfied, the update can be disregarded with respect to the
constraint being refreshed. If an update satisfies the conditions of the constraint, then the
assertions on the right hand side must be considered. In this example, if the update's GPA

149

is greater than 3.9 and the advisor is Jones then the update does not affect the constraint.
However, if the update satisfied the condition (GPA > 3.9) and the advisor is not Jones, then
there are three options: (1) modify the assertion, (2) modify the condition, or (3) modify
both the assertion and the condition by creating another constraint.

For example, assume a student is added to the database with a GPA of 3.92 and the student
is advised by SMITH. The student's GPA satisfies the condition of the constraint, but the
assertion no longer holds. The following two constraints can be created.

GPA > 3.92 => ADVISOR = JONES

GPA > 3.9 =» (ADVISOR = JONES) OR (ADVISOR = SMITH)

The following algorithm applies one update to an instance-based constraint.

1 If the update satisfies the condition then
2 If the assertion no longer holds then
3 Modify the constraint

As described above, an update may alter the representation of a constraint without affecting
the validity of the constraint. For example, a deletion may add or remove a value from the
boundary value list. In this case, the constraint would have to be modified, but the assertion
would still hold.

Range Constraints

Specific algorithms can be developed to efficiently process some of the constraint types. For
example, if there are range constraints to be updated, instead of processing each update
individually for each range constraint, a single pass through the updates can collect the high
and low values for each attribute with a range constraint. The high and low values can then
be applied to each constraint. Furthermore, the pass that collects the high and low values
can be performed during the filtering process. As the new updates are filtered, all of the
range constraints at a node can be updated with only a few additional operations.

For example, consider a view node that represents graduate students and assume that the
lowest GPA in the view is 3.1. Constraint C6 represents the lower bound on GPA at the
view, C&: GPA > 3.8. Assume the following six insertions are received by the system: (grad,
3.3), (grad, 3.0), (frosh, 3.6), (soph, 3.4), (senior, 2.7), (grad, 3.8). In order to update the
graduate student view, these updates must be filtered to remove the students that are not
graduates. When the updates are filtered (i.e., tested for CLASS = GRAD), the system can
maintain the lowest GPA for the graduate student updates. When these six updates are
filtered, the three irrelevant updates will be removed and the lowest graduate GPA for the
insertions will be recored as 3.0. The lowest GPA for the updates (3.0) will be compared with
the GPA range constraint at the view node (3.1), and the range constraint will be modified
if the insertions have a lower GPA than the current range constraint. In this example, the
range constraint will be modified to reflect the 3.0 GPA that has been inserted.

150

4 Conclusion

Instance-based constraints are more useful to semantic query optimization because they
contain more information than scheme-based constraints. This paper presented a framework
for maintaining instance-based constraints. The Metadata View Graph Framework makes
three contributions: (1) the framework maintains instance-based constraints for logical views
of the database, (2) the framework provides a foundation that directs and integrates existing
methods for constraint discovery, and (3) the framework allows instance-based constraints
to be retrieved efficiently at run-time.

The problem of maintaining instance-based constraints in the Metadata View Graph can
be decomposed into three sub-problems: (1) manage the update logs, (2) manage the view
nodes, and (3) refresh the instance-based constraints. This paper analyzed the third sub-
problem and considered various representations that improve maintenance efficiency.

Future research will develop efficient strategies for managing update logs and view nodes
(i.e., the first two subproblems). Future research will also continue to analyze instance-based
constraints in order to develop mere efficient update strategies, such as the strategy presented
for range constraints, and further classify the properties of instance-based constraints with
respect to semantic query optimization and maintenance.

5 Acknowledgements

The author wishes to thank Leo Mark and Shamkant Navathe for their many comments
and discussions regarding this research. The author has been generously supported by BNR
Inc., the research and development subsidiary of Northern Telecom, and is especially grateful
to Robert Bloedon and Deborah Stokes. The author also acknowledges the support of the
Advanced Project Research Agency under contract number F33615-93-1-1338. The current
work is part of the project entitled: "A Knowledge Based Approach to Integrating and
Querying Distributed Heterogeneous Information Systems."

References

[BLT86] J. Blakeley, P. Larson, and F. Tompa. Efficiently updating materialized views.
In C. Zaniolo, editor, Proceedings of the 1986 ACM SIGMOD International Con-
ference on the Management of Data, pages 61-71, Washington, D.C., May 1986.

[CG94] Richard L. Cole and Goetz Graefe. Optimization of dynamic query evaluation
plans. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pages 150-160, Minneapolis, Minnesota, May 1994.

151

[CGM90] S. Chakravarthy, J. Grant, and J. Minker. Logic based approach to semantic
query optimization. A CM Transactions on Database Systems, 15(2): 162-207,
June 1990.

[Fre87] J.C. Freytag. A rule-based view of query optimization. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 173-180, San
Francisco, May 1987.

[GD87] G. Graefe and D. DeWitt. The exodus optimizer generator. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 160-
171, San Francisco, May 1987.

[GM93] G. Graefe and W.J. McKenna. The volcano optimizer generator: Extensibility
and efficient search. In Proceedings of the IEEE Conference on Data Engineering,
pages 209-228, Vienna, April 1993.

[GW89] G. Graefe and K. Ward. Dynamic query evaluation plans. In Proceedings of
the 1989 ACM-SIGMOD International Conference on the Management of Data,
pages 358-366, Portland, Oregon, 1989.

[HK93] C. Hsu and C.A. Knoblock. Reformulating query plans for multidatabase sys-
tems. In Proceedings of the Second International Conference on Information and
Knowledge Management, Washington, DC, 1993.

[HK94] Chun-Nan Hsu and Craig Knoblock. Rule induction for semantic query optimiza-
tion. Machine Learning, pages 1-10, 1994.

[HZ80] M. Hammer and S.B. Zdonik. Knowledge-based query processing. In Proceedings
of the Sixth International Conference on Very Large Data Bases, pages 137-147,
Montreal, October 1980.

[Kin81] J. King. Quist: A system for semantic query optimization in relational databases.
In Proceedings of the Seventh International Conference on Very Large Data Bases,
pages 510-517, 1981.

[PMN95] J. Pittges, L. Mark, and S. Navathe. Metadata view graphs: A framework for
query optimization and metadata management. ACM Transactions on Informa-
tion Systems, 1995. Unpublished - submitted, Nov. 1994.

[Rou82] N. Roussopoulos. The logical access path scheme of a database. IEEE Transac-
tions on Soßware Engineering, SE-8(6):563-573, November 1982.

[SHKC93] S. Shekhar, B. Hamidzadeh, A. Kohli, and M. Coyle. Learning transformation
rules for semantic query optimization: A data-driven approach. IEEE Transac-
tions on Knowledge and Data Engineering, 5(6):950-964, 1993.

[S087] S.T. Shenoy and Z.M. Ozsoyoglu. A system for semantic query optimization.
Proceedings of the ACM SIGMOD International Conference on Management of
Data, 16(3):181-195, December 1987.

152

[S089] S.T. Shenoy and Z.M. Ozsoyoglu. Design and implementation of a semantic query
optimizer. IEEE Transactions on Knowledge and Data Engineering, 1(3):344—361,
1989.

[SSD92] Shashi Shekhar, Jaideep Srivastava, and Soumitra Dutta. A formal model of
trade-off between optimization and execution costs in semantic query optimiza-
tion. Data and Knowledge Engineering, 8:131-151, 1992.

[SSS92] M. Siegel, E. Sciore, and S. Salveter. A method for automatic rule derivation to
support semantic query optimization. A CM Transactions on Database Systems,
17(4):563-600, December 1992.

[YS89] C. Yu and W. Sun. Automatic knowledge acquisition and maintenance for seman-
tic query optimization. IEEE Transactions on Knowledge and Data Engineering,
l(3):362-375, September 1989.

153

Maintaining Semantic and Structural Metadata
in the Metadata View Graph Framework

Jeff Pittges
Leo Mark

Shamkant B. Navathe

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332-0280
{pittges, leomark, sham}@cc.gatech.edu

November 13, 1997

Abstract

The Metadata View Graph is a metadatabase capable of maintaining semantic and structural
metadata for views of a database. Semantic metadata provides dynamic rules which are used
during query optimization and structural metadata provides indexes which are used during
query execution. Since both types of metadata represent the current contents of the database,
both types of metadata must be maintained when the contents of the database change.

Although both types of metadata use the same update logs, these logs are typically processed
twice because the semantic metadata must be maintained before query execution while structural
metadata is usually maintained during query execution. However, when a query execution plan
requires both types of metadata, it is most efficient to process the update logs once and maintain
both types of metadata at the same time. This creates a conflict when the update paths for the
semantic and structural metadata overlap.

This paper presents several methods for efficiently maintaining semantic and structural meta-
data. The paper analyzes the maintenance cost for both types of metadata and proposes two
strategies for processing overlapping update paths.

Keywords: Metadata Maintenance, View Maintenance, Constraint Maintenance,

Dynamic Semantic Rules, View Cache, Query Optimization.

154

1 Introduction

Dynamic rules (semantic metadata) are used by semantic query optimization [HK94, HK93, S+93,

S+92, CGM90, S089, YS89] to reformulate a query into a semantically equivalent query that is

more efficient to execute. Since dynamic rules represent the current contents of the database,

dynamic rules must be maintained before the query is executed in order to guarantee that the

reformulated query is correct. For example, consider a query that requests the grade point average

of the students who work in the computer science department. Figure 1 illustrates two query

execution plans for this query. The non-semantic plan is produced directly from the original query

expression. The semantic plan is produced by applying transformation rule Ä35 which states that

only graduate students work in the computer science department.

The non-semantic plan performs the join operation with the entire Student base relation whereas the

semantic plan only joins the graduate students. More importantly, the semantic plan may greatly

reduce the number of pages retrieved from the Student base relation if the database maintains

an index on the CLASS attribute. Note, however, that the dynamic rule (£35) is only valid for

particular instances of the database. If an undergraduate student from the CS department is later

employed by the school, then the rule is no longer valid and the semantic plan cannot be used to

answer the query. Therefore, the dynamic rule must be maintained before the query is executed.

Incremental query computation [Rou91] maintains views in order to answer queries more efficiently.

An index (structural metadata) called a view cache maintains a set of pointers into the base relation

tuples that belong to a given view. The view cache is used to materialize the view efficiently during

query execution. For example, consider a view representing a join between two base relations, Ri

and Rj. For each tuple in the view, the view cache will contain a pair of tuple IDs (TIDi,TIDj)

where TIDi and TIDj are pointers to the tuples in Ri and Rj that form the tuple in the view. View

caches are maintained incrementally during query execution by propagating relevant updates while

the view is being materialized. Updating the view cache is often more efficient than recomputing

155

Relation Attributes
Students Snum, Class, GPA, Advisor
Employees Enum, Salary, Dept, Pos

Employees

tr Pos = Student

D~ Dept = CS Students

Join
Enum = Snum

TTGPA

Non-Semantic Plan

Qi: Select GPA
From Employees, Students
Where Pos = Student AND Dept = CS

AND Enum = Snum

SQO

Employees

0" Pos = Student Students

IT Dept = CS tr Class = Grad

Join
Enum = Snum

TTGPA

Semantic Plan

R3b: (Pos = Student) AND (Dept = CS) =» Class = Grad

Figure 1: Reformulating a query with semantic query optimization.

the view. For example, consider query Q\ above and assume the system maintains a view cache

representing the graduate students in the CS department who are employed. The view cache could

be used to answer the query by materializing the view and projecting the grade point averages.

Note, however, that this view cache can only be used if rule Ä35 is valid.

Since dynamic rules are used to reformulate the original query, the rules must be maintained

before the query is executed. Since view caches are more efficient to maintain when the views

are materialized, view caches should be maintained during query execution. However, dynamic

rules and view caches use the same update logs. Therefore, when a query requires both types

of metadata, it is most efficient to process the update logs once and maintain the dynamic rules

and view caches at the same time. This paper presents several methods for efficiently maintaining

semantic and structural metadata.

156

The rest of the paper is organized as follows. Section 2 presents the Metadata View Graph Frame-

work and describes how metadata is stored, retrieved, maintained, and used during query pro-

cessing. The framework is presented to help the reader appreciate the problems addressed by the

paper. Section 3 specifies the maintenance problem, analyzes the maintenance cost for both types of

metadata, and proposes several strategies and algorithms for maintaining semantic and structural

metadata. The last section contains our concluding remarks.

2 The Metadata View Graph Framework

As illustrated in Figure 2, the Metadata View Graph [Pit95] is a metadatabase capable of main-

taining semantic, statistical, and structural metadata for views of a database. The Metadata View

Graph consists of four components: (1) a lexicon, (2) a semantic network, (3) a view network, and

(4) a QEP Network. The lexicon maintains the system's vocabulary and contains information for

each word or phrase that is recognized by the system interface. The semantic network captures

domain knowledge and can be used to disambiguate queries. The lexicon and semantic network

are used for query interpretation and will not be discussed further.

The View Network is an extension of Roussopoulos' Logical Access Path schema [Rou82]. The view

nodes in the network (Vi — V14 in Figure 2) represent views of the database and store metadata

specific to the particular data set. The links represent logical operations and semantic relationships.

The View Network is essentially a collection of query graphs overlaid on top of each other with

each view node representing an intermediate result.

The QEP Network maintains a separate query execution packet for each application query. Query

execution packets store two types of query execution plans, non-semantic plans and semantic plans.

Non-semantic plans are produced by conventional query optimization and do not require mainte-

nance. Semantic plans are produced by semantic query optimization. Consequently, semantic plans

depend on the dynamic rules that were used to reformulate the original query. These rules must be

157

I Semantic
Network

View
Network

QEP Network

Queryx

Query Execution Packet:

Dynamic
Plan

Semantic
Plan
Index

Query 2
Query Execution Packet

Dynamic
Plan

Semantic
Plan
Index

Queryn

Query Execution Packet

Dynamic
Plan

Semantic
Plan
Index

Figure 2: Conceptual representation of the Metadata View Graph.

updated and validated before a semantic plan can be executed. Therefore, semantic plans contain

pointers to the rules that they depend on in order to efficiently retrieve and maintain those rules

before the query is executed.

2.1 Query Optimization

When a query is processed at compile-time, several query execution plans are generated and meta-

data is collected for each query execution plan. We assume that existing methods have been used

to discover the dynamic rules that are used to generate semantic plans. The most efficient query

158

execution plans are stored in the QEP Network. When a query is processed at run-time, the query's

execution packet is retrieved from the QEP Network along with any relevant view nodes from the

View Network. The semantic plans are indexed such that the run-time bindings of the query can

be used to select the semantic plans that match the conditions of the query.

An Example

Figure 3 illustrates part of a View Network that supports our example query Qx. The figure also

shows semantic plan SPA which depends on rule Ä35 stored at node V3. Rule R35 was used to

reformulate Qi by introducing the selection condition CLASS = GRAD. When Q\ is processed at

run-time, semantic plan SP4 will be retrieved from the QEP Network along with view node V3. If

maintenance is cost effective, the metadata at node V3 will be maintained, and if rule Ä35 is valid,

then SPA will be executed. If Ä35 is not valid, the non-semantic plan for Qi will be executed.

Relation Attributes
Students snum, class, GPA, advisor
Employees enum, salary, dept, pos

Qx: Select GPA
From Employees, Students
Where pos = student AND dept = vari

AND enum = snum

Employees (Enum, Salary, Dept, Pos)

'

[TPOS =
fac

1

'

i

ITpos =
dean

'

'

(TPOS =
staff

"

D~P08 =
student

V5 V6 V7 V8

0 raept =
psy

0 raept =
math

1

0 rdept
cs

'

rrdi jpt =
15

V1 V2 V3

R„:dept = cs ->
35 class = grad

V4

■^

Vie W N(3t work

Get Set
Employees

1
T

File Scan
I

T
Pilter

pos = student
1
T

Filter
dept = cs

Get Set
Students

I
T

Filter
B-Tree Scan
class = grad

/

Join
Snum = Snum

1
T

Project GPAs

Semantic Plan SP4

Figure 3: Semantic plan SP4 depends on dynamic rule R35 which is stored in the View Network.

159

3 Maintaining Semantic and Structural Metadata

When a database evolves from one database state x to another database state y due to an update

(i.e., a tuple is inserted, deleted, or modified), the metadata in the View Network may become

invalid. In general, two actions must occur before the metadata can be used: (1) the metadata

that is affected by the update must be identified, and (2) if the metadata is no longer valid, the

metadata must be modified or invalidated.

Rather than consider each update as it is received, it is more efficient to process a batch of updates

for a particular set of metadata when the metadata is needed. This is referred to as the deferred

update strategy [Rou91]. This approach requires the system to maintain an update log for each

base relation. When an update is made to a base relation, the system writes the update to the

base relation's update log. When the metadata at a view node needs to be maintained, all of the

updates for the base relations from which the view is derived are processed. However, only a subset

of the updates will apply to a given view node based on the definition of the node (e.g., GPA >

3.0). Therefore, the updates must be filtered to remove the irrelevant updates [BLT86].

Figure 4 illustrates the contents of a base relation and a view node for two states of an example

database. The figure also illustrates an update log for the base relation which contains a number

of tuples to be inserted into the base relation. State x represents the database before the updates

are received, and state y represents the database after the updates have been processed and the

metadata at the view node has been maintained.

The view node shown in this example contains seven rules, a tuple count, a distribution profile,

and a view cache pointer (since the pointer is nil, there is no view cache for this node). The view

is defined for students with a GPA of 3.0 or greater. The rules and tuple count at the view node

can be verified for states x and y by selecting the tuples from the base relation (as shown) that

satisfy the definition of the node (i.e., GPA > 3.0). An update contains a unique time-stamp, which

indicates when the update was received, along with the tuple to be inserted, deleted, or modified.

160

Students (Snum, Class, GPA, Advisor!

2 Grad 3.8 Smith

3 Frosh 3.2 Jones

e Soph 2.7 Smith

8 Grad 3.6 Davis

9 Frosh 2.9 Davis

11 Grad 4.0 Davis

12 Senior 3.9 Jones

16 Junior 3.3 Smith

21 Soph 3.7 Jones

View Node

Q"GPA >= 3 .0

Cl 2 <= Sno <= 21 T3
C2 Frosh <= Class <= Grad T12

C3 3.2 <= GPA <- 4.0 T3
C4 Davis <= Advisor <= Smith T9

C5 Class = Grad -> GPA >= 3.6 T2
C6 Advisor = Jones -> GPA >= 3.2 T5
C7 GPA = 4.0 -> Sno = 11 T4

Tuple Count: 15 T12

distributions T9

View Cache: nil

State X

Base Relation Update Dog

4 Junior 3.1 Smith T3
22 Soph 2.8 Jones T4
10 Grad 3.9 Jones T5
1 Grad 4.0 Davis T8
14 Frosh 3.3 Smith T9
13 Senior 3.7 Smith T11
5 Grad 3.9 Jones T12
7 Soph 3.2 Davis T15
18 Junior 1.8 Smith T16
20 Grad 3.6 Davis T17
23 Frosh 2.7 Davis T19

'

Filter

(GPA >= 3.0)

4 Junior 3.1 Smith T3
10 Grad 3.9 Jones T5
1 Grad 4.0 Davis T8
14 Frosh 3.3 Smith T9
13 Senior 3.7 Smith T11
5 Grad 3.9 Jones T12
7 Soph 3.2 Davis T15
20 Grad 3.6 Davis T17

Updates

Students (Snum, Class, GPA, Advisor)

1 Grad 4.0 Davis

2 Grad 3.8 Smith

3 Frosh 3.2 Jones

4 Junior 3.1 Smith

5 Grad 3.9 Jones

6 Soph 2.7 Smith

7 Soph 3.2 Davis

8 Grad 3.6 Davis

9 Frosh 2.9 Davis

10 Grad 3.9 Jones

11 Grad 4.0 Davis

12 Senior 3.9 Jones

13 Senior 3.7 Smith

14 Frosh 3.3 Smith

16 Junior 3.3 Smith

18 Junior 1.8 Smith

20 Grad 3.6 Davis

21 Soph 3.7 Jones

22 Soph 2.8 Jones

23 Frosh 2.7 Davis

View Node i

Q"GPA >= 3 .0

cl 1 <= Sno <= 23 T19

C2 Frosh <- Class <= Grad T19
C3 3.1 <= GPA <= 4.0 T19

C4 Davis <= Advisor <= Smith T19
C5 Class = Grad -> GPA >= 3.6 T19

C6 Advisor = Jones -> GPA >= 3.2 T19
C7 GPA = 4.0 -> Sno = 1 or 11 T19

Tuple Count: 23 T19

distributions T19

View Cache: nil

State Y

Figure 4: The base relation update log contains a set of insertions that are filtered and applied to
the view node as the database evolves from state x to state y.

161

By propagating the updates through the View Network, the system can identify which metadata is

affected by an update. When an update applies to a node, the metadata can be tested to determine

which metadata is no longer valid, and the system can modify or invalidate the incorrect metadata.

Before the updates can be filtered and propagated through the View Network, the update logs

and the view nodes to be maintained must be retrieved from disk. The cost of these disk accesses

dominates the cost of the maintenance process.

Allocating and Processing Update Logs

Our objective is to minimize the average maintenance cost per query. This is achieved by creating

additional update logs in the View Network. The additional logs form a chain in which each log

only considers the updates in the log above. Once an update is filtered, it is never considered by

an update log lower in the network. Although this strategy may create additional work for an

individual query, the maintenance cost is amortized thus reducing the average cost per query.

Update logs are allocated throughout the View Network at compile-time based on the estimated

selectivity of the view nodes. As described in [Pit95], when the selectivity at a node, with respect

to the log above, is less than 50 percent (i.e., less than half of the updates apply to the node),

an update log is created at the view node. These logs store relevant updates in order to reduce

the number of log pages that must be read to maintain the rest of the network during future

maintenance cycles.

The cost of maintaining the view nodes is dominated by the cost of reading and writing the update

logs. Log maintenance is also a significant factor in the cost of maintaining view caches. Although

the view nodes and view caches are separate data structures, they both depend on the same update

logs. Therefore, maintenance costs can be minimized by efficiently utilizing the update logs (i.e.,

maintaining the view nodes and view caches together when an update log is retrieved).

162

Running Example

Before we present the cost formulas for maintaining view nodes and view caches, the following

example provides some numbers to help interpret the formulas. This example considers the chain

of nodes Vi, V21V3, and V4 shown in Figure 5. We will continue to denote the nodes in the View

Network as Vj- unless it is necessary to distinguish between the view nodes (VNi) and view caches

(VCi). As shown in Table 1, we assume that the base relation contains one million tuples. We

estimate the tuple count for each of the four views by assuming that the selectivity factor at each

level of the network is 50 percent (i.e., exactly half of the tuples at a given node apply to the nodes

directly below).

Tuples
Log

Tuples
Log

Pages
View Cache
Pages (nv)

View Cache
Partitions (pv)

Base Relation 1,000,000 10,000 1000
Node Vi 500,000 5000 500
Node V2 250,000 2500 250 1000 50,000
Node V3 125,000 1250 125
Node V4 62,500 250 6250

Table 1: Parameters for the running example.

In order to estimate the number of log pages that will be read and written, we assume that one

percent of the base relation has changed. Therefore, the base relation update log contains 10,000

updates. Assuming 10 updates per page, 1000 pages will be read from the base relation update

log. The number of updates for each view were estimated assuming a 50 percent selectivity factor

between each view. In order to estimate the number of pages in the view caches (nv), we assume that

each pointer requires 5 bytes and that each TID in the view cache requires 3 pointers. Therefore,

each entry in the view cache requires 15 bytes. Assuming a page size of 4K, each view cache

page contains 250 entries. In order to estimate the number of partitions (pv) in the view cache,

we assume that VC2 references half of the base relation pages (50,000) and we assume that each

tuple in VC4 is written on its own page (6250 partitions). Finally, we assume that each view node

requires one page (Nr = 1).

163

Figure 5: Example View Network with view nodes, view caches, and update logs.

Maintaining View Nodes

In order to maintain a view node, all of the logs along the update path must be retrieved and

processed. Processing begins at the top of the network with the base relation update log. The

updates in the base relation update log are filtered and the relevant updates are written to the

next log. This process continues until the last update log in the update path has been processed.

The updates in the last log that have not been applied to the metadata at the view node being

maintained are applied to the metadata. The following formula estimates the cost of maintaining

a view node.

Lr + Lw + 2Nr

Lr represents the number of log pages read, Lw represents the number of log pages written, and

iVr represents the number of node pages that are read. In the worst case, each node page will be

modified and written back to disk. The cost formula allows for this by doubling the number of

node pages that are read. In our running example, the cost of maintaining VN4 is Lr + Lw + 2Nr =

1000 + 875 + 2(1) = 1877.

164

From these numbers, it is clear to see that the cost of updating a view node is dominated by the

cost of reading and writing the update logs (1875 pages to process the update logs versus 2 pages

to read and write the view node). Therefore, whenever the update logs are processed, all of the

view nodes along the update path should be maintained. The view nodes along the update path

for V4 (VN1,VN2, and WV3) can be maintained by reading (and possibly writing) 3 more pages.

Maintaining View Caches

View caches contain pointers to the base relation tuples that participate in a view. When an update

is made that affects the view, the view cache must be maintained, (i.e., the insertions that apply

to the view must be added to the view cache and the deletions must be removed). Maintaining a

view cache is typically more efficient if the view is materialized, especially if the view joins two or

more base relations.

With the deferred update strategy, view caches are updated when the view is materialized during

query execution. Three items are retrieved when a view cache is maintained: (1) the view cache,

(2) the update logs along the update path that support the view cache, and (3) the pages of the

base relation that are indexed by the view cache. A view cache is optimal if it can be materialized

without reading the same base relation page more than the minimum number of times required.

This is achieved by partitioning the TIDs of the view cache into equivalence classes in which all of

the TIDs access the same base relation page.

[Rou91] provides a detailed analysis of incremental update algorithms for view caches. The cost of

these algorithms depends on four parameters: (nv) the number of disk pages in the view cache V

being maintained (Lr) the number of log pages read, (Lw) the number of log pages written, and

(pv) the number of partitions in V. The following formula estimates the cost of materializing a

unary view cache (selection or projection).

Lr + Lw + 2nv + pv

165

Each view cache page may be modified and written back to disk. The cost formula allows for this

by doubling the number of view cache pages that are read. Since the view cache is updated during

query execution, the cost of materializing the view (nv+pv) is absorbed by the cost of executing the

query. Therefore, the actual maintenance cost consists of reading and writing the update logs plus

the cost of writing the modified pages of the view cache (Lr + Lw + nv). In our running example,

the cost of maintaining VC4 is Lr + Lw + 2nv + pv = 1000 + 875 + 2(250) + 6250 = 8625.

These numbers indicate that the cost of updating a view cache is dominated by the cost of retrieving

the tuples from the base relation (pv). However, in this example we have considered the worst case

(i.e., that each tuple is stored on its own page). If we assume that each partition contains two

tuples, the cost of retrieving the tuples is cut in half (pv = 3125), and the cost of reading and

writing the update logs (1875) begins to approach the cost of materializing the view. As the size

of the views decreases, the cost of reading and writing the update logs becomes a greater factor.

3.1 Maintaining View Nodes and View Caches

Having reviewed the methods for maintaining view nodes and view caches independently, the

remainder of this paper considers how to efficiently maintain them together. Since the cost of

maintaining view nodes and view caches greatly depends on the cost of reading and writing the

update logs, it is desirable to maintain the metadata at the view nodes and view caches whenever

an update log is retrieved. For example, in Figure 5, if a query requires the metadata at VNi4

to be maintained, then the base relation update log, plus the update logs at VNi and WV12,

must be retrieved. When these update logs are processed, it would be most efficient to maintain

VNi, VN12, VNi3, VCi4, and VNi$. However, since the query only requires the metadata at VNu,

the additional view nodes and view caches can be maintained if time permits,

The following analysis assumes that a query has been received at run-time and the query's execution

package has been retrieved. Within this context, this section will consider three maintenance

166

scenarios. In all three scenarios, the query execution plan under consideration uses a view cache.

In the first scenario, the query execution plan does not depend on any rules. Therefore, the view

cache will be maintained during query execution and the view nodes along the update path may

be maintained when the update logs are processed. In the second and third scenarios, the query

execution plan does depend on rules which must be updated before the query execution plan can

be executed. In the second scenario, the update paths for the view node and the view cache do

not overlap. Therefore, each update path can be maintained separately. In the third scenario, the

update paths do overlap which creates an interesting conflict.

Scenario 1: Non-Semantic Plans

In the first scenario, the query optimizer has selected a non-semantic plan that uses a view cache.

Since the plan does not depend on any rules, none of the view nodes need to be maintained.

Therefore, the view cache is maintained during query execution as described above. When the

update logs are retrieved and processed to maintain the view cache, there is an opportunity to

maintain the view nodes along the view cache update path. The cost of maintaining the view cache

is: Lr + Lw + 2nv + pv.

Since the update logs have already been retrieved, the cost to maintain the view nodes is the cost

of reading and writing the view node pages (2Nr in the worst case). The total cost to update the

semantic and structural metadata along the view cache update path is: Lr + Lw + 2nv +pv + 2Nr.

Since the cost of maintaining the view nodes is dominated by the cost of reading and writing

the update logs, the view nodes along the view cache update path should always be maintained

whenever the view cache is maintained.

Figure 6 illustrates a View Network and two query execution plans. The non-semantic plan uses

the view cache VC2 shown in bold. Since this plan does not depend on any rules, VC2 will be

maintained during query execution. When the update logs are processed for VC2, the view nodes

along the update path (VNi and VN2) can be maintained. Since the logs have already been

167

Select Snum
From Students, Employees
Where Advisor = Jones AND Class = Grad AND Snum = Enum

v°2 i
i i

Join
Snum ■ tnvm

i
T

Projact Snum

' ' ' 1

VN5

advlaor ■ Jonia ->
dapt « ca and
aalary < 15.000

'
VN6

r«-»»~~"^

I vc8 !
1 1

t
Filter

Advisor ■ Jon««

i
T

Projoce Snum

Non-Samantlc Plan SamanttcPlan

Figure 6: Example View Network and Query Execution Plans.

retrieved and processed, the cost of maintaining the metadata at VNi and VN2 is the cost of

reading and writing VNi and VN2.

There are two advantages to maintaining the view nodes when the view caches are maintained.

First, although there is no benefit to the current query in this scenario, maintaining the view nodes

will reduce the maintenance cost for future queries. Second, rules can be recomputed if the view

is materialized when the view node is maintained. For example, consider a rule that maintains the

minimum GPA for a view of students and assume that the student with the lowest GPA is deleted.

If the view is materialized when the rule is maintained, the new minimum GPA can be recomputed.

168

INPUT: LOGS, /* a list of update logs to be processed */

NODES, /* a list of node groups to be maintained */

VIEW-CACHES; /* a list of view caches to be maintained */

view-cache-update(LOGS, NODES, VIEW-CACHES)
For each log in LOGS

read the log
filter the log
If there are updates to be added to the log

write the log
maintain the log's nod« ; group
If the log serves a view cache in VIEW-CACHES

maintain the view cache

Algorithm 1: View Cache Update.

Scenario 2: Distinct Update Paths

The second scenario involves a semantic plan that depends on one or more rules stored at a view

node. Therefore, the view node must be maintained before the semantic plan can be executed. In

this scenario, the update paths for the view node and the view cache are distinct. Consequently,

the update path for the view node can be processed before the query is executed and the update

path for the view cache can be processed during query execution if the semantic plan is valid.

In Figure 6, the semantic plan uses the view cache VC$ which contains an index for the graduate

students who are employed by the computer science department. The semantic plan is only valid if

the rule stored at VN5 is valid. There are two possible update paths for VN5, one of which will be

chosen at compile-time. If the update path for VN5 goes through VNi and VN2, then the update

path for VN$ does not overlap with the update path for VCg. This scenario involves two steps:

(1) maintain the view node, and (2) maintain the view cache provided the semantic plan is valid.

Step 1 (Maintain the View Node): In this example, the metadata at VN5 will be maintained

before the query is executed. View nodes VNi, VN2, and the view cache VC2 can be maintained

when the update logs are retrieved for VN5. The total cost to maintain the view nodes and view

169

INPUT: LOGS, /* a list of update logs to be processed */
NODES, /* a list of node groups along the update path */
VIEW-CACHES; /* a list of view caches along the update path */

view-node-update(LOGS, NODES, VIEW-CACHES)
For each log in LOGS

read the log
filter the log
If there are updates to be added to the log

write the log
If time permits

maintain the log's node group
If the log serves a view cache in VIEW-CACHES AND time permits

maintain the view cache

Algorithm 2: View Node Update.

caches is: Lr + Lw + 2Nr + (2nv +pv), where {2nv + pv) is the additional cost for the view caches.

Step 2 (Maintain the View Cache): The view cache VCS will be maintained during query

execution. The view nodes VN3 and VNr can be maintained when the update logs are retrieved to

maintain VCS- The total cost to maintain the view nodes and view caches is: Lr + Lw + {2Nr) +

2nv + pv, where (2Nr) is the additional cost to maintain the view nodes.

Scenario 3: Overlapping Update Paths

The third scenario is identical to the second scenario except that the update paths overlap (i.e., the

update paths for the view node and view cache contain a common subpath). When the common

subpath is processed, it is most efficient to retrieve the update logs once and process the view nodes

and view caches together. However, since the plan being considered is a semantic plan, the view

cache being maintained may not be used if the semantic plan is invalid.

In Figure 6, if the update path for VN5 goes through VN7 and VN9, then the update path for VN5

overlaps with the update path for VC&. In this case, the update logs for VN7 must be retrieved

before the query is executed. Although it is most efficient to maintain VC& when the update log

170

INPUT: LOGS, /* a list of update logs to be processed */
NODES, /* a list of node groups along the update path */
VIEW-CACHES; /* a list of view caches along the update path */

view-node-view-cache-update(LOGS, NODES, VIEW-CACHES)
For each log in LOGS

read the log
filter the log
If there are updates to be added to the log

write the log
maintain the log's node group
If the log serves VC

maintain the view cache
Else

If the log serves a view cache in VIEW-CACHES AND time permits
maintain the view cache

Algorithm 3: Combined view node and view cache update.

for VN7 is processed, the view cache VCg should be maintained during query execution. If the rule

at VN5 is invalid, VC& will not be used to answer the query.

There are two solutions for this scenario, an optimistic approach and a pessimistic approach. The

optimistic approach assumes that the semantic plan will be valid (i.e., the rule holds for the current

state of the database). Therefore, VC& will be materialized and maintained when the update logs

are processed for VN7. If necessary, the materialized view will then be stored on disk while the

metadata at VN5 is maintained. If the rule at VN5 holds, then the semantic plan will be executed

using the view cache. Otherwise, the non-semantic plan will be executed. The optimistic approach

maintains the semantic and structural metadata before the query execution plan is selected. If the

semantic plan is invalid, then the optimistic approach pays the price of maintaining a view cache

that cannot be used for the given query. Although this will reduce the maintenance cost for future

queries that use VCs, this can be an expensive price to pay for the current query.

171

The pessimistic approach assumes that the semantic plan will not be valid. Therefore, the metadata

at VN5 is maintained before a query execution plan is selected. If the semantic plan is valid, then

the view cache at VCS will be maintained. This may require the update log for VN7 to be retrieved a

second time, but since the update log has already been processed, only the updates that are relevant

to VN7 will be retrieved. The cost of retrieving the update log is only significant if the size of the

log approaches the size of the view cache.

4 Conclusion

Previous researchers have developed methods for discovering dynamic rules and for providing useful

view caches. This paper has considered the problem of maintaining these two types of metadata

together in the Metadata View Graph Framework which can be implemented as a database appli-

cation or as an extension to the DBMS kernel. Because these two types of metadata are maintained

at different times, a conflict arises when the update paths for the semantic and structural metadata

overlap. Since both types of metadata depend on the same update logs, it is most efficient to

maintain the metadata together when the update logs are retrieved. This paper presented various

cost formulas and analyzed three scenarios. The first scenario showed that the view nodes along a

view cache update path should always be maintained whenever the view cache is maintained. The

second scenario showed that it is only cost effective to maintain a view cache along a view node

update path when the size of the logs approaches the size of the view cache.

The third scenario presents a conflict because the update paths overlap. We have proposed two

approaches to resolve this conflict. The optimistic approach is the most efficient, but the current

query may incur a heavy penalty when the semantic plan is invalid. The pessimistic approach

may be less efficient when the semantic plan is valid, but the additional cost is minimized by the

previous maintenance cycle. The best approach can be selected at run-time based on cost estimates

and other factors.

172

References

[BLT86] J. Blakeley, P. Larson, and F. Tompa. Efficiently updating materialized views. In C. Zan-
iolo, editor, Proc. of the 1986 ACM SIGMOD, pages 61-71, Washington, D.C., May 1986.

[CGM90] S. Chakravarthy, J. Grant, and J. Minker. Logic based approach to semantic query
optimization. ACM Trans, on Database Systems, 15(2):162-207, June 1990.

[HK93] C. Hsu and C.A. Knoblock. Reformulating query plans for multidatabase systems. In
Proc. of the Second Int. Conf. on Info, and Know. Management, Washington, DC, 1993.

[HK94] Chun-Nan Hsu and Craig Knoblock. Rule induction for semantic query optimization.
Machine Learning, pages 1-10, 1994.

[Pit95] J. Pittges. Metadata View Graphs: A Framework for Query Optimization and Metadata
Management. PhD thesis, Georgia Institute of Technology, November 1995.

[Rou82] N. Roussopoulos. The logical access path scheme of a database. IEEE Trans, on Software
Eng., SE-8(6):563-573, November 1982.

[Rou91] N. Roussopoulos. An incremental access method for viewcache: Concept, algorithms,
and cost analysis. A CM Trans, on Database Systems, 16(3):535-563, 1991.

[S+92] M. Siegel et al. A method for automatic rule derivation to support semantic query
optimization. ACM Trans, on Database Systems, 17(4):563-600, December 1992.

[S+93] S. Shekhar et al. Learning transformation rules for semantic query optimization: A
data-driven approach. IEEE Trans, on Knowledge and Data Eng., 5(6):950-964, 1993.

[S089] S.T. Shenoy and Z.M. Ozsoyoglu. Design and implementation of a semantic query opti-
mizer. IEEE Trans, on Knowledge and Data Eng., 1(3):344-361,1989.

[YS89] C. Yu and W. Sun. Automatic knowledge acquisition and maintenance for semantic query
optimization. IEEE Trans, on Knowledge and Data Eng., l(3):362-375, September 1989.

173

PART IV

DEVELOPMENT OF AN
INTELLIGENT INTERACTIVE

TOOL FOR ENGINEERING
DESIGN

174

PART IV: DEVELOPMENT OF AN INTELLIGENT INTERACTIVE TOOL FOR
ENGINEERING DESIGN

In order to support our work on HIPED, we engaged in additional
development and experimentation with the Interactive Kritik system. The
Interactive Kritik system combines autonomous engineering design
capabilities with an interactive explanatory interface.

Within the HIPED project, Interactive Kritik served as the primary
motivating example of an intelligent design system which could require
information from heterogeneous database sources. The papers in Part I focus
heavily on how such requests are made and processed. The papers in this
section provide more elaborate background on the Interactive Kritik system,
per se.

In our work on Interactive Kritik, we have considered two primary
applications of an interactive intelligent design system:

1) Expert designers might use such a system to make suggestions about a
design. Such an application requires an explanatory interface because users are
unlikely to trust results which are not clearly explained. Paper [4.1] describes
Interactive Kritik from the perspective of this goal.

2) Design students might use such a system to learn about the design process.
Such an application obviously requires an explanatory interface to enable
students to see how a design was developed.
Paper [4.2] describes Interactive Kritik from the perspective of this goal.

The relevance of HIPED to the former goal is extremely strong: true
expert design often requires the use of large volumes of knowledge,
e.g. libraries of components; such knowledge is generally only available in
large sets of distributed, heterogeneous sources. The latter goal could
potentially be accomplished without access to large volumes of information;
students could be provided with very small, local libraries which contained
enough information to solve the problems provided. This would, however,
make this design instruction a very restricted, artificial process which largely
negates the advantages of using an interactive tutoring system in the first
place. In contrast, providing students with a realistic design environment in
which a nearly unlimited variety of components, etc. were available could
allow more productive learning. Again, HIPED provides a mechanism by
which such information can be accessed.

Our work on Interactive Kritik has led to a number of additional
important results. One of these results involves the value of encapsulation of
reasoning episodes into explicit knowledge structures. We label these
structures "meta-cases", i.e. stored instances not merely of past design results
but rather of entire past design processes. Paper [4.3] examines meta-cases in

175

more detail. From the perspective of HIPED, meta-cases can be viewed as a
sophisticated form of caching; an entire process, potentially involving one or
more requests to external heterogeneous data sources, is stored away as a
single, complex meta-case.

Another important issue in design computing is the role of function in
design. Throughout our work, we have claimed that functional
representations, i.e. those which explicitly specify the role that individual
elements have in a complex system, provide a wide variety of capabilities.
Paper [4.4] addresses a particular application of functional representations:
support for explanation of reasoning. The argument is that by explicitly
representing what each element of a knowledge system does, explanations can
show not only what the system does but also why. For the purposes of HIPED,
these functional descriptions play a potentially key role in integration of
knowledge systems. An automated reasoner can only integrate multiple,
heterogeneous knowledge systems to the extent that it understands what these
knowledge systems do.

176

PUBLICATIONS (PART4):

[4.1] A. K. Goel, A. Gomez, N. Grue, J. W. Murdock, M. Recker, and T.
Govindaraj. Explanatory Interface in Interactive Design Environments. In
Proceedings of the Fourth International Conference on AI in Design ,Palo
Alto, June 1996.

[4.2] A. K. Goel, A. Gomez, N. Grue, J. W. Murdock, M. Recker, and T.
Govindaraj. Towards Design Learning Environments - Explaining How
Devices Work. In Proceedings of the International Conference on Intelligent
Tutoring Systems,, Montreal, Canada, June 1996.

[4.3] A. K. Goel and J. W. Murdock. Meta-Cases: Explaining Case-Based
Reasoning. In Proceedings of the Third European Workshop on Case-Based
Reasoning, Lausanne, Switzerland, 1996.

[4.4] A. K. Goel, A. Gomez, N. Grue, J. W. Murdock, and M. Recker, Functional
Explanations in Design. In Program of the 1997 International Joint Conference
on Artificial Intelligence Workshop on Functional Reasoning, 1997.

177

EXPLANATORY INTERFACE IN

INTERACTIVE DESIGN ENVIRONMENTS

ASHOK GOEL, ANDRES GOMEZ DE SILVA GARZA, NATHALIE GRUE,
J. WILLIAM MURDOCK AND MARGARET RECKER

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332, USA

AND

T. GOVINDARAJ

School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332, USA

Source: Fourth International Conference on Artificial Intelligence in Design. AID '96. Stanford. California. June 24 - 27. 1996. John S. Gero

and Fay Sudweeks. eds. Boston: Kluwer Academic Publishers. 1996.

Abstract
Explanation is an important issue in building computer-based interactive design envi-

ronments in which a human designer and a knowledge system may cooperatively solve a
design problem. We consider the two related problems of explaining the system's reasoning
and the design generated by the system. In particular, we analyze the content of expla-
nations of design reasoning and design solutions in the domain of physical devices. We
describe two complementary languages: task-method-knowledge models for explaining
design reasoning, and structure-behavior-function models for explaining device designs.
INTERACTIVE KRITIK is a computer program that uses these representations to visually
illustrate the system's reasoning and the result of a design episode. The explanation of
design reasoning in INTERACTIVE KRITIK is in the context of the evolving design solu-
tion, and, similarly, the explanation of the design solution is in the context of the design
reasoning.

178

2 Ashok Goel ET AL.

1. Background, Motivations and Goals

Effective communication of both the design process and the design product is
critical in collaborative design. Communicating the process of design and the
evidence that the product satisfies its requirements can help build confidence in
the design. When members of a design team work on different parts of a design
problem, this kind of communication about one part of the problem can help in
constraining other parts of the problem. In addition, explanation of design reason-
ing and its result can enable reuse of parts of the reasoning/result in subsequent
design projects. Within the course of a design project, the explanation can enable
reflection, support the detection of flaws, and suggest remedies for fixing them.

This is no less true of collaboration between a human designer and a knowledge
system in the context of computer-based interactive design environments. When
a human designer and a knowledge system are cooperatively addressing a design
problem, the system must be able to explain to the designer precisely what it is
doing, how and why. In addition, the system must be able to justify why the design
solution it has proposed is acceptable for the given problem. Without this the user
will have little confidence in the design and may be unable to detect potential
flaws in it. Building usable interactive design environments thus requires both a
theory of design explanations and the creation of explanatory interfaces.

The issue then becomes how may a knowledge system explain both its reason-
ing and the design solutions it proposes. This issue has several related but distinct
facets pertaining to the content, generation, and presentation of explanations. To
illustrate, let us consider the problem of explaining the design of a gyroscope.
The explanation may specify how the design works, how its structure delivers its
functions, how its design satisfies its requirements. Within a knowledge system,
knowledge of the gyroscope's behaviors may be represented as a causal network,
or generated at run-time from a representation of its design structure. To the user,
the system may present the explanation in text form, or as graphics, or in some
other modality such as animation. Our research on design explanations centers on
the content of explanations presented to the user, and the content and representa-
tion of design knowledge and reasoning needed for generating the explanations.

The content of explanation and justification of design solutions, such as that
of a gyroscope, depends both on the design phase and the design domain. For
example, the explanation of the result of preliminary design is different from
that of the result of configuration design: the former pertains to the function and
structure of the design while the latter refers to its geometry. Similarly, the content
of a justification for the design of gyroscope is different from that of an office
building or a software interface. This is because the relationships between the
function and the structure of the gyroscope design are fundamentally different
from the function-structure relations in the design of an office building or a
software interface. Our work focuses on the preliminary (conceptual, qualitative)

179

Explanatory Interface in Interactive Design Environments 3

design of physical devices such as electrical circuits, heat exchangers, and angular
momentum controllers. The input to this task is a specification of the desired
functions, and the output is a specification of a structure that can deliver the
desired functions.

We are developing an interactive design and learning environment called
INTERACTIVE KRITIK. When complete, INTERACTIVE KRITIK is intended to serve
as an interactive constructive design environment. At present, when asked by a
human user INTERACTIVE KRITIK can invoke a knowledge-based design system
called KRITIK3 to address specific kinds of design problems. KRITIK3 evolves
from KRITIK, which has been extensively described elsewhere (e.g., [Goel 1991,
1992; Goel and Chandrasekaran 1989,1992].) INTERACTIVE KRITIK provides an
explanatory interface to KRITIK3. In particular, it provides visual explanations
and justifications of both KRITIK3'S reasoning and the solutions it proposes. In
addition, it enables the user to explore the system's design knowledge and also
the design of the device generated by the system. A key feature of INTERACTIVE
KRITIK is that explanation of the design reasoning is presented in the context of
the evolving design solution, and, similarly, explanation of the design solution is
presented in the context of the reasoning that led to it.

2. INTERACTIVE KRITIK

INTERACTIVE KRITIK'S architecture consists of two agents: a design agent in
the form of KRITIK31 and an interface agent2. Figure 1 illustrates INTERACTIVE
KRITIK'S architecture. The solid lines in the figure represent data flow while dotted
lines represent control flow.

Kritk3 Interface Agent

Device
Models

:
Illustration.

 »j Explanation and ! K i

Multistrategy
Design

!
Exploration of

.. *] Physical Devices |

i
I * /

/
*! Illustration and • . >,

; i TMK
i Language j

! Design
Cases

V J

»! Explanation of
Design Processing j

i • !

Figure 1. INTERACTIVE KRITIK'S Architecture

'KRITIKS runs under Common Lisp using CLOS.
2The interface is built using the Garnet tool [Myers and Zanden 1992].

180

4 AshokGoelETAL.

2.1. STRUCTURE-BEHAVIOR-FUNCTION MODELS IN INTERACTIVE KRITIK

We use structure-behavior-fiinction models (SBF models) [Chandrasekaran et al
1993; Goel 1991,1992] for explaining and justifying designs of physical devices.
The SBF model of a device provides a functional and causal explanation of
how the device works, how its structure delivers its functions. This explanation
makes explicit the functional and causal roles played by each structural element
in the device design. Since KRITIK3 addresses the function-to-structure design
task, and because the SBF model of a design created by the system explains how
the proposed structure delivers the desired functions, the SBF model provides a
justification for the design.

The SBF model of a device explicitly represents (i) the function(s) of the
device, (ii) the structure of the device, and (iii) the internal causal behaviors of the
device. The internal causal behaviors specify how the functions of the structural
elements of the device are composed into the device functions. As a simple (almost
trivial) example, let us consider the SBF model of an electrical circuit that produces
light of intensity 9 lumens.
Structure: The structure of a device in the SBF language is expressed in terms
of its constituent components and substances and the interactions between them.
Components and substances can interact both structurally and behaviorally. For
example, electricity can flow from battery to bulb only if they are structurally
connected, and only if supported by the function allow electricity of switch that
connects the battery and the bulb.
Function: The function of a device in the SBF language is represented as a
schema that specifies the input behavioral state of the device, the behavioral state
it produces as output, and a pointer to the internal causal behavior of the design
that achieves this transformation. Both the input state and the output state are
represented as substance Schemas. The input state specifies that the substance
electricity has the property voltage and the corresponding parameter, 10 volts.
The output state specifies the property intensity and the corresponding parameter,
9 lumens, of a different substance, light. Finally, the slot by-behavior points to the
causal behavior that achieves the function of producing light. Figure 2 illustrates
INTERACTIVE KRITIK'S visual representation of the function of the electrical circuit.
Behavior: The SBF model of a device also specifies the internal causal behaviors
that compose the functions of device substructures into the functions of the device
as a whole. In the SBF language, the internal causal behaviors of a device are
represented as sequences of transitions between behavioral states. The annotations
on the state transitions express the causal, structural, and functional contexts in
which the state transitions occur and the state variables get transformed. The
causal context specifies causal relations between the variables in preceding and
succeeding states. The structural context specifies different structural relations
among the components, the substances, and the different spatial locations of the

181

Explanatory Interface in Interactive Design Environments

Figure 2. The Function of an Electrical Circuit

182

Ashok Goel ET AL.

Figure 3. A Behavioral Transition within an Electrical Circuit

183

Explanatory Interface in Interactive Design Environments 7

device. The functional context indicates which functions of which components in
the device are responsible for the transition. The behaviors are organized along
the flow of specific substances through the device.

Figure 3 illustrates INTERACTIVE KRITIK'S visual representation of Light-
Behavior, the causal behavior that explains how light is generated. The state
transition in this behavior has three annotations Using Function, Under Con-
dition Transition, and Parametric Equation as indicated in the side bar on the
top right of the figure. In the screen shot depicted, the description of one of these
annotations, Using Function, is displayed in the pop-up dialog box in the right
center of the figure. This description explains that the transition occurs due to
the function Bulb-Fünction-Light component Bulb. Although not shown in Fig-
ure 3, the description for Under Condition Transition specifies that the transition
is contingent on the flow of electricity through the bulb as detailed in a separate
behavior labeled Electricity-Behavior. Similarly, the description for Parametric
Equation specifies the specific equation relating the state variables.

The use of SBF models for explanation of designs is consistent with Simon's
[1981] notion of functional explanations of artifacts. He has argued that expla-
nations of artifacts pertain to, and are referenced by, the purpose of the artifact.
This leads us to hypothesize that SBF models capture the content of explanation
of a device design at the "right" level of abstraction for comprehension by human
designers.

2.2. TASK-METHOD-KNOWLEDGE MODELS IN INTERACTIVE KRTTIK

We use task-method-knowledge models (TMK models) [Chandrasekaran 1989,
1990; Goel and Chandrasekaran 1992J for explaining and justifying reasoning
about a design problem. The TMK model provides a functional and strategic ex-
planation of design reasoning in terms of the task, the methods used to accomplish
the task, the subtasks spawned by the methods, and the knowledge used by the
methods. Since subtasks are spawned by the methods available to the reasoner,
the TMK model also provides a justification of specific tasks addressed by the
reasoner in terms of the methods that spawn the tasks. Similarly, since methods
serve tasks and are afforded by the available knowledge, the TMK model provides
a justification of the use of specific methods by the reasoner in terms of the tasks
being addressed and the knowledge that affords the methods.

The TMK model of design reasoning has three main elements. The first ele-
ment, the task, is characterized by the types of information it takes as input and
gives as output. KRFTIK3 addresses the functions-to-structure design task in the
domain of physical devices. This task takes as input a specification of the func-
tions of the desired design. It has the goal of giving as output the specification of
a structure that delivers the desired functions. The second element in the TMK
model is the method. A method is characterized by (i) the type of knowledge it

184

Ashok God ET AL.

Figure 4. The Overall Design Task

185

Explanatory Interface in Interactive Design Environments 9

uses, (ii) the subtasks (if any) it sets up, and (iii) the control it exercises over
the processing of subtasks. KRITIK3 uses the method of case-based reasoning for
addressing the function-to-structure design task. Figure 4 illustrates INTERACTIVE
KRlTIK's visual representation of this method. The figure shows that the method
sets up the subtasks of problem elaboration, case retrieval, design adaptation, and
case storage. It also shows the order in which these tasks are executed. In addition,
it shows the input-output specification of these tasks. For example, the task of
design adaptation takes as input the specification of the desired functions and the
best matching case retrieved from the case memory. It gives as output an SBF
model for a candidate design as indicated in Figure 4.

The third element in the TMK model is knowledge. A specific type of domain
knowledge is characterized by its content, by its form of representation, and
by its organization. Consider the example of diagnostic knowledge. In some
domains, heuristic associations that directly map signs and symptoms into fault
categories may be available. In a knowledge system, this associative knowledge
might be represented in the form of production rules and organized as an unordered
list. KRITTK3 contains two kinds of domain knowledge: past design cases and
case-specific SBF models. We already have briefly described the representation
and organization of the SBF models. Design cases are indexed by the functions
delivered by the stored designs, and organized as leaf nodes of a discrimination
tree.

The design of the KRITIK family of systems embodies a TMK model of
of function-to-structure design of common physical devices [Goei and Chan-
drasekaran 1992}. We derived this model by analysis of the above task domain
using the following methodology [Oiandrasekaran 1989,1990]:
Task Identification: First, the task is specified in terms of the generic types of
information it takes as input and the generic types of information desired as its
output.
Knowledge Identification: Next, the domain is analyzed in terms of the kinds of
knowledge available in it.
Method Identification: Then, the different methods afforded by the different
kinds of available knowledge are identified. This step also involves the identifica-
tion of the subtasks that each method may set up.
Method Selection: Next, since more than one method may be feasible, the criteria
for selecting a specific method is specified. These criteria may include factors such
as properties of the desired solution and computational properties of the methods.
Recursive Task-Domain Analysis: Finally, the above steps are repeated for each
of the subtasks that the selected method sets up.

This recursive decomposition of the given task continues up to an "elementary"
level at which the domain affords knowledge that can "directly" map the input to
the (sub)task into its desired output. At this level, no method is needed; instead, a
procedure directly applies the relevant knowledge to solve the task. The recursive

186

10 AshokGoeiETAL.

Figure 5. The Design Adaptation Task

187

Explanatory Interface in Interactive Design Environments 11

task decomposition results in a task-method-subtask tree. For example, design
adaptation is a subtask of the design task set up by the case-based method as
illustrated in Figure 4. KRITIK3 uses a model-based method for addressing the
task of adaptation as Figure 5 illustrates. The model-based method sets up its own
subtasks of the design adaptation task. The first of these subtasks is the computation
of differences between the desired function and the function delivered by the
design retrieved from the case memory. KRITIK3 uses a simple pattern matching
procedure for this task.

The TMK language for describing a knowledge system's reasoning is consis-
tent with Marr's [1977] task-level and Newell's [1982] knowledge-level analyses
of intelligent agents. Marr proposed that the reasoning of an intelligent agent can
be analyzed at three levels. At the highest level is a specification of the tasks
addressed and the mechanisms used by the agent. At the next level are the specific
algorithms and data structures that the mechanism uses. At the lowest level is the
architecture (or language) of implementation. Similarly, Newell proposed several
levels of analysis of intelligent agents. The highest level in his scheme pertains to
the agent's goals and the knowledge that enables the accomplishment of the goals.
The next level concerns the symbolic structures that implement the mechanisms of
the higher level. The next lower level specifies the physical devices that implement
the symbolic structures, and so on. Marr suggested that the highest level in his
scheme, the task-level, constituted the computational theory of the agent. Simi-
larly, Newell suggested that the highest level in his scheme, the knowledge level,
constituted the computational theory of the agent. This leads us to the hypothesis
that TMK models capture the content of explanation of design reasoning at the
"right" level of abstraction for communication with human designers.

3. The Explanatory Interface in INTERACTIVE KRITIK

The explanatory interface in INTERACTIVE KRITIK not only explains and justifies
design reasoning and device designs, but also enables the user to explore the
device designs and to reflect on the reasoning.

3.1. DESIGN EXPLANATION IN INTERACTIVE KRITIK

The interface agent in INTERACTIVE KRITIK has access to all the knowledge of
KRITIK3 including its design cases and device models. It uses KRITIK3'S SBF
models of physical devices to graphically illustrate and explain the functioning of
the devices to the users. It also graphically illustrates and explains the reasoning
of the system in generating a new design. Within the context of a design episode,
INTERACTIVE KRITIK provides graphical representations of both the designs re-
trieved from the case memory and the new designs created. Thus it provides
representations of intermediate designs in addition to the final designs. The dif-

188

12 Ashok Goel ET AL.

ferent design versions are presented as the design reasoning unfolds, i.e., in the
context of the design subtask at hand.

The working of a device is illustrated to the user on several interrelated screens.
One screen represents the device function; Figure 2 is an example of INTERACTIVE
KRlTlK's screen illustrating the function of an electrical circuit. The means by
which the function of a device is achieved is explained by the internal causal
behaviors in the SBF device model. Figure 3 shows an illustration by INTERACTIVE
KRITIK of the main behavior, Light-Behavior, of the electrical circuit that produces
light. A different screen shows the secondary behavior, Electricity-Behavior, of
this device: the behavior of the electricity in this circuit.

KRrnK3's reasoning is illustrated on multiple screens identifying the tasks
that the system performs while solving a problem and the methods it uses, as
indicated in Figures 4 and 5. For each (sub)task, INTERACTIVE KRITIK illustrates
the reasoning state both before and after the accomplishment of the (sub)task.
The reasoning state specifies the task context and the method context. In addition,
when appropriate, INTERACTIVE KRITIK illustrates the design knowledge available
to KRITIK3. For example, in explaining the task of case retrieval, it graphically
illustrates the case memory.

3.2. DESIGN EXPLORATION IN INTERACTIVE KRITIK

INTERACTIVE KRITIK enables the user to browse through different facets of a
device design. This includes not only the final design proposed by KRITIK3 but
also the intermediate designs it may have generated, for example, the design
retrieved from the case memory. Exploration of a given design through browsing
is enabled by the SBF model for the design.

As we explained in Section 2.1, different parts of an SBF model are closely
interrelated. For example, the specification of a function in the SBF model acts as
an index to the causal behaviors that accomplish the function. Also, the specifica-
tions of the state transitions in a causal behavior act as indices into the functional
specifications of the structural components of the device. In addition, the descrip-
tion of a device component contains a specification of its functions, and points to
the causal behaviors of the device in which the component plays a functional role.
This indexing scheme enables the user to browse through the SBF model of the
design.

The initial view of an SBF model is a representation of the device's functional
specification, as in Figure 2. From here the user can push interface buttons to move
among the functional, behavioral, and structural representations of the device.
Additionally, the user can click on the name of the behavior by which the function
is achieved (e.g., Light-Behavior'm Figure 2) and "jump" directly to that behavior.
Figure 3 illustrates the Lignt-Benaviorscreen. This screen presents Light-Behavior
and labels all other behaviors (in this case, just the Electricity-Behavior) which the

189

Explanatory Interface in Interactive Design Environments 13

user can select to jump to a different behavior. When a user clicks on a particular
transition a menu pops up allowing the user access to a variety of options relating to
that transition, as indicated in Figure 3. This allows direct access to structural and
behavioral information relating to that transition. For example, if the transition
selected is dependent on another behavior, the user can jump directly to that
behavior. The structure screen provides similar capabilities for looking at the
components of a device and the connections between them.

3.3. DESIGN REFLECTION IN INTERACTIVE KRITIK

The explicit SBF representation of a design enables the user to inspect each element
and aspect of the device design. Similarly, the explicit TMK representation of the
trace of design reasoning enables the user to inspect each task, method, knowledge
source, and reasoning state. This enables the user to reflect on the design reasoning.
For example, the user can examine the TMK reasoning trace and detect potential
flaws in it.

As we mentioned in Section 2.1, the SBF model of a device design not only
explains how the device works but also justifies the design by showing how its
structure delivers the desired functions. And as we mentioned in Section 2.2., the
TMK model not only explains the reasoning of KRrnK3 but also justifies the tasks
it sets up and the methods it uses. In addition, the user can also ask INTERACTIVE
KRITIK for a justification for specific reasoning choices. As an example, consider
the situation in which KRTTIK3 retrieves a design case from its case memory. The
TMK trace shows the user the probe KRITIK3 had prepared to retrieve a case and
the case the system actually retrieved from its case memory. The user can now
ask why did KRITIK3 retrieve this particular design case. Since the reasoning trace
explicitly specifies the probe prepared by KRTTIK3, and how the system's retrieval
method probed the case memory - the branches it followed, the matches it made,
and their results - the trace provides a justification for why the particular case best
matches the given problem.

3.4. CRITIQUE

There is still a great deal of work to be done on INTERACTIVE KRTTIK'S user
interface. Some issues which would need to be addressed before the system
could be used as a practical tool include the improved display of the structure
of a device, the building of better graphical representations, and provision of
additional interaction capabilities. More importantly, INTERACTIVE KRITIK needs
to be formally evaluated in a real world setting. But this kind of evaluation also
requires additional work on the user interface.

190

14 Ashok Goel ET AL.

4. Discussion

This research builds on earlier work on three topics at the intersection of AI
and Design: design methods and process models, design knowledge and device
models, and interactive design environments.

Design Methods and Process Models: A major goal of AI research on design
has been to develop computational methods and process models for design. This
has led to the development of several computational methods for design; examples
include heuristic search [Stallman and Sussman 1977], heuristic association [Mc-
Dermott 1982], and plan instantiation and expansion [Brown and Chandrasekaran
1989, Mittal, Dym and Morjaria 1986]. Recent research on case-based design
(e.g., [Goel and Chandrasekaran 1992, Maher, Balachandran and Zhang 1995,
Navinchandra 1991]) has led to the development of multi-strategy process models
for design. KRITIK3 is a multi-strategy process model of design in two senses.
First, while the high-level design process in KRITIK3 is case-based, the reasoning
about individual subtasks in the case-based process is model-based. For example,
KRITIK3 uses SBF device models for adapting a past design and for evaluating a
candidate design. Second, design adaptation in KRITIK3 involves multiple modifi-
cation methods. While all modification methods make use of SBF device models,
different methods are applicable to different kinds of adaptation tasks.

A closely related research direction concerns the language for specifying
the computational methods and process models for design. McDermott [1982]
describes Rl 's method for configuration design in the language of constraints of a
design problem, components available in the design domain, heuristic associations
pertaining to the constraints and the components, and selection and activation of
the associations. But this language is much too specific to Rl's method. This
method-specificness of the language becomes a major problem for describing and
explaining multi-strategy process models such as KRITIK3.

Task-level [Marr 1977] (or, equivalently, knowledge-level [Newell 1982]) ac-
counts make a clearer separation between knowledge-based reasoning and its
implementation in a knowledge system. In the mid-eighties, Chandrasekaran
[1988] proposed the language of Generic Tasks for analyzing and modeling
knowledge-based problem solving, and showed that this language enables more
perspicuous explanations [Chandrasekaran, Tanner, and Josephson 1989]. In the
late eighties, Chandrasekaran [1990] related Generic Tasks with task structures:
[Chandrasekaran 1989] describes a high-level task structure for design; [Goel
and Chandrasekaran 1992] describe a fine-grained task structure for case-based
design. In their work on the elevator design project called VT, McDermott and his
colleagues [McDermott 1988, Marcus et al 1988] described a similar task-oriented
language for analyzing knowledge-based design.

Our TMK models represent a generalization of task structures based on
Generic Tasks. Also, our hypothesis that TMK models provide the "right" level of

191

Explanatory Interface in Interactive Design Environments 15

abstraction for explaining knowledge-based reasoning is based in part on earlier
work on explanation in the Generic Task framework. But TMK models make the
specific role played by a particular type of knowledge more explicit than earlier
models. Consider, for example, the functional role of an SBF model of a past
design in KRITIK3. Since the SBF model is associated with the past case, it affords
a method for adapting the past design. The TMK model makes this affordance ex-
plicit. Thus, while task structures are useful for explaining the control of reasoning
in terms of task-method interactions, TMK models are also useful for explaining
knowledge-method interactions. In particular, they enable the explanation of the
organization and indexing of different kinds of knowledge, the kinds of knowledge
available for addressing a task, and the methods that become feasible because of
the available knowledge.
Design Knowledge and Device Models: Explanation of physical devices has
been a major topic of research not only in AI and in Design but also in Cognitive
Engineering. AI research on device modeling and explanation can be traced as far
back as Hayes [1979] work on "naive physics" in which he described a component-
substance ontology. At about the same time, de Kleer developed the method of
qualitative simulation for diagnosing electrical circuits [de Kleer 1984]. This
work led to the no-function-in-structure principle [de Kleer and Brown 1984]
which states that the behaviors of each structural component must be represented
in a manner independent of their functional contexts.

In contrast, in the early eighties, Chandrasekaran and his colleagues developed
the Functional Representation (FR) scheme [Sembugamorthy and Chandrasekaran
1986, Chandrasekaran et al 1993] in which the functions are not only represented
explicitly, but also used to reference the causal behaviors responsible for their ac-
complishment. The causal behaviors in turn reference the functions of the device
substructures. Since the function of a substructure refers to the causal behaviors
that result in it, this gives rise to a hierarchical organization of the device model.
Also in the mid-eighties, Bylander proposed a taxonomy of primitive behaviors
[Bylander 1991] based in part on Hayes' component-substance ontology. He also
described a method of composing the primitive behaviors into more complex
behaviors. Our SBF models evolve from Chandrasekaran's Functional Represen-
tation scheme and Bylander's ontology of behaviors. In particular, they use FR's
organizational scheme in which the device functions act as indices to the causal be-
haviors and the causal behaviors index the functions of device substructures. The
specification of the functions, behaviors and structure in SBF models, however, is
based on Bylander's well-defined behavioral ontology.

In Cognitive Engineering, Rasmussen [1985] proposed a hierarchical orga-
nization for presenting device knowledge to human users. His device models
also specify the structure, the behaviors, and the functions at each level in the
hierarchy. Our hypothesis that SBF models provide the "right" level of abstrac-
tion for explaining the working of a device to a human user is supported by

192

16 AshokGoelETAL.

Rasmussen's empirical work. Govindaraj [1987] has used similar hierarchical or-
ganization schemes for enabling engineering students to explore the design of
complex devices containing hundreds of components. Following his device mod-
els, the causal behaviors in our SBF models too are organized along the flow of
specific substances in the device.

In Design research, [Gero et al 1991] and [Umeda et al 1990] have also
described FBS models (for function-behavior-structure). While the details of the
representation schemes differ, in both their FBS models and in our SBF models,
behavior mediates between function and structure. Indeed, a major theme of our
work on the KRITIK family of systems has been that while the design task takes
a functional specification as input and gives a structural specification as output,
much of the design reasoning is at the intermediate behavioral level.
Interactive Design Environments: A core issue in interactive design environ-
ments is how human designers and knowledge systems may share design respon-
sibilities. AI research on interactive design environments covers a broad range of
human/system responsibility sharing. At one extreme, the system acts as a knowl-
edge source but leaves almost all reasoning to the human designer. Traditionally,
knowledge bases for design have contained knowledge of design components and
materials. But recent work on design knowledge bases has focused on provid-
ing human designers with access to libraries of design cases; examples include
CADET [Sycara et al 1991], CADRE [Hua and Fallings 1992], CASECAD [Mä-
her, Balachandran and Zhang 1995], FABEL [Voss et al 1994], Archie [Pearce
et al 1992], AskJef [Barber et al 1992], and ArchieTutor [Goel et al 1993]. At
the other extreme of this spectrum are autonomous knowledge systems that per-
form almost all design reasoning by themselves. Human interaction with these
systems is limited to formulating design problems, supplying the problems to the
system, and receiving the solutions generated by the system; examples include
Rl, AIR-CYL, and the original KRITIK system.

In between these two extremes lies a large range of potential sharing of
responsibility between the system and the user. An important goal of design
environments in the middle of this spectrum is to enable humans to construct
new designs. Fischer et al's [1992] JANUS and Steinberg [1987] VEXED are
two examples of constructive design environments. The goal of the INTERACTIVE
KRITIK project is also the building of a constructive design environment. We
will not describe here how, when completed, INTERACTIVE KRITIK may enable a
human to construct new designs (but see [Grue 1994]). Instead, we focus the rest
of this discussion on the issue of explanatory interface in the current version of
INTERACTIVE KRITIK since this is already operational.

Mostow [1989] has argued that when a knowledge system in an interactive
design environment proposes a solution to a design problem, then the system
should also provide the human designer with an explanation of the reasoning that
led to the solution. His BOGART system uses derivational analogy [Carbonell

193

Explanatory Interface in Interactive Design Environments 17

et al 1989] for generating solutions to design problems. Following the theory of
derivational analogy, BOGART provides the human designer with an explanation
of its reasoning in the form of a derivational record. The derivational record con-
tains a trace of the system's reasoning in the language of design goals, operators,
and heuristics for goal decomposition and operator selection.

We share the premise that in any interactive design environment, the knowl-
edge system must be able to explain its reasoning. However, we believe that
the language of goals, operators and heuristics is too low level to be accessible
and comprehensible to human designers, especially novice designers. Instead, we
hypothesize that the TMK language is at the "right" level of abstraction. More
importantly, we believe that in addition to explaining its reasoning, the knowledge
system must also be able to justify the design solution it proposes. INTERACTIVE

KRITIK uses SBF models for justifying its design solutions.
Further, we believe that it is critical that the explanation of design reasoning

should be grounded in the context of the evolving design solution, and, similarly,
the explanation of the evolving design should be grounded in the context of the
design reasoning that led to it. The advantages of situating design explanations in
this way are two fold. First, situating the explanation of design reasoning in the
context of the evolving design solution makes the explanation more meaningful.
This is because the explanatory terms can now get their meaning from the specific
parts of the design to which they refer. Second, situating the explanation of the
design solution in the context of the design reasoning makes the explanation more
complete because of the availability of previous versions in the evolution of the
design solution.

4.1. CONCLUSIONS

Interactive design environments typically contain knowledge systems as major
components. A human designer may use the interactive environment for design
construction and experimentation. The knowledge systems may help automate
specific and selected portions of this process, leading to human-system coopera-
tive design. This raises the issues of usability and learnability of the knowledge
systems. Human designers are unlikely to work with these systems if they cannot
easily use them and also easily learn how to use them. Designers are more likely
to use these systems if they can form a mental model of how the system works,
how it reasons about problems, and if they can develop some confidence in the
solutions generated by the system.

So the issue becomes how might a knowledge system enable the user to form
a mental model of its reasoning, how might it explain its reasoning and justify its
answers. Our work on INTERACTIVE KRITIK is based on three related ideas:
1. Explanations of a knowledge system need to capture the functional and strategic
content of reasoning in addition to its knowledge content. Task-method-knowledge

194

18 Ashok Goel ET AL.

models enable this kind of task-level and knowledge-level explanation, which
facilitates effective communication between the system and the user.
2. Explanations of physical systems need to capture the functionality and causality
of the systems in addition to their structure. Structure-behavior-function models
enable this kind of explanation at a level of abstraction that facilitates effective
communication between the system and the user.
3. Explanation of design reasoning needs to be grounded in the context of the
evolving design solution, and, similarly, the explanation of the evolving design
needs to be grounded in the context of the design reasoning that led to it.

INTERACTIVE KRITIK demonstrates the computational feasibility of these ideas.

ACKNOWLEDGMENTS

Much of this research was done during 1993-94 when all the authors were with Georgia In-
stitute of Technology in Atlanta, Georgia, USA. Andres Gomez is now with the Key Centre
of Design Computing, University of Sydney, Sydney, Australia; Nathalie Grue" is now with
the Institute for Learning Sciences, Northwestern University, Evanston, Illinois, USA; and
Margaret Recker is now with Victoria University, Wellington, New Zealand. This work has
benefited from contributions by Sambasiva Bhatta, Michael Donahoo, Vinay Pandey, and
Eleni Stroulia. It has been funded in part by a grant from the Advanced Research Projects
Agency and partly by internal seed grants from Georgia Tech's Educational Technology
Institute, College of Computing, Cognitive Science Program, and Graphics, Visualization
and Usability Center.

References

J. Barber, M. Jacobson, L. Penberthy, R. Simpson, S. Bhatta, A. Goel, M. Pearce, M. Shankar, and E.
Stroulia. Integrating Artificial Intelligence and Multimedia Technologies for Interface Design
Advising. NCR Journal ofResearch and Developmental):"'5-85, October 1992.

D. Brown and B. Chandrasekaran. Design Problem Solving: Knowledge Structures and Control
Strategies, Pitman, London, UK, 1989.

T. Bylander. A Theory of Consolidation for Reasoning about Devices. Man-Machine Studies. 35:467-
489,1991.

J. Carbonell, C. Knoblock and S. Minton. PRODIGY: An Integrated Architecture for Planning and
Learning. Architectures for Intelligence, Van Lehn (editor), Lawrence Erlbau, 1989.

B. Chandrasekaran. Generic Tasks as Building Blocks for Knowledge-Based Systems: The Diagnosis
and Routine Design Examples. Knowledge Engineering Review, 3(3):183-219,1988.

B. Chandrasekaran. Task Structures, Knowledge Acquisition and Machine Learning. Machine
Learning, 4:341-347.

B. Chandrasekaran. Design Problem Solving: A Task Analysis. AI Magazine, pp. 59-71, Winter
1990.

B. Chandrasekaran, M. Tanner, and J. Josephson. Explaining control strategies in problem solving.
IEEE Expert. 4(l):9-24,1989.

B. Chandrasekaran, A. Goel, and Y. Iwasaki. Functional Representation as Design Rationale. IEEE
Computer, 48-56, January 1993.

J. de Kleer. How Circuits Work. Artificial Intelligence, 24:205-280,1984.
J. de Kleer and J. Brown. A Qualitative Physics Based on Confluences. Artificial Intelligence,

24:7-83,1984.
G. Fischer, J. Grudin, A. Lemke, R. McCall, J. Ostwald, B. Reeves and F. Shipman. Supporting

Indirect Collaborative Design with Integrated Knowledge-Based Design Environment. Human-

195

Explanatory Interface in Interactive Design Environments 19

Computer Interactions, 7(3):281-314,1992.
J. Gero, H. Lee and K. Tham. Behavior: A Link Between Function and Structure in Design. Proc.

IFIP WG 5.2 Working Conferenceon Intelligent CAD, Columbus, Ohio, pp. 201-230, September
1991.

A. Goel. A Model-based Approach to Case Adaptation. Proc. Thirteenth Annual Conference of the
Cognitive Science Society, Lawrence Erlbaum Associates, pp. 143-148, August 1991.

A. Goel. Representation of Design Functions in Experience-Based Design. Intelligent Computer
Aided Design, D. Brown, M. Waldron and H. Yoshikawa (editors), North-Holland, pp. 283-308,
1992.

A. Goel and B. Chandrasekaran. Functional Representation of Designs and Redesign Problem Solv-
ing. Proc. Eleventh International Joint Conference on Artificial Intelligence, Morgan Kaufmann
Publishers, pp. 1388-1394,1989.

A. Goel and B. Chandrasekaran. Case-Based Design: A Task Analysis. In Artificial Intelligence
Approaches to Engineering Design, Volume II: Innovative Design, Tong and D. Sriram (editors),
Academic Press, pp. 165-184,1992.

A. Goel, M. Pearce, A. Malkawi and K. Liu. A Cross-Domain Experiment in Case-Based Design
Support: ARCHIETUTOR. Proc. AAAI Workshop on Case-Based Reasoning, pp. 111-117,1993.

T. Govindaraj. Qualitative Approximation Methodology for Modeling and Simulation of Large
Dynamic Systems: Applications to a Marine Power Plant. IEEE Transactions on Systems, Man
and Cybernetics, Vol. SMC-17 No. 6, pp. 937-955,1987.

N. Gru6. Illustration, Explanation and Navigation of Physical Devices and Design Processes. M.S.
Thesis, College of Computing, Georgia Institute of Technology, June 1994.

P. Hayes. Naive Physics Manifesto. Expert Systems in the Microelectronics Age, Edinburgh Univer-
sity Press, Edinbugh, UK, pp. 242-270,1979.

K. Hua and B. Faltings. Exploring Case-Based Building Design - CADRE. AI(EDAM), 7(2): 135-143,
1993.

J. McDermott. R1: A Rule-Based Configurer of Computer Systems. Artificial Intelligence, 19:39-88,
1982.

J. McDermott. Preliminary Steps Towards a Taxonomy of Problem Solving Methods. Automating
Knowledge Acquisition for Expert Systems, S. Marcus (editor), Kluwer, Boston, MA, 1988.

M.L. Maher, M.B. Balachandran, and D. Zhang. Case-Based Reasoning in Design, Erlbaum, Hills-
dale, NJ, 1995.

S. Marcus, J. Stout, and J. McDermott. VT: An Expert Elevator Designer that Uses Knowledge-Based
Backtracking. AI Magazine, 9(1):95-112,1988.

D.Marr. Artificial Intelligence — A Personal View. Artificial Intelligence, 9(1), 1977.
S. Mittal, C. Dym and M. Morjaria. PRIDE: An Expert System for the Design of Paper Handling

Systems. Computer, 19(7): 102-114,1986.
J. Mostow. Design by Derivational Analogy: Issues in the Automated Replay of Design Plans.

Artificial Intelligence, 1989.
B. Myers and B. Zanden. Environment for rapidly creating interactive design tools. Visual Computer,

8:94-116,1992.
D. Navinchandra. Exploration andlnnovation in Design: Towards a Computational Model, Springer-

Verlag, New York, 1991.
A. Newell. The Knowledge Level. Artificial Intelligence, 18(1):87-127,1982.
M. Pearce, A. Goel, J. Kolodner, C. Zimring, L. Sentosa and R. Billington. Case-Based Design

Support: A Case Study in Architectural Design. IEEE Expert. 7(5): 14-20,1992.
J. Rasmussen. The Role of Hierarchical Knowledge Representation in Decision Making and System

Management IEEE Trans. Systems, Man and Cybernetics, 15:234-243,1985.
V Sembugamoorthy and B. Chandrasekaran. Functional representation of devices and Compilation

of Diagnostic Problem Solving Systems. Experience, Memory and Reasoning, J. Kolodner and
C. Riesbeck (editors), Erlbaum, Hillsdale, NJ, pp. 47-73,1986.

H. Simon. The Sciences of the Artificial (2nd ed.), MIT Press, 1981.
R. Stallman and G. Sussman. Forward Reasoning and Dependency-Directed Backtracking in a

System for Computer-Aided Circuit Analysis. Artificial Intelligence, 9:135-196,1977.
L. Steinberg. Design as Refinement Plus Constraint Propagation: the VEXED Experience. Proc.

196

20 AshokGoelETAL.

Sixth National Conference on Artificial Intelligence, pp. 830-835,1987.
K. Sycara, D. Navinchandra, R. Guttal, J. Koning, and S. Narsimhan. CADET: A Case-Based

Synthesis Tool for Engineering Design. Expert Systems, 4(2): 157-188,1991
Y. Umeda, H. Takeda, T. Tomiyama, and H. Yoshikawa. Function, Behavior and Structure. In Proc.

Fifth International Conference on Applications of AI in Engineering, 1:177-193,1990.
A. Voss, C-H Coulon, W. Grather, B. Linowski, J. Schaaf, B. Barstsch-Sporl, K. Borner, E. Tammer,

H. Durscke, and M. Knauff. Retrieval of Similar Layouts - About a Very Hybrid Approach in
FABEL. Proc. Third International Conference on AI in Design, Lausanne, pp 625-640, August
1994.

197

Towards Design Learning Environments - I:
Exploring How Devices Work

Ashok K. Goel1, Andres Gömez de Silva Garza1, Nathalie Grue1, J. William
Murdock1, Margaret M. Recker1, and T. Govindaraj2

1 Artificial Intelligence Group
College of Computing

Georgia Institute of Technology
801 Atlantic Drive, Atlanta, Georgia 30332-0280
2 Center for Human-Machine Systems Research

School of Industrial and Systems Engineering
Georgia Institute of Technology

Source: Third International Conference on Intelligent Tutoring Syatems, ITS '96, Montreal, Canada, June 12 -

14, 1996. Published at Intelligent Tutoring Sy»temi, Lecture Notet in Computer Science 1086. Claude Praiton, Gillea

Gauthier, Alan Lesgold, ed*.. New York: Springer, 1996.

Abstract. Knowledge-based support for learning about physical devices
is a classical problem in research on intelligent tutoring systems (ITS).
The large amount of knowledge engineering needed, however, presents
a major difficulty in constructing ITS's for learning how devices work.
Many knowledge-based design systems, on the other hand, already con-
tain libraries of device designs and models. This provides an opportunity
for reusing the legacy device libraries for supporting the learning of how
devices work. We report on an experiment on the computational fea-
sibility of this reuse of device libraries. In particular, we describe how
the structure-behavior-function (SBF) device models in an autonomous
knowledge-based design system called KRITIK enable device explanation
and exploration in an interactive design and learning environment called
INTERACTIVE KRITIK.

1 Motivations and Goals

Design, construction, evaluation, and use of intelligent tutoring systems (ITS)
raises a variety of complex issues. Examples include cognitive issues pertaining to
how humans solve problems, comprehend, and learn; user interface issues relating
to interaction and communication between humans and computers; and knowl-
edge system issues pertaining to the content, representation, organization, and
access of knowledge in the computer. Within the context of knowledge system
issues, a common difficulty is the enormous amount of knowledge engineering
required to construct an ITS for a particular class of users in a specific class
of task domains. One potential solution to this problem is to design reusable

198

ITS's. In this paper, we explore another potential solution, namely, the reuse
of knowledge systems already built for one set of goals to address related ITS
tasks.

In particular, we are interested in the question of whether device libraries
in autonomous knowledge-based design systems can be reused for supporting
interactive learning of the way devices work. We have developed a family of
autonomous knowledge-based device design systems called KRITIK (Goel and
Chandrasekaran 1989, 1992; Goel 1991, 1992). KRITIK addresses the extremely
common functions-to-structure design task in the domain of simple physical
devices. Its high-level process for this design task is case-based: it designs new
devices by adapting the designs of old devices. Its method for adapting old
designs is model-based: it uses case-specific device models for deciding on the
design modifications needed for the current problem. Thus KRITIK contains (i)
a library of design cases and device models, (ii) a case-based process model of
design, and (iii) a family of model-based methods for design adaptation. In this
paper, we examine how an interactive version of KRITIK can enable the learning
of how devices work. An accompanying paper will address the related issue of
learning about design processes and methods.

We are developing an interactive design and learning environment called
INTERACTIVE KRITIK. The new environment provides a user with access to the
device models in KRITIK. It also provides explanations of how the devices work
and enables the user to explore the device models.

2 KRITIK

KRITIK
3
 contains a library of devices and associated structure-behavior-function

(SBF) models. The structure-behavior-function (SBF) model of a device, such as
gyroscope, explicitly represents (i) the function(s) of the device, (ii) the structure
of the device, and (iii) the internal causal behaviors of the device. The internal
causal behaviors specify how the functions of the structural components of the
device are composed into the device functions. An SBF device model is orga-
nized hierarchically so that the device functions reference the causal behaviors
responsible for their accomplishment and the causal behaviors index the func-
tions of the device substructures. As a simple example, let us consider the SBF
model of a device that cools nitric acid.

Structure: The structure of a device in the SBF language is expressed in terms
of its constituent components and substances and the interactions between them.
Figure 1(a) shows a diagrammatic view of the structure of a nitric acid cooler.
Within the device, substances can interact both structurally and behaviorally.
For example, water can flow from pump to chamber only if they are structurally
connected, and due to the function allow water of the pipe that connects them.

The current version of KRITIK runs under Common Lisp using CLOS.

199

•^.P, H
■»xy-pip*-i

[«) atruecur« of MAC la *oka«a.tlc Fora

HN03

loc:p1

tempera tu rarTf
flow:R
addlty: low

contain«
HEAT

magnrlude:Q 1

HNO3
loc:p4

temperature:T2
flow:R
addlty: low

contain«
HEAT

magnitudes 2

BY-BEHAVIOR : pointer to the behavior "Cool Acid"

(b> fuactloB »Cool Aoid" at BC

HN03
loc:p2

temperature:T.j

contain«
HEAT

magnltude:Q1

USING-FUNCTION ALLOW HN03 of HNO 3-pip« -2
USING-FUNCTION ALLOW heat of HN03-plp> -2

UNOER-CONOmON-SUBSTANCE

HNO3
Mate: liquid
«ddlty: low

UNDER-CONDtnON-STRUCTURE
INCLUDES Heat-Ex-Chamber HNOjplpe-2

polat«*

UNDER-CONDfTION-TRANSITION
<TranalUon In which temperature of WATER

change« from t j to t 2>

PARAMETER-RELATION
Tj-TfHO 2Q),
Q2-Q .MR)

loc:p3

tafnperature:T2

HEAT
magnltude:Q 2

to) Baharlor -Cool Acid" eX 1

WATER
loc:ps

t«mp«r«tur«: t-
flowrf

HEAT
magnitude: q 1

USING-FUNCTION ALLOW Water of Heat-Ex-Chamber
USING-FUNCTION ALLOW haatof HN03-plpo-2

UNOER-CONDITION-STRUCTURE
CONTAINS HNO s-plpe-2

HNO3

temperatureiTj
ha« ralatlons: T^> tf

t2> t,

UNDER-CONDfTlON-TRANSmON
<Tranaltlon In which tamparatura of HNO 3

change« from T^to T2>

WATER
locrp.

tamparatura: 12

flow:r*

HEAT

magnitude: q 2

(d) Baha-rior alMt Katar- of «AC

•tot at All locacion* ar« with cafaranca Co ec
All labala Cor iutu «ad tranaiticna

•verarati is this daalim.
ara local to tola daalrja.

Fig. 1. SBF Model of a Nitric Acid Cooler

200

Function: The function of a device in the SBF language is represented as a
schema that specifies the input behavioral state of the device, the behavioral
state it produces as output, and a pointer to the internal causal behavior of the
design that achieves this transformation. Figure 1(b) illustrates the function of
the nitric acid cooler. Both the input state and the output state are represented
as substance schemas. The input state specifies that the substance HNO3 at
location p\ in the topography of the device (Figure 1(a)) includes the property
temperature and the corresponding parameter T\. Similarly the output state
specifies that this property now has the value T2. Finally, the slot by-behavior
points to the causal behavior that achieves the function of cooling acid.

The devices and their SBF models are indexed by the functions delivered
by the devices. Thus the existing nitric acid cooler is indexed by the function
illustrated in Figure 1(b). The functions, in turn, act as indices into the internal
causal behaviors of the SBF model through their by-behavior slot.

Behavior: The SBF model of a device also specifies the internal causal behav-
iors that compose the functions of device substructures into the functions of
the device as a whole. In the SBF language, the internal causal behaviors of
a device are represented as sequences of transitions between behavioral states.
The annotations on the state transitions express the causal, structural, and func-
tional contexts in which the state transitions occur and the state variables get
transformed. The causal context specifies causal relations between the variables
in preceding and succeeding states. The structural context specifies different
structural relations among the components, the substances, and the different
spatial locations of the device. The functional context indicates which functions
of which components in the device are responsible for the transition. Figure 1(c)
shows the causal behavior that explains how heat is decreased in the nitric acid.
The first two states describe the state of the acid prior to entering the chamber
while the last two describe its state after the chamber. The annotation under-
condition-transition on transition^-z between state2 and statez indicates that
the transition occurs due to the action of the water behavior. Similarly, the an-
notation under-condition-structure specifies that the involved components need
to be connected in order for the transition to occur.

3 INTERACTIVE KRITIK

INTERACTIVE KRITIK'S architecture consists of two agents: a design reasoning
agent in the form of KRITIK and an user interface agent4. The architecture is
illustrated in Figure 2; in this figure solid lines represent data flow while dotted
lines represent control flow.

The interface agent in INTERACTIVE KRITIK has access to all the knowledge
of KRITIK. It uses KRITIK's SBF device models to graphically illustrate and
explain the functioning of the devices to users. Additionally, as we will describe in

4 The interface is built using the Garnet tool (Myers and Zanden 1992).

201

Kritk3 Interface Agent

! ' Device
Illustration, j ;

Explanation, and 1
i Models

*

/

*■

Multistrategy
Design

L-L
Exploration of

Physical Devices j
!
i ,

i | '* : '
(TMK

Illustration and i
! ! Design y

:

Explanation of | j
i Cases j i Language : Design Processing

j !

Fig. 2. INTERACTIVE KRITIK'S Architecture

an accompanying paper, the interface agent uses task-method-knowledge (TMK)
models to describe KRITIK'S reasoning.

3.1 Device Explanation in INTERACTIVE KRITIK

INTERACTIVE KRITIK uses SBF device models to explain how a device works
to a user. The SBF model provides a functional and causal explanation of how
the device works in terms of its function, its structure, and its causal behaviors
that specify how the functions of the structural elements get composed into
the functions of the device. INTERACTIVE KRITIK illustrates the SBF model
of a device to the user on several interrelated screens that illustrate the device
structure, functions, and behaviors. For example, Figure 3 shows the illustration
of part of the behavior of the nitric acid cooler that explains how water is heated;
a different screen shows the primary behavior of this device, the cooling of the
acid.

3.2 Device Exploration in INTERACTIVE KRITIK

INTERACTIVE KRITIK also enables the user to browse through different aspects
of a device design. This exploration of a given device too is enabled by the SBF
model. As we explained in Section 2, the SBF language provides a vocabulary
for cross-indexing different parts of an SBF model. For example, the by-behavior
slot in the specification of a function in the SBF model acts as an index to the
causal behaviors that accomplish the function (see Figure lb). Also, the using-
function slot in the specifications of the state transitions in a causal behavior
acts as an index into the functional specifications of the structural components
of the device (see Figure lc). In addition, the under-condition-transition slot in
the specifications of the state transitions in a causal behavior acts as an index
into specific transitions in other causal behaviors of the devices (see Figure Id).
The description of a device component contains a specification of its functions,
and points to the causal behaviors in which the component plays a functional
role.

202

Iff
=5 1Ä < & SS £ £■ K

e k.

i i «

8 3

V-l

I a
iS S ? |

i I 3 i •3 m M OS

»15 *4 ft
•41 ■

«8

S 5

g 3 'S

i ui i s

k. J.

3H"

I s***|?

Fig. 3. A Behavioral Transition within a Nitric Acid Cooler

203

This organizational scheme enables the user to browse through the SBF
model of the design. The initial view of an SBF model in INTERACTIVE KRI-

TIK is a representation of the device's functional specification. From here the
user can use push interface buttons to move among the functional, behavioral,
and structural representations of the device. Additionally, the user can click on
the name of the behavior in the by-behavior slot in the functional specification,
and "jump" directly to that behavior. Figure 3 illustrates a behavior screen.
When a user clicks on a particular transition a menu pops up that provides ad-
ditional information about the transition (as illustrated in Figure 3), and allows
direct access to structural and behavioral information relating to that transition.
For example, if the transition is dependent on another behavior, the user can
jump directly to that behavior by clicking on the name in the under-condition-
transition slot. The structure screen provides similar capabilities for inspecting
the components of a device and the connections between them.

4 Related Work

Explanation of physical devices is a classical issue in intelligent tutoring -ystems.
SOPHIE, designed to teach troubleshooting of electrical circuits, was perhaps the
first intelligent tutoring system to encounter this problem (Brown, Burton and
de Kleer 1982). Early work on SOPHIE motivated much artificial intelligence
and cognitive science research on "qualitative physics" and "naive physics." For
example, de Kleer (1984) developed the method of qualitative simulation for di-
agnosing and predicting the behavior of electrical circuits, while Forbus (1984)
developed a qualitative process theory to describe the behavior of physical pro-
cesses as opposed to physical devices.

KRITIK's theory of SBF device models evolves from the Functional Rep-
resentation (FR) scheme (Sembugamoorthy and Chandrasekaran 1986, Chan-
drasekaran et al. 1993). In FR, the functions are not only represented explicitly,
but also used as indices to causal behaviors responsible for their accomplish-
ment. SBF device models build on the FR scheme in three dimensions. First,
SBF models are based on a well-defined component-substance ontology in which
the structure of a device is viewed as constituted of components, substances and
relations between them. This ontology enables explicit representation of behav-
ioral states. Second, SBF models use Bylander's (1991) taxonomy of primitive
behaviors to classify the device functions. This taxonomy enables more explicit
representation of state transitions. Third, SBF models use Govindaraj's (1987)
organization of causal behaviors along the flow of specific substances in the de-
vice.

The use of SBF models for device illustration, explanation and exploration is
similar to Rasmussen's (1985) earlier work in cognitive engineering. Rasmussen
proposed a hierarchical organization for presenting device knowledge to human
users. His hierarchically-organized device models specify the structure, the be-
haviors, and the functions at each level in the hierarchy. TURBINIA-VYASA

(Vasandani and Govindaraj 1994), uses a similar organizational scheme in a

204

computer-based instructional system that trains operators to troubleshoot and
diagnose faults in marine power plants. But while TURBINIA-VYASA was engi-
neered specifically as an ITS, INTERACTIVE KRITIK reuses KRITIK's knowledge
for the ITS task.

ASKHOWITWORKS (Kedar et al. 1993) is a recent prototype of an interac-
tive manual for physical devices. It indexes device information by the kinds of
questions and answers that occur in typical dialogs, and enables navigation of
the indexed material through question asking. While ASKHOWITWORKS takes
an issue-centered view of device explanations, INTERACTIVE KRITIK takes an
artifact-centered view. The latter is a natural result of reusing device libraries in
knowledge-based design systems for supporting the learning of device models.

5 Conclusions

Knowledge-based support for learning about physical devices is a classical prob-
lem in research on intelligent tutoring systems (ITS). The large amount of knowl-
edge engineering needed, however, presents a major difficulty in constructing
ITS's for learning how devices work. Many knowledge-based design systems,
on the other hand, already contain libraries of device designs. This provides an
opportunity for reusing the design libraries for supporting the learning of how de-
vices work. Our work on INTERACTIVE KRITIK represents an experiment in this
reuse of libraries of device designs and associated structure-behavior-function
(SBF) models.

There is still a great deal of work to be done on device explanation and
exploration within INTERACTIVE KRITIK. Some issues which would need to be
addressed before the system could be used in a real world setting include the
display of the structure of a device, the building of a better user interface, and
provision of additional interaction capabilities. However, our preliminary work on
INTERACTIVE KRITIK does indicate the computational feasibility of using SBF
models for explaining what a device does and how it does it, and for enabling
the user to explore the device model.

Acknowledgments

Much of this research was done during 1993-94 when all the authors were with
Georgia Institute of Technology in Atlanta, Georgia, USA. Andres Gomez is
now with the Key Centre of Design Computing, University of Sydney, Sydney,
Australia; Nathalie Grue is now with the Institute for Learning Sciences, North-
western University, Evanston, Illinois, USA; and Margaret Recker is now with
Victoria University, Wellington, New Zealand. This work has been funded in
part by a grant from the Advanced Research Projects Agency (research contract
#F33615-93-1-1338) and partly by internal seed grants from Georgia Tech's Ed-
ucational Technology Institute, College of Computing, Cognitive Science Pro-
gram, and Graphics, Visualization and Usability Center.

205

References

Brown, J.S., Burton, R., and de Kleer, J.: Pedagogical Natural Language and Knowl-
edge Engineering Techniques in SOPHIE I, II, III. Intelligent Tutoring Systems, S.
Derek and J. S. Brown, (Ed), Academic Press, New York (1982)

Bylander, T.: A Theory of Consolidation for Reasoning about Devices. Man-Machine
Studies 35 (1991) 467-489

Chandrasekaran, B., Goel, A., and Iwasaki, I.: Functional Representation as a Basis
for Design Rationale. IEEE Computer 26(1) (January 1993) 48-56

de Kleer., J.: How Circuits Work. Artificial Intelligence 24 (1984) 205-280
Forbus, F.: Qualitative Process Theory. Artificial Intelligence 24 (1984) 85-168
Goel, A.: A Model-based Approach to Case Adaptation. Proceedings of the Thirteenth

Annual Conference of the Cognitive Science Society, Lawrence Erlbaum Associates
(1991) 143-148

Goel, A.: Representation of Design Functions in Experience-Based Design. Intelligent
Computer Aided Design, D. Brown, M. Waldron and H. Yoshikawa (editors), North-
Holland (1992) 283-308

Goel, A., Chandrasekaran, B.: Functional Representation of Designs and Redesign
Problem Solving. Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence, Morgan Kaufmann Publishers (1989) 1388-1394.

Goel, A., Chandrasekaran, B.: Case-Based Design: A Task Analysis. Artificial Intelli-
gence Approaches to Engineering Design, Volume II: Innovative Design, Tong and
D. Sriram (editors), Academic Press (1992) 165-184

Govindaraj, T.: Qualitative Approximation Methodology for Modeling and Simulation
of Large Dynamic Systems: Applications to a Marine Power Plant. IEEE Transac-
tions on Systems, Man and Cybernetics, SMC-17 No. 6 (1987) 937-955.

Grue, N.: Illustration, Explanation and Navigation of Physical Devices and Design
Processes. M.S. Thesis, College of Computing, Georgia Institute of Technology
(June 1994)

Kedar, E., Baudin, C, Birnbaum, L., Osgood, R., and Bareiss, R.: ASKHOWITWORKS:

An Interactive Intelligent Manual for Devices. INTERCHI'93 (1993)
Myers B., Zanden, B.: Environment for rapidly creating interactive design tools. Visual

Computer 8 (1992) 94-116
Rasmussen, J.: The Role of Hierarchical Knowledge Representation in Decision Making

and System Management. IEEE Trans. Systems, Man and Cybernetics 15 (1985)
234-243

Sembugamoorthy, V., Chandrasekaran., B.: Functional representation of devices and
Compilation of Diagnostic Problem Solving Systems. Experience, Memory and Rea-
soning, J. Kolodner and C. Riesbeck (editors), Elbaum, Hillsdale, New Jersey (1986)
47-73

Vasandani, V., Govindaraj, T.: Knowledge structures for a computer-based training
aid for troubleshooting a complex system. The Use of Computer Models for Expli-
cation, Analysis and Experiential Learning, D. Towne (editor) NATO ASI Series
F, Programme AET, Springer-Verlag (1994)

This article was processed using the KTgX macro package with LLNCS style

206

Meta-Cases: Explaining Case-Based Reasoning

Ashok K. Goel and J. William Murdock

Artificial Intelligence Group
College of Computing

Georgia Institute of Technology

Source: Third European Workshop on Caie-Bued Reasoning, EWCBR '96, Lausanne, Switzerland, November

14 - 16, 1996. Published as Advances in Case-Based Reasoning, Lecture Notes in Computer Science 1168. Ian Smith,

Boi Faltings, eds., New York: Springer, 1996.

Abstract. AI research on case-based reasoning has led to the develop-
ment of many laboratory case-based systems. As we move towards intro-
ducing these systems into work environments, explaining the processes
of case-based reasoning is becoming an increasingly important issue. In
this paper we describe the notion of a meta-case for illustrating, explain-
ing and justifying case-based reasoning. A meta-case contains a trace
of the processing in a problem-solving episode, and provides an expla-
nation of the problem-solving decisions and a (partial) justification for
the solution. The language for representing the problem-solving trace
depends on the model of problem solving. We describe a task-method-
knowledge (TMK) model of problem-solving and describe the represen-
tation of meta-cases in the TMK language. We illustrate this explanatory
scheme with examples from INTERACTIVE KRITIK, a computer-based de-
sign and learning environment presently under development.

1 Background, Motivations and Goals

One goal of AI research on case-based reasoning is to develop theories for de-
signing useful and usable interactive case-based environments. In an interactive
case-based environment, a human may acquire knowledge by navigating and
browsing a case library, address a problem in cooperation with a case-based sys-
tem, or learn about problem solving by observing the problem solving in the
case-based system. The goal of designing case-based interactive systems that are
both useful and usable raises the issue of explaining the reasoning of the case-
based system. This issue is especially important in moving laboratory case-based
systems into real work environments.

Explanation of reasoning is a recurrent theme in AI research. Consider,
for example, the history of AI research on knowledge systems. Starting with
MYCIN (Shortliffe 1976), which probably was the first useful and usable knowl-
edge system, explanation became an increasingly important issue. In the con-
text of MYCIN, for example, AI researchers first built an explanatory interface
called GUIDON for tutoring medical students (Clancey 1987). Explanations in
GUIDON initially were expressed in the language of goals, production rules, and

207

rule activation and selection. But the need for generating useful and usable ex-
planations soon led to the theory of heuristic classification (Clancey 1985) that
provided a task-level account of MYCIN's reasoning. This task-level model in
turn led to the development of a new system called NEOMYCIN, and to an new
explanatory interface called GUIDON-WATCH. In parallel, other AI researchers
developed general task-oriented theories of knowledge-based problem-solving, for
example, Chandrasekaran's theories of Generic Tasks (Chandrasekaran 1988)
and Task Structures (Chandrasekaran 1989). Chandrasekaran, Tanner and Joseph-
son (1989) in particular argued that explanations in interactive knowledge-based
systems need to capture the functional and strategic content of problem solving
at the task level.

Before we go further with this discussion, it may be useful to make some
key distinctions. First, by "explanation," we mean a system's capability of gen-
erating self-explanations, not its ability to generate abductive explanations of
external data. The generation of self-explanation is a meta-task that involves in-
trospective meta-reasoning. Second, self-explanation includes both justification
of generated solutions and justification of knowledge used in generating the so-
lutions in addition to explanation of problem solving. In this paper, we focus
on explanation of problem solving. Third, explanation in an interactive system
involves the issues of content of explanations and modality of interaction. This
paper focuses on explanatory content.

We are exploring the issue of explaining case-based reasoning in the context
of an interactive design and learning environment called INTERACTIVE KRITIK.

INTERACTIVE KRITIK directly evolves from a family of autonomous systems
called KRITIK (Goel 1991, 1992; Goel and Chandrasekaran 1989, 1992). KRITIK

and its successor systems combined case-based and model-based reasoning for
functional design of physical devices: the high-level computational process is
case-based, and structure-behavior-function device models provide (i) a model-
based vocabulary for indexing, retrieving and storing design cases, and (ii) a set
of model-based strategies for adapting a design case and evaluating the modified
design. KRITIK3 provides both the case base and the case-based reasoner for
INTERACTIVE KRITIK.

Our earlier work on case-based reasoning has naturally led us to the notion
of meta-cases for the meta-task of explanation. A meta-case contains a trace of
the processing in a problem-solving episode. We use the term 'meta-case' to dis-
tinguish it from an 'object-case' that may specify, say, a specific design. Our idea
of a meta-case is related to Chandrasekaran's (1989) notion of Task Structures.
A task structure of a problem solver specifies a recursive task-method-subtask
decomposition that sets up a virtual architecture for the problem solver. The
architecture is virtual because more than one method may be applicable to any
(sub)task in the task structure. When a specific problem is presented to this vir-
tual architecture, specific methods get selected, specific subtasks get spawned,
and specific branches in the virtual architecture get instantiated. A meta-case
corresponds to a specific instantiation of this virtual architecture for a particular
problem. It follows that a meta-case is represented in the language of tasks and

208

methods.
The goal of this paper is describe the notion of meta-cases, and to illustrate

the use of meta-cases for explanation in interactive systems through examples
from INTERACTIVE KRITIK. The rest of this paper is organized as follows: in the
next section, we describe a task-method-knowledge theory of problem solving,
and, in section 3, we present an illustrative example from INTERACTIVE KRITIK.

In section 4, we describe INTERACTIVE KRITIK and present an illustrative ex-
ample from INTERACTIVE KRITIK. In section 5, we compare our work to related
research and conclude the paper.

2 Task-Method-Knowledge Specification of Meta-Cases

AI research on knowledge systems has led to several task-oriented theories of
problem solving, knowledge acquisition and explanation, for example, (Chan-
drasekaran 1988, 1989; McDermott 1988, Steels 1990; Wielenga, Schreiber and
Breuker 1992). Although the different theories vary in many details, they all
specify the content and organization of problem solving in terms of domain-
independent classes of goals (called tasks) and task-specific patterns of inference
(called methods). Chandrasekaran's (1989) theory of Task Structures provides
the starting point for our work on modeling and explaining case-based reasoning.
The main difference between our work and his theory is that our theory makes
the content, form, organization of knowledge and its functional role in problem
solving more explicit. For this reason, we call it the Task-Method-Knowledge
(TMK) theory.

A task-method-knowledge (TMK) model of a specific problem solver has
three main elements. The first element, the task, can be characterized by the
types of information it takes as input and gives as output. For example, a com-
mon design task takes as input a specification of the functions desired of an
artifact, and has the goal of giving as output a specification of the structure for
the artifact that can deliver the desired functions. The second element in the
TMK model is the method. A method can be characterized by (i) the type of
knowledge it uses, (ii) the subtasks (if any) it sets up, and (iii) the control it
exercises over the processing of subtasks. For example, the method of case-based
reasoning uses knowledge of past cases, sets up the subtasks of retrieval, adap-
tation, evaluation and storage, orders these subtasks as listed here, and controls
their processing so that the last three subtasks are processed only if the retrieval
task fails to access an exactly-matching case that directly provides a solution
to the given problem. In general, a number of methods may be applicable to a
given task. The third element in the TMK model is knowledge. A specific type of
knowledge can be characterized by its content, by its form of representation, and
by its organization. To illustrate, consider the example of diagnostic knowledge.
In some domains, models that specify how a device works may be available. In
an interactive system, this knowledge system this knowledge may be represented
in the form of directed acyclic graphs (DAGs) and the DAGs may be organized
in a hierarchy, for example, an abstraction hierarchy.

209

Note that the task-method decomposition in a TMK model is recursive: since
a method used for addressing a task spawns subtasks, the same task-method de-
composition gets repeated for each of the subtasks. This recursive decomposition
bottoms out when, for a given subtask, knowledge is available that directly solves
the subtask, i.e., the knowledge directly corresponds to input-output specifica-
tion of the task. We will use the term procedure to refer to this kind of method:
a procedure does not spawn any subtasks. Also, we will use the term strategy
to refer to subtrees in the task-method decomposition: a strategy is a specific
task-method decomposition. Informally, a task in the TMK specification corre-
spond to "goals" and the leaf-level subtasks correspond to the "operators" in
means-ends analysis. Stroulia and Goel (1994a, 1994b) provide a semi-formal
notation for representing tasks, methods, procedures, strategies, and knowledge.

A meta-case contains the trace of processing in a problem-solving episode.
The TMK theory of problem solving provides a language for meta-cases in terms
of tasks, methods and knowledge.

3 An Illustrative Example

To illustrate TMK models, we will briefly describe here the TMK model for
KRITIK3, which provides the foundation for INTERACTIVE KRITIK. The primary
task addressed by KRITIK3 is the extremely common functions-to-structure de-
sign task in the domain of physical devices. The functions-to-structure design
task takes as input the functional specification of the desired design. For exam-
ple, the functions-to-structure design of a flashlight may take as an input the
specification of its function of creating light when a force is applied on a switch.
This task has the goal of giving as output the specification of a structure that
satisfies the given functional specification, i.e., a structure that results in the
given functions.

KRITIK3'S primary method for accomplishing this task is case-based reason-
ing. Its case-based method sets up four subtasks of the design task: problem
elaboration, case retrieval, design adaptation, and case storage as illustrated in
Figure 1. Note this figure shows only some of the high-level tasks and methods
in KRITIK3'S TMK model; it does not show the detailed decomposition of each
task-method branch, nor does it show the kinds of knowledge that are used by
the different methods. The rectangles in the figure represent tasks while the ovals
represent methods; points beneath some of the rectangles/ovals in the figure in-
dicate further decomposition of the tasks/methods.

The task of problem elaboration takes as input the specification of the desired
function of the new design. It has the goal of generating a probe to be used
by design-retrieval for deciding on a new case to use. KRITIK3 uses domain-
specific heuristics to generate probes based on the surface features of the problem
specification. The task of case retrieval takes as input the probes generated
by the problem elaboration component. It has the goal of accessing a design
case and the associated SBF model whose functional specification is similar to
the specification of desired design. KRITIK3'S case memory is organized in a

210

Function to
Structure Design

I Case Based
', Reasoning j

Domain Specific) (Discrimination Model Based > ^ Discrimination ^

Heuristics ,' V Tree Search J \ Adaptation ; i, ^J^J

Computation of i
Functional Diagnosis
Differences i

Model Based xi '' ' (ModelBased \ (' '\
[Linear Comparison) 4mkiie j (Generate and Test I | Functional ; i Memory Storage) Analyis Abstrction .^

Substance ^ (<%*«£ Component A
Replacement j

Component Ni
Replication)

Qualitative
Simulation

V

Fig. 1. The Tasks and Methods of KRITIK3

discrimination tree, with features in the functional specifications of the design
cases acting as the discriminants. Its retrieval method searches through this
discrimination tree to find the case that most closely matches the probe.

The task of design adaptation takes as input (i) the specification of the
constraints on the desired design, and (ii) the specifications of the constraints
on and the structure of the candidate design. It has the goal of giving as output
a modified design structure that satisfies the specified constraints. KRITIK3 uses
a model-based method of design adaptation which divides the design task into
three subtasks: computation of functional differences, diagnosis, and repair. The
idea here is that the candidate design can be viewed as a failed attempt to
accomplish the desired specifications. The old design is first checked to see how
its functionality differs from the desired functionality. The model of the design is

211

then analyzed in detail to determine one or more possible causes for the observed
difference. Lastly, KRITIK3 makes modifications to the device with the intent of
inducing the desired functionality.

The method of repair used by KRITIK3 is generate and test. This method
sets up two subtasks of the repair task: model revision and model verification.
The task of model revision takes as input (i) the specification of the constraints
on the desired design, and (ii) the model of the candidate design. It has the goal
of giving as output a modified model that is expected to satisfy the constraints
on the desired design. KRITIK3 knows of several model revision methods such as
the substitution of one component for another or the replication of a component.
KRITIK3 dynamically chooses a method for model revision at run time based on
the results of the diagnosis task. Depending on the modification goals set up
by the diagnosis task, the system may also use more than one model-revision

method.
The task of model verification takes as input (i) the specification of the con-

straints on the desired design, and (ii) the specification of the structure of the
modified design. It has the goal of giving as output an evaluation of whether the
modified structure satisfies the specified constraints. KRITIK3 qualitatively sim-
ulates the revised SBF model to verify whether it delivers the functions desired

of it.
The task of case storage takes as input (i) a specification of the case mem-

ory, and (ii) a specification of a new case. It has the goal of giving as output a
specification of the new case memory with the new case appropriately indexed
and organized in it. Recall that KRITIK3'S case memory is organized in a dis-
crimination tree. The system uses a model-based method for the task of storing
a new case in the tree. This method sets up the subtasks of indexing learning
and case placement. The SBF model of the new design case enables the learning
of the appropriate index to the new case. This directly enables the task of case
placement.

4 INTERACTIVE KRITIK

INTERACTIVE KRITIK is an interactive design environment that illustrates both
KRITIK3'S case-based reasoning and the device designs generated by the system
(Goel et al 1995; Gruel994). When completed, INTERACTIVE KRITIK is intended
to serve as a constructive design and learning environment. At present, when
asked by a human user INTERACTIVE KRITIK can invoke KRITIK3 to address
specific kinds of design problems. In addition, INTERACTIVE KRITIK can provide
explanations and justifications of KRITIK3'S reasoning and results, enable the
human user to explore the system's design knowledge, and also enable the user
to access a library of meta-cases for examining specific reasoning traces. In this
section, we describe only how INTERACTIVE KRITIK explains the case-based
reasoning in KRITIK3, not the device designs the system generates.1

1 INTERACTIVE KRITIK'S explanation of devices is described in (Goel et al 1996).

212

4.1 Explanation of Case-Based Reasoning in INTERACTIVE KRITIK

INTERACTIVE KRITIK'S architecture consists of two agents: a case-based design
agent in the form of KRITIK3 and an user interface agent2. The architecture of
INTERACTIVE KRITIK is illustrated in Figure 2; in this figure solid lines represent
data flow while dotted lines represent control flow.

Kritk3 Interface Agent

I i ! Illustration.
Device . L-J J Explanation, and
Mode's ; ; ; ! Exploration of

i _. *| Physical Devices
Multistrategy

Design

j , ; i ,' ', *i Illustration and
; j Design | ; i TMK | J Explanation-of
| I. Cases | [Language ! i Design Processing

J L

Fig. 2. INTERACTIVE KRITIK'S Architecture

The interface agent in INTERACTIVE KRITIK has access to all the knowl-
edge of KRITIK3 including its design cases and device models. It uses KRITIK3'S

structure-behavior-function (SBF) models of physical devices to graphically il-
lustrate and explain the functioning of the devices to the users. It uses the TMK
model of KRITIK3'S case-based reasoning to graphically illustrate and explain
how the system generates a new design. The trace of this reasoning is available
for inspection in the form of a meta-case.

The application of multi-strategy case-based reasoning in INTERACTIVE KRI-
TIK is illustrated to the user on several interrelated screens. Figure 3 shows the
first task screen in INTERACTIVE KRITIK. It informs the user that the current
task is the Design task. It also shows that KRITIK3 is planning to use the Case-
Based Reasoning method, and displays the subtasks that are set up by this
method: Problem Elaboration, Case Retrieval, Design Adaptation, and Case
Storage.

INTERACTIVE KRITIK provides a set of screens for presenting the user with
information about the input and output of the subtasks and uses highlighting
features to inform the user of the reasoning state: which tasks have already been
performed, what is the current task and what subtasks are left. For example,
Figure 4 shows the representation of the subtasks set up by the Model-Based
Adaptation method used for the design adaptation task. It illustrates a deeper
level of KRITIK3'S task-method decomposition.

The interface is built using the Garnet tool (Myers and Zanden 1992).

213

Fig. 3. The Overall Design Task

214

Fig. 4. The Design Adaptation Task

215

4.2 Reflection on Case-Based Reasoning in INTERACTIVE KRITIK

INTERACTIVE KRITIK makes available its reasoning traces in the form of meta-
cases. The TMK representation of the trace of reasoning enables the user to
inspect each task, method, knowledge source, and reasoning state. This enables
the user to reflect on the design reasoning. For example, the user can examine
the TMK reasoning trace and detect potential flaws in it.

The user can also ask INTERACTIVE KRITIK for a justification for some kinds
of reasoning choices. As an example, consider the situation in which INTERAC-
TIVE KRITIK is given a problem, INTERACTIVE KRITIK invokes KRITIK3 to solve
the problem, and, during the course of reasoning, KRITIK3 retrieves a design case
from its case memory. The meta-case for this design episode shows the user the
probe KRITIK3 had prepared to retrieve a case and the case the system actually
retrieved from its case memory. The user can now ask why did KRITIK3 retrieve
this particular design case. Since the reasoning trace explicitly specifies the probe
prepared by KRITIK3, and how the system's retrieval method probed the case
memory - the branches it followed, the matches it made, and their results. In this
way, the trace provides a justification for why the particular case best matches

the given problem.

5 Discussion

In this section, we compare our work with related research on explanation in
interactive case-based environments. In addition, we critique INTERACTIVE KRI-

TIK and point to further work needed on it.

5.1 Related Research

We already have pointed out the relationship between our work on explanation
of case-based reasoning and task-oriented theories of problem solving and ex-
planation. In particular, our use of the TMK model for explaining case-based
reasoning is an extension of Chandrasekaran, Tanner and Josephson's (1989)
use of Task Structures for explanation of control strategies. The literature on
the use of task models of problem solving for explanation and reflection is vast
(e.g. (Arcos and Plaza 1994)), and we will not cover it here in its full gener-
ality. Instead, we focus on the relationship of our work with other interactive
case-based problem-solving and design environments.

AI research has led to the development of several paradigms of case-based
reasoning and numerous laboratory case-based systems. Kolodner (1993) pro-
vides a recent summary of the main paradigms and a compilation of the major
systems. Maher, Balachandran and Zhang (1995) provide a recent summary of
major case-based design systems, such as their own CADSYN and CASECAD
systems, CADET (Sycara et al 1991), CADRE (Hua and Faltings), and FABEL
(Voss et al 1994). None of these interactive design environments provide any
kind of explanatory interface. This is also true of our own earlier work on in-
teractive case-based design aiding systems such as Archie (Pearce et al 1992),

216

AskJef (Barber et al 1992) and ArchieTutor (Goel et al 1993). These systems pro-
vided human designers with access to design case libraries in different domains.
AskJef, for example, used multi-media (text, graphics, animation and sound) for
enabling the navigation and browsing of a library of annotated design cases in
the domain of software interface design. While the case annotations provided
an explanation of the designs, they did not provide an adequate explanation of
case-based reasoning itself.

The JANUS system of Fischer et al (1992) and BOGART system of Mostow
(1989) are two notable exceptions to this. Like INTERACTIVE KRITIK, both
JANUS and BOGART provide explanation in the form of reasoning traces. Un-
like INTERACTIVE KRITIK, the reasoning traces in both are part of the object
cases themselves. Fischer et al have advocated that interactive design environ-
ments should provide access not just to a catalog of past designs but also to the
reasoning that led to the specific designs in the catalog. Their JANUS system
adopts the issue-based view of group problem solving (Rittel 1972), and provides
a user with a trace of the issues that arose in a past design problem-solving
episode, the arguments made for and against various design choices, and the jus-
tifications for the design decisions. Fischer et al argue that the issue-based trace
of past design problem-solving episodes enables the user to make arguments for
and against a specific design choice in the context of new problems, and, thus,
empowers the user to create more effective designs.

Mostow adopts a similar stance towards the knowledge content of design cases
in interactive design environments. Based on CarbonelPs (1983,1986) framework
of derivational analogy, Mostow's BOGART system provides a user with traces
of past design problem-solving episodes in the language of goals, operators, and
heuristics for goal decomposition and operator selection. He argues that this
derivational record of the problem solving in a past design case enables the user
to more effectively transfer knowledge from the past case to the new problem.

While INTERACTIVE KRITIK shares this explanatory stance with JANUS and
BOGART, we believe that the usefulness and usability of the reasoning traces
used in these earlier systems are limited. The difficulty with the JANUS scheme
is that it uses an informal language for representing the trace: what is (and what
is not) a valid design issue, a valid argument for a design choice, a valid justi-
fication for a design decision? This informal specification may be the best that
can be accomplished in recording the design rationale, i.e., the trace of decision
making in a group. But in the case of explaining problem solving in an inter-
active system, it is possible to automate the process of explanation generation.
And the difficulty with the BOGART scheme is that it represents the trace at
too low a level of abstraction, e.g., operators, operator selection, and operator
selection heuristics. This makes for a poor explanatory interface. Our argument
mirrors Clancey's argument against the explanatory interface of his own Guidon
system, which too explained problem solving in the language of goals, rules,
rule activation, and rule activation heuristics. Thus JANUS's language for rep-
resenting traces of design problem solving is too informal to be automated, and
BOGART's language is too low level to be useful or usable in an interactive

217

setting. The TMK language for specifying meta-cases in INTERACTIVE KRITIK,

we believe, addresses both shortcomings.

5.2 Critique

There is still a great deal of work to be done on INTERACTIVE KRITIK 'S user
interface. As we mentioned in the introduction, so far we have focused on the
content and generation of explanations, not on the display and presentation
of explanations. Some issues which would need to be addressed before INTER-

ACTIVE KRITIK can be used as a practical tool include the improved display
of explanations, the building of better graphical representations, and provision
of additional interaction capabilities. We recognize that INTERACTIVE KRITIK

needs to be formally evaluated in a real world setting. But this kind of evaluation

too requires additional work on the user interface.

5.3 Conclusions

Explanation is an important issue in the design of interactive case-based envi-
ronments. In fact, if past experience in use of knowledge systems in real work
environments is any guide, then explanation of problem solving is a critical is-
sue in moving case-based systems out of the laboratory. Past experience with
knowledge systems also indicates that explanations need to capture the func-
tional, strategic and knowledge content of reasoning at the task level.

Meta-cases that contain reasoning traces of problem solving provide one way
for explaining case-based problem solving. But to be useful and usable, meta-
cases need to specify the trace at the task level. The Task-Method-Knowledge is
a general task-level model of problem solving that sets up a virtual architecture
for the problem solver. Meta-cases correspond to a specific instantiation of this
virtual architecture for a particular problem. This insures that the meta-cases
specify the task-level content and organization of reasoning. INTERACTIVE KRI-
TIK demonstrates the computational feasibility of using meta-cases for explaining
case-based reasoning.

A cknowledgment s

Sambasiva Bhatta, Andres Gömez, Murali Shankar, and Eleni Stroulia con-
tributed to the programming of KRITIK3, while Michael Donahoo, Andres Gomez,
Gregory Grace, and Nathalie Grue contributed to the programming of INTERAC-

TIVE KRITIK. This work has benefited from many discussions with T. Govindaraj
and Margaret Recker. It has been funded in part by a grant from the Advanced
Research Projects Agency (research contract #F33615-93-l-1338) and partly by
internal seed grants from Georgia Tech's Educational Technology Institute, Col-
lege of Computing, Cognitive Science Program, and Graphics, Visualization and
Usability Center.

218

References

Arcos, L. and Plaza, E. A Reflective Architecture for Integrated Memory-Based Learn-
ing and Reasoning. In Lecture Notes in Artificial Intelligence - 837, pp. 289-300,
Berlin: Springer-Verlag, 1994.

Barber, J., Jacobson, M., Penberthy, L., Simpson, R., Bhatta, S., Goel, A., Pearce,
M., Shankar, M., and Stroulia, E. Integrating Artificial Intelligence and Multi-
media Technologies for Interface Design Advising. NCR Journal of Research and
Development,6(l):75-85, October 1992.

Carbonell, J. Learning by Analogy: Formulating and Generalizing Plans from Past
Experience. Machine Learning: An Artificial Intelligence Approach, R. Michalski,
J. Carbonell, and T. Mitchell (editors). Palo Alto, CA: Tioga, 1983.

Carbonell, J. Derivational Analogy: A Theory of Reconstructive Problem Solving and
Expertise Acquisition. Machine Learning: An Artificial Intelligence Approach, Vol-
ume II, R. Michalski, J. Carbonell, and T. Mitchell (editors). San Mateo, CA:
Morgan Kauffman, 1986.

Chandrasekaran, B. Generic Tasks as Building Blocks for Knowledge-Based Systems:
The Diagnosis and Routine Design Examples. Knowledge Engineering Review,
3(3):183-219, 1988.

Chandrasekaran, B. Task Structures, Knowledge Acquisition and Machine Learning.
Machine Learning, 4:341-347.

Chandrasekaran, B. Design Problem Solving: A Task Analysis. AI Magazine, 59-71.
Winter 1990.

Chandrasekaran, B., Tanner, M., and Josephson, J. Explaining Control Strategies in
Problem Solving. IEEE Expert, 4(l):9-24, 1989.

Clancey, W. Heuristic Classification. Artificial Intelligence, 27(3): 289-350, 1985.
Clancey, W. Knowledge-Based Tutoring: The Guidon Program. Cambridge. MA: MIT

Press, 1987.
Fischer, G., Grudin, J., Lemke, A., McCall, R., Ostwald, J., Reeves, B. and Shipman, F.

Supporting Indirect Collaborative Design with Integrated Knowledge-Based Design
Environment. Human- Computer Interactions, 7(3) :281-314, 1992.

Goel, A. A Model-based Approach to Case Adaptation. Proc. Thirteenth Annual Con-
ference of the Cognitive Science Society, Lawrence Erlbaum Associates, pp. 143-148,
August 1991.

Goel, A. Representation of Design Functions in Experience-Based Design. Intelligent
Computer Aided Design, D. Brown, M. Waldron, and H. Yoshikawa (editors),
North-Holland, pp. 283-308, 1992.

Goel, A. and Chandrasekaran, B. Functional Representation of Designs and Redesign
Problem Solving. Proc. Eleventh International Joint Conference on Artificial In-
telligence, Morgan Kaufmann Publishers, pp. 1388-1394, 1989.

Goel, A. and Chandrasekaran, B. Case-Based Design: A Task Analysis. In Artificial
Intelligence Approaches to Engineering Design, Volume II: Innovative Design, Tong
and D. Sriram (editors), Academic Press, pp. 165-184, 1992.

Goel, A., Pearce, M., Malkawi, A. and Liu, K. A Cross-Domain Experiment in Case-
Based Design Support: ARCHIETUTOR. Proc. AAAI Workshop on Case-Based Rea-
soning, pp. 111-117, 1993.

Goel, A., Gomez, A., Grue, N., Murdock, J. W., Recker, M., and Govindaraj, T. Design
Explanations in Interactive Design Environments. In Proc. Fourth International
Conference on AI in Design, Palo Alto, June 1996.

219

Gru, N.e. Illustration, Explanation and Navigation of Physical Devices and Design
Processes. M.Thesis, S., College of Computing, Georgia Institute of Technology,
June 1994.

Hua, K. and Faltings, B. Exploring Case-Based Building Design - CADRE. AI(EDAM),
7(2):135-143, 1993.

Kolodner, J. Case-Based Reasoning, Sam Mateo, CA: Morgan Kauffman, 1993.
McDermott, J. Preliminary Steps Towards a Taxonomy of Problem Solving Methods.

Automating Knowledge Acquisition for Expert Systems, S. Marcus (editor), Kluwer,
Boston, MA, 1988.

Maher, M. L., Balachandran, M. B., and Zhang, D. Case-Based Reasoning in Design,
Erlbaum, Hillsdale, NJ, 1995.

Mostow, J. Design by Derivational Analogy: Issues in the Automated Replay of Design
Plans. Artificial Intelligence. 1989.

Myers, B. and Zanden, B. Environment for rapidly creating interactive design tools.
Visual Computer, 8:94-116, 1992.

Pearce, M., Goel, A., Kolodner, J., Zimring, C, Sentosa, L. and Billington, R. Case-
Based Design Support: A Case Study in Architectural Design. IEEE Expert.
7(5):14-20, 1992.

Rittel, H. On the Planning Crisis: System Analysis of the First and Second Generations.
Bedriftsokonomen, 8:390-396, 1972.

Shortliffe, E. Computer-Based Medical Consultation: MYCIN, New York: American
Elsevier, 1976.

Steels, L. Components of Expertise. AI Magazine, ll(2):29-49, 1988.
Stroulia, E. and Goel, A. A Model-Based Approach to Reflective Learning. In Proc.

1994 European Conference on Machine Learning, Catania, Italy, April 1994, pp.
287-306; available as Lecture Notes in Artificial Intelligence 784 - Machine Learn-
ing, F. Bergadano and L. De Raedt (editors), Berlin: Springer-Verlag, 1994.

Stroulia, E. and Goel, A. Reflective Self-Adaptive Problem Solvers. In Proc. 1994 Eu-
ropean Conference on Knowledge Acquisition, Germany, September 1994; available
as Lecture Notes in Artificial Intelligence - A Future for Knowledge Acquisition, L.
Steels, G. Schreiber, and W. Van de Velde (editors), Berlin: Springer-Verlag, 1994.

Voss, A., Coulon, C-H, Grather, W., Linowski, B., Schaaf, J., Barstsch, Sporl, B.,
Borner, K., Tammer, E., Durscke, H., and Knauff, M. Retrieval of Similar Layouts
- About a Very Hybrid Approach in FABEL. Proc. Third International Conference
on AI in Design, Lausanne, pp 625-640, August 1994.

Wielinga, B., Schreiber, G. and Breuker, J. KADS: A Modelling Approach to Knowl-
edge Acquisition. Knowledge Engineering, 4:5-53, 1992.

This article was processed using the I^IjgX macro package with LLNCS style

220

Functional Explanations in Design

Ashok K. Goel1, Andres Gömez de Silva Garza,
Nathalie Grue, J. William Murdock, and Margaret M. Recker

Intelligence and Design Group, College of Computing, Georgia Institute of Technology

Source: IJCAI-97 Workshop on Modeling and Reasoning about Function

Abstract

A key step in explaining how something works is explaining what that thing was intended to do.
This is equally true of physical devices and of abstract devices such as knowledge systems. In this paper,
we consider the problem of providing functionally oriented explanations of a knowledge-based design
system. In particular, we analyze the content of explanations of reasoning in the context of the design of
physical devices. We describe a language for expressing explanations: task-method-knowledge models.
Additionally, we describe the INTERACTIVE KRITIK system, a computer program that makes use of these
representations to visually illustrate the system's reasoning.

1 Introduction
One crucial aspect of the success or failure of an intelligent information system is the extent to which it enables
users to understand what it is doing. Fortunately, many AI systems have an advantage which facilitates
the development of effective explanatory interfaces: knowledge and reasoning is specifically designed from
a functional perspective, i.e., individual elements of information and processing each contain a specific,
rigorously defined purpose with respect to the overall computation. Hence it may be possible to use this
understanding of purpose to describe how these elements are combined.

The particular task for which we have examined functional explanations of reasoning is design. Design
is a common, everyday information processing activity. Two of the most obvious goals that a user might
possess in understanding a knowledge-based design system include comprehension of physical devices and
comprehension of design processes. We believe that device comprehension is an important goal in and of
itself, but that understanding design process must be tightly coupled with some comprehension of the devices
being designed. In this paper we address the issue of explaining design processes as well as the relationship
between this task and that of conveying an understanding of the devices themselves.

The issue of how a knowledge system might explain its reasoning has two related but distinct facets
pertaining to the content and modality of presentation of explanations to the human user, and the content
and the representation of design knowledge and reasoning in the knowledge system. Our research on process
explanations centers on the content of explanations presented to the user, and the content and representation
of design knowledge and reasoning needed for generating the explanations.

The presentation of a design, such as that of a gyroscope, depends both on the design phase and the
design domain. The content of an explanation for the design of gyroscope is different from that of an office
building or a software interface. This is because the relationships between the function and the structure
of the gyroscope design are fundamentally different from the function-structure relations in the design of an
office building or a software interface. Our work focuses on the preliminary (conceptual, qualitative) design
of simple, common physical devices such as electrical circuits, heat exchangers and angular momentum
controllers. The input to this task is a specification of the desired functions, and the output is a specification
of a structure that can deliver the desired functions.

'Contact: Ashok Goel, 110 College of Computing Building, Georgia Institute of Technology, 801 Atlantic Drive, Atlanta,
Georgia 30332-0280, goel@cc.gatech.edu

221

We use task-method-knowledge models (TMK models) [Goel and Chandrasekaran 1992; Stroulia and
Goel 1994, 1995] for describing reasoning about a design problem. The TMK model of a design reasoner
provides a functional and strategic explanation of reasoning in terms of the task, the methods used to
accomplish the task, the subtasks spawned by the methods, and the knowledge used by the methods. We are
developing an interactive design and learning environment called INTERACTIVE KRITIK. A major component
of INTERACTIVE KRITIK is a knowledge-based design system called KRITIK3. INTERACTIVE KRITIK provides
visual explanations and justifications of both KRITIK3'S reasoning and the solutions it proposes. A key feature
of INTERACTIVE KRITIK is that explanation of the design reasoning in a design episode is situated in the
context of the evolving design solution, and, similarly, explanation of the design solution is situated in the
context of the reasoning that led to it. In this paper we examine the explanations of reasoning processes.
It is our hypothesis that TMK models capture the content of explanation of a design episode at the "right"
level of abstraction.

2 Task-Method-Knowledge Models

A task-method-knowledge (TMK) model of knowledge-based design has three main elements. The first
element, the task, can be characterized by the types of information it takes as input and gives as output.
For example, a common design task takes as input a specification of the functions desired of an artifact, and
has the goal of giving as output a specification of the structure for the artifact that can deliver the desired
functions. The second element in the TMK model is the method. A method can be characterized by (i)
the type of knowledge it uses, (ii) the subtasks (if any) it sets up, and (iii) the control it exercises over the
processing of subtasks. For example, the method of case-based reasoning uses knowledge of past cases, sets
up the subtasks of retrieval, adaptation, evaluation and storage, orders these subtasks as listed here, and
controls their processing so that the last three subtasks are processed only if the retrieval task fails to access
an exactly-matching case that directly provides a solution to the given problem. In general, a number of
methods may be applicable to a given task.

The third element in the TMK model is knowledge. A specific type of knowledge can be characterized
by its content, by its form of representation, and by its organization. To illustrate, consider the example of
diagnostic knowledge. In some domains, heuristic associations that directly map signs and symptoms into
fault categories are available. In a knowledge system, this knowledge might be represented in the form of
production rules and organized as an unordered list.

A TMK model is derived by analysis of the task and the domain. In describing the derivation of a
TMK model, it is convenient to adopt the viewpoint of a system designer. Let us suppose that a system
designer has to design a system for solving a given class of tasks in a given class of domains, for example,
the functions-to-structure design task in the domain of physical devices. The designer may perform task and
domain analysis as follows.

• Task Identification: First, the designer may specify the task in terms of the generic types of infor-
mation it takes as input and the generic types of information desired as its output.

• Knowledge Identification: Next, the designer may analyze the domain in terms of the kinds of
knowledge available in it.

• Method Identification: Then, the designer may identify different methods afforded by the different
kinds of available knowledge. This step also involves the identification of the subtasks that each method
may set up.

• Method Selection: Next, since more than one method may be feasible, the system designer may
specify the criteria for selecting a specific method. These criteria may include the following.

- Properties of the Solution: Different methods produce different types of solutions. Some methods
may produce optimal solutions, while others may produce satisfying ones. Some methods may

222

produce precise answers, while the answers of others may be only qualitative. What, then, are
the requirements on the properties of a solution to the given task?

- Properties of the Process: Different methods may require different computational resources. Some
methods may be computationally so complex that they are pragmatically infeasible. Others may
vary in the processing time and memory space they take. What, then, are the constraints on the
availability of computational resources?

• Recursive Task-Domain Analysis: Finally, the above steps may be repeated for each of the subtasks
that the selected method sets up. This recursive decomposition of the given task continues up to
an "elementary" level of task/method decomposition. At the elementary level, the domain affords
knowledge that can directly map the input to the (sub)task into its desired output. At this level, no
method is needed; instead, a procedure directly applies the relevant knowledge to solve the task.

This task and domain analysis produces a TMK model for reasoning about the given task. The criteria
for selecting a particular method from a store of methods applicable to a particular task in the TMK model
implies that no one method may be "the correct method" for solving all instances of the task. This is
because the choice of the method is constrained by the types of knowledge available in the domain of the
task instance. For example, if knowledge of previous design cases is available in a given domain, then this
knowledge affords the case-based method for addressing a given design task in that domain. If, however,
knowledge of such design solutions is not available then the case-based method becomes infeasible. If the
knowledge types used by more than one method are available, then the choice among the methods is based
on the properties of the methods and the desired solution.

Thus, the TMK model specifies a virtual architecture for the reasoner. Given a specific instance of the
task, the reasoner may dynamically and flexibly select and pursue different task-method branches. The trace
of the reasoning on the task instance would specify the specific task-method subtree chosen by the reasoner.
Thus the reasoning trace also gets expressed in the same TMK language. A detailed example of a TMK
model is presented in Figure 1 and described in detail in Section 3.1.

3 INTERACTIVE KRITIK

INTERACTIVE KRITIK is a computer-based design environment. A major component of INTERACTIVE KRITIK

is KRITIK3, an autonomous knowledge-based design system. When completed, INTERACTIVE KRITIK is
intended to serve as an interactive constructive design environment. At present, when asked by a human
user, INTERACTIVE KRITIK can invoke KRITIK3 to address specific kinds of design problems. In addition,
INTERACTIVE KRITIK can provide explanations and justifications of KRITIK3'S design reasoning and results,
and enable the human user to explore the system's design knowledge.

3.1 KRITIK3

KRITIK3
2
 evolves from KRITIK, an early multi-strategy case-based design system. Since KRITIK is described

in detail elsewhere (see, for example, [Goel and Chandrasekaran 1989, 1992]), in this paper we only sketch
the outlines of KRITIK3. We do this by describing KRITIK3'S TMK model.

KRITIK3 is a multi-strategy process model of design in two senses. First, while the high-level design
process in KRITIK3 is case-based, the reasoning about individual subtasks in the case-based process is
model-based; KRITIK3 uses device models described in the Structure-Behavior-Function (SBF) language for
adapting a past design and for evaluating a candidate design. Second, design adaptation in KRITIK3 involves
multiple modification methods. While all modification methods make use of SBF device models, different
methods are applicable to different kinds of adaptation tasks.

2
KRITIK3 runs under Common Lisp using CLOS.

223

The primary task addressed by KRITIK3 is the extremely common functions-to-structure design task in
the domain of simple physical devices. The functions-to-structure design task takes as input the functional
specification of the desired design. For example, the functions-to-structure design of a flashlight may take as
an input the specification of its function of creating light when a force is applied on a switch. This task has
the goal of giving as output the specification of a structure that satisfies the given functional specification,
i.e., a structure that results in the given functions.

KRITIK3'S primary method for accomplishing this task is case-based reasoning. Its case-based method
sets up four subtasks of the design task: problem elaboration, case retrieval, design adaptation, and case
storage as illustrated in Figure 1. This figure shows only some of the high-level tasks and methods in
KRITIK3'S TMK model; it does not show the detailed decomposition of each task-method branch, nor does
it show the kinds of knowledge that are used by the different methods. The rectangles in the figure represent
tasks while the ovals represent methods; points beneath some of the rectangles/ovals in the figure indicate
further decomposition of the tasks/methods.

The task of problem elaboration takes as input the specification of the desired function of the new design.
It has the goal of generating a probe to be used by design-retrieval for deciding on a new case to use. KRITIK3
uses domain-specific heuristics to generate probes based on the surface features of the problem specification.
The task of case retrieval takes as input the probes generated by the problem elaboration component. It has
the goal of accessing a design case and the associated SBF model whose functional specification is similar
to the specification of desired design. KRITIK3'S case memory is organized in a discrimination tree, with
features in the functional specifications of the design cases acting as the discriminants. Its retrieval method
searches through this discrimination tree to find the case that most closely matches the probe.

The task of design adaptation takes as input (i) the specification of the constraints on the desired design,
and (ii) the specifications of the constraints on and the structure of the candidate design. It has the goal
of giving as output a modified design structure that satisfies the specified constraints. KRITIK3 uses a
model-based method of design adaptation which divides the design task into three subtasks: computation
of functional differences, diagnosis, and repair. The idea here is that the candidate design can be viewed
as a failed attempt to accomplish the desired specifications. The old design is first checked to see how its
functionality differs from the desired functionality. The model of the design is then analyzed in detail to
determine one or more possible causes for the observed difference. Lastly, KRITIK3 makes modifications to
the device with the intent of inducing the desired functionality.

The method of repair used by KRITIK3 is generate and test. This method sets up two subtasks of
the repair task: model revision and model verification. The task of model revision takes as input (i) the
specification of the constraints on the desired design, and (ii) the model of the candidate design. It has the
goal of giving as output a modified model that is expected to satisfy the constraints on the desired design.
KRITIK3 knows of several model revision methods such as component replication or component replacement.
KRITIK3 dynamically chooses a method for model revision at run time based on the results of the diagnosis
task. Depending on the modification goals set up by the diagnosis task, the system may also use more than
one model-revision method.

The task of model verification takes as input (i) the specification of the constraints on the desired
design, and (ii) the specification of the structure of the modified design. It has the goal of giving as output
an evaluation of whether the modified structure satisfies the specified constraints. KRITIK3 qualitatively
simulates the revised SBF model to verify whether it delivers the functions desired of it.

The task of case storage takes as input (i) a specification of the case memory, and (ii) a specification of a
new case. It has the goal of giving as output a specification of the new case memory with the new case ap-
propriately indexed and organized in it. Recall that KRITIK3'S case memory is organized in a discrimination
tree. The system uses a model-based method for the task of storing a new case in the tree. This method sets
up the subtasks of indexing learning and case placement. The SBF model of the new design case enables the
learning of the appropriate index to the new case. This directly enables the task of case placement.

224

Function to
Structure Design

i

(Case Based
I Reasoning)

I Problem t

! Elaboration

(Domain Specific \ Discrimination
Heuristics

Model Based '<
Discrimination \

Tree
Reorganization/
/' \

Computation of
Functional
Differences

... . , , , /ModelBased
Linear Comparison] i °»!iah^fe Generate and Test Functional

Anaiyis ■' v- / \ Abstrction

Substance
Substitution

f Component
Parameter

V Modification
y Replacement J

Memory Storage

Figure 1: The Tasks and Methods of KRITIK3

225

3.2 Design Explanation in INTERACTIVE KRITIK

INTERACTIVE KRITIK'S architecture consists of two agents: a design reasoning agent in the form of KRITIK3

and an user interface agent3. The architecture of INTERACTIVE KRITIK is illustrated in Figure 2; in this
figure solid lines represent data flow while dotted lines represent control flow.

Kritik3 Interface Agent

I
i

j
Device
Models

Illustration,
Explanation, and 1

Exploration of

4

i

*-L.
i

i

I
«■

Multistrategy
Design

, ..,..w w..~w- ,

!

'* Illustration and
Explanation of

Design Processing j

i
1 c
M TMK j uesign

Cases i 1 Language I

Figure 2: INTERACTIVE KRITIK's Architecture

The interface agent in INTERACTIVE KRITIK has access to all the knowledge of KRITIK3 including its
design cases and SBF models. It also has a TMK model of KRITIKS'J reasoning. It uses KRITIK3'S SBF
models of physical devices to graphically illustrate and explain the functioning of the devices to the users.
It also uses the TMK model of KRITIK3'S reasoning to graphically illustrate and explain how the system
generates new designs.

Within the context of a design episode, INTERACTIVE KRITIK provides graphical representations of both
the designs retrieved from the case memory and the new designs created. Thus it provides representations
of intermediate designs in addition to the final designs. The different design versions are presented as the
design reasoning unfolds, i.e., in the context of the design subtask at hand. The working of a device is
illustrated to the user on several interrelated screens which are not described in detail here since the focus
of this paper is on the explanations of reasoning; for examples of how INTERACTIVE KRITIK explains design
products, see [Goel et al 1996].

The reasoning of KRITIK3 is specified by its TMK model. This reasoning is illustrated by INTERACTIVE

KRITIK on screens identifying the tasks that KRITIK3 performs while solving a problem and the methods
it uses. For each (sub)task, INTERACTIVE KRITIK illustrates the reasoning state both before and after the
accomplishment of the (sub)task. By reasoning state, we mean the task context, the method context, and the
available design information. Figure 3 shows the first task screen in INTERACTIVE KRITIK. It informs the
user that the current task is the Design task. It also shows that KRITIK3 is planning to use the Case-Based
Reasoning method, and displays the subtasks that are set up by this method: Problem Elaboration, Case
Retrieval, Design Adaptation, and Case Storage.

INTERACTIVE KRITIK provides a set of screens for presenting the user with information about the input
and output of the subtasks and uses highlighting features to inform the user of the reasoning state: which
tasks have already been performed, what is the current task and what subtasks are left. For example,
Figure 4 shows the representation of the subtasks set up by the Model-Based Adaptation method used for
the design adaptation task. It illustrates a deeper level of KRITIK3'S task-method decomposition.

4 Discussion

Explanation of problem solving has received considerable attention in knowledge-systems research. One
issue in explaining knowledge-based design is the language for representing the design process. For example,

3 The interface is built using the Garnet tool [Myers and Zanden 1992].

226

Figure 3: The Overall Design Task

227

Figure 4: The Design Adaptation Task

228

McDermott [1982] describes Rl's method for configuration design in the language of constraints of a design
problem, components available in the design domain, heuristic associations pertaining to the constraints and
the components, and selection and activation of the associations. But this language is much too specific
to Rl's method. This method-specificness of the language becomes a major problem for describing and
explaining multi-strategy process models such as KRITIK3.

Task-level [Marr 1977] (or, equivalently, knowledge-level [Newell 1982]) accounts make a clearer separation
between knowledge-based reasoning and its implementation in a knowledge system. In the mid-eighties,
Chandrasekaran [1988] proposed the language of Generic Tasks for analyzing and modeling knowledge-based
problem solving, and showed that this language enables more perspicuous explanations [Chandrasekaran,
Tanner, and Josephson 1989]. In the late eighties, Chandrasekaran [1990] related Generic Tasks with task
structures: [Chandrasekaran 1989] describes a high-level task structure for design; [Goel and Chandrasekaran
1992] describe a fine-grained task structure for case-based design. In their work on the elevator design project
called VT, McDermott and his colleagues [McDermott 1988, Marcus et al 1988] described a similar task-
oriented language for analyzing knowledge-based design.

Our TMK models represent a generalization of task structures based on Generic Tasks. TMK models
make the specific role played by a particular type of knowledge more explicit than earlier models. Consider,
for example, the functional role of an SBF model of a past design in KRITIK3. Since the SBF model is
associated with the past case, it affords a method for adapting the past design. The TMK model makes this
affordance explicit. Thus, while task structures are useful for explaining the control of reasoning in terms
of task-method interactions, TMK models are also useful for explaining knowledge-method interactions. In
particular, they enable the explanation of the organization and indexing of different kinds of knowledge, the
kinds of knowledge available for addressing a task, and the methods that become feasible because of the
available knowledge.

4.1 Critique

There is still a great deal of work to be done on the usability of interface for INTERACTIVE KRITIK; our
current research has focused heavily on the content of the explanations and specific implementation issues
at the level of what should the buttons on the screen be and where should they be located have been largely
ignored. While these issues are not directly relevant to the theory which we present here, they would need
to be addressed before the system could be used as a practical tool. In particular, open issues include the
improved display of the structure of a device, the building of better graphical representations, and provision of
additional interaction capabilities. More importantly, INTERACTIVE KRITIK needs to be formally evaluated
in a real world setting. But this kind of evaluation also requires additional work on the user interface.

4.2 Conclusions

It is generally desirable for intelligent systems to be able to provide explanations of what they are doing. In
these systems users are better able to understand the results of a task and are more likely to have greater
confidence that these results are correct and meaningful. So the issue becomes how might a knowledge
system enable the user to form a mental model of its reasoning, how might it explain its reasoning and
justify its answers. Our work on INTERACTIVE KRITIK depends heavily on these two related ideas:

• Explanations of a knowledge system need to capture functional and strategic content of reasoning in
addition to its knowledge content. Task-method-knowledge models enable this kind of explanation at
a level of abstraction that facilitates effective communication between the system and the user.

• Explanation of design reasoning needs to be situated in the context of the evolving design solution,
and, similarly, the explanation of the evolving design needs to be situated in the context of the design
reasoning that led to it.

INTERACTIVE KRITIK demonstrates the computational feasibility of these ideas.

229

Acknowledgments

Much of this research was done during 1993-94 when all the authors were with Georgia Institute of Technology
in Atlanta, Georgia, USA. Andres Gomez is now with the Key Center for Design Quality, University of
Sydney, Sydney, Australia; Nathalie Grue is now with the Institute for Learning Sciences, Northwestern
University, Evanston, Illinois, USA; and Margaret Recker is now with Victoria University, Wellington, New
Zealand. This work has benefited from discussions with T. Govindaraj. It has been funded in part by a
grant from the Defense Advanced Research Projects Agency (research contract #F33615-93-1-1338).

References

[Chandrasekaran 1988] B. Chandrasekaran. Generic Tasks as Building Blocks for Knowledge-Based Systems:
The Diagnosis and Routine Design Examples. Knowledge Engineering Review, 3(3):183-219, 1988.

[Chandrasekaran 1989] B. Chandrasekaran. Task Structures, Knowledge Acquisition and Machine Learning.
Machine Learning, 4:341-347.

[Chandrasekaran 1990] B. Chandrasekaran. Design Problem Solving: A Task Analysis. AI Magazine, pp.
59-71, Winter 1990.

[Chandrasekaran, Tanner and Josephson 1989] B. Chandrasekaran, M. Tanner, and J. Josephson. Explain-
ing control strategies in problem solving. IEEE Expert. 4(l):9-24, 1989.

[Goel and Chandrasekaran 1989] A. Goel and B. Chandrasekaran. Functional Representation of Designs
and Redesign Problem Solving. Proc. Eleventh International Joint Conference on Artificial Intelligence,
Morgan Kaufmann Publishers, pp. 1388-1394, 1989.

[Goel and Chandrasekaran 1992] A. Goel and B. Chandrasekaran. Case-Based Design: A Task Analysis.
In Artificial Intelligence Approaches to Engineering Design, Volume II: Innovative Design, Tong and D.
Sriram (editors), Academic Press, pp. 165-184, 1992.

[Goel et al 1996] . Goel, A. Gömez de Silva Garza, N. Grue, J. W. Murdock, M. Recker, and T. Govindaraj.
Explanatory Interface in Interactive Design Environments. Fourth International Conference on Artificial
Intelligence in Design, AID '96, Stanford, California, June 24 - 27, 1996. John S. Gero and Fay Sudweeks,
eds. Boston: Kluwer Academic Publishers, 1996.

[McDermott 1982] J. McDermott. Rl: A Rule-Based Configurer of Computer Systems. Artificial Intelli-
gence, 19:39-88, 1982.

[McDermott 1988] J. McDermott. Preliminary Steps Towards a Taxonomy of Problem Solving Methods.
Automating Knowledge Acquisition for Expert Systems, S. Marcus (editor), Kluwer, Boston, MA, 1988.

[Marr 1977] D. Marr. Artificial Intelligence — A Personal View. Artificial Intelligence, 9(1), 1977.

[Myers and Zanden 1992] B. Myers and B. Zanden. Environment for rapidly creating interactive design tools.
Visual Computer, 8:94-116, 1992.

[Newell 1982] A. Newell. The Knowledge Level. Artificial Intelligence, 18(1):87-127, 1982.

[Stroulia and Goel 1994b] E. Stroulia and A. Goel. Reflective Self-Adaptive Problem Solvers. In Proc. 1994
European Conference on Knowledge Acquisition, Germany, September 1994; available as Lecture Notes in
Artificial Intelligence - A Future for Knowledge Acquisition, L. Steels, G. Schreiber, and W. Van de Velde
(editors), Berlin: Springer-Verlag, 1994.

[Stroulia and Goel 1995] . E. Stroulia and A. Goel. Functional Representation and Reasoning in Reflective
Systems. Journal of Applied Intelligence, Special Issue on Functional Reasoning, 9(1): 101-124, 1995.

230

SECTION 3: CONCLUSIONS

This project has dealt with many important problem areas related to intelligent
query processing in the context of heterogeneous databases.

In Part I of this project we addressed the issues of diversity of Schemas of
databases and showed that to support intelligent front ends like the KRITTK3
system for Engineering Design, it is essential to take a very flexible rule based
approach where new rules of correspondence and mapping of information can
be continually extended. We were able to demonstrate that for a given set of
generic requests from a front end tool, we may have to perform matches on
relation names, attribute names or actual values to find the relevant information.
This is a new approach to dealing with the schema integration problem that has
not been explored very much. The approach needs to be extended to a variety of
data models including object oriented models. Our approach is limited presently
to queries in SQL and rules that relate individual tables. This needs to be
extended to other languages and establishment of correspondences or rules
among sets of tables. Another possible extension is to tie the semantic constraints
or rules from Part III of our work into Part I, thereby increasing the potential for
optimization of queries on integrated databases. However, the whole area of
how to extend the metadata view graph framework for multiple databases is an
open research problem.

In the knowledge based system integration part of our work, we
addressed the issues related to tying intelligent front ends to non-intelligent back
ends and the dual problem of jdata.^tegratipn and process" (br'rnethod)
integration. We attempted to extend reasoning in the context of engineering
design by incorporating a large amount of external data from databases. This
facility is typically absent in the tools like design assistants at the present time. A
large payoff exists by extending the tools in A.I. like KR1TIK3 with a collection of
data sources. In Part n, where we dealt with textual information, the explanation
of the ranking of documents was provided by means of visualization in the form
of a histogram of words vs. top ranked documents. The explanation of how a
user request is reasoned about helps the user in interpreting the answer obtained.
In Part TV of the project a specification of the device meta model in the KRITTK3
system is utilized to explain the answer. Our work on method specific data to
knowledge transformation illustrated how to convert data extracted from a
(possibly legacy) database into a form appropriate for the processing method
used within a knowledge based system. The extension of this work to generic
cases of extracting data and incorporating into intelligent processes remains a
challenging problem. The work takes a different flavor based on the knowledge
representation schemes used and the types of reasoning employed.

Our work on part II of the project was done in the context of textual data.
We evaluated user interface and visualization techniques for more efficient
retrieval from document databases. The technique can be extended to any

231

databases at large. The experimental framework can be improved by setting up
different controls, forming homogeneous groups of users, accounting for the
effect of difficulty of topics, subject-topic interaction, etc. This work has great
potential by combining it with the work from DARPA's TIPSTER program which
has focused more on the retrieval technology and hardly any on user interface
and visualization techniques. Our field studies and experiments with the
interface and visualization ideas have clearly established that user productivity
in terms of locating relevant information and evaluating relevance of information
can both be improved by these techniques.

The work holds a lot of promise in terms of leading up to proper interfaces
for accessing the information on the web. Another fruitful area of research is to
extend the thesaurus concept graphs like the CYC system from MCC. With
additional knowledge support, user activities in searching and browsing can be
made more focused with tremendous productivity gains for knowledge workers.
Accessing heterogeneous text in terms of HTML, SGML etc. is another possible
extension of our research.

Part HI of our work makes a contribution in the use of instance level
knowledge about data in optimizing query processing. Work on semantic query
optimization to date has considered only schema level information. We
considered instance level constraints and their use in minimizing work during
processing of queries and computations against views of data. The work can be
extended to incorporate additional semantic constraints as well as inter-database
constraints. More work can be done on classification of rules, linking of MVGs
with dynamic execution plans and on implementing an integrated query
processing system based on these ideas.

Overall, the current project has explored several issues central to the
theme of the 13 (Intelligent Integration of Information) program at DARPA.
Specifically, techniques have been developed and tested to help in solving
problems Hke engineering device design, searching for information from large
corpuses of text etc. Research advances were made in the areas of a flexible
integration of database Schemas using rules, query formulation for text
databases using visualization, semantic optimization of queries using instance
based constraints, and an integration of knowledge based and data based query
processing.

232

SECTION 4: RECOMMENDATION

Our publication [1.1] has spelled out a number of open problems that still
deserve further deeper investigation in the context of this project and the DARPA
13 program on the whole:

• Identification of which sources are relevant and which are not, based on a
knowledge of the metadata. The relevance determination problem is addressed
in [2.1,2.2] through visualization. Relevance of metadata and constraints to
existing views is addressed in [3.1,3.2]. Explanation of why a certain answer is
given to a query is partly considered in [1.3] and in detail in [4.1] and [4.2].

• We used the thesaurus idea to help users in query formulation [2.1,2.2]. For
matching user requests with available data sources, synonyms, thesauri and
ontologies can be employed. If DARPA's work on Ontologies can be tied into
our front end interface work, the resulting interface will be very powerful.
Another possibility is to maintain user profiles which are kept up to date and
based on these profiles, only parts of an ontology are accessed.

• The entire area of query formulation has been given scant attention in
databases, and particularly in heterogeneous databases. We addressed the
problem by using positive and negative feedback in the context of document
databases in [2.1,2.2] and evaluated it to show that visualization techniques that
provide relevance of retrieved documents to query words indeed help users in
the reformulation task. Further work is necessary in determining how users
should be guided in the query reformulation task.

• More research is necessary in automated knowledge acquisition from available
knowledge sources (as pointed out in [1.1]). This knowledge comprises
identification, content, description, and interrelationships among the data
sources. How to acquire it and represent it is a worthwhile problem, particularly
in the context of the world wide web which places a vast number of data sources
at an average user's disposal.

• An incremental approach to adding and deleting sources from federations
needs to be considered. We proposed a flexible approach to schema integration
in [1.2,1.4]. Adding new Schemas translates into adding new rules in this
approach.

• Dealing with external knowledge sources (such as catalogs, newsgroups, web
sites) during query processing is a largely unexplored problem. It requires
natural language understanding and concept derivation and knowledge
acquisition that transcends traditional data processing. Our work in parts I and II
is relevant to this problem.

233

• We addressed query optimization only at the level of semantic query
optimization using metadata in [3.1,3.2]. Using further knowledge about
physical data sources and their organization, optimal strategies for query
processing and optimization can be developed. There is a need to tie the work on
multiple query optimization, parallel and distributed query optimization into
heterogeneous databases and their query processing.

The research conducted here in four distinct parts has opened up may
avenues for further long term research with a high potential impact.

234

