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Abstract. We present a study that examines the effects of guidance
on learning about addressing ill-defined problems in undergraduate bi-
ology education. Two groups of college students used an online labo-
ratory named VERA to learn about ill-defined ecological phenomena.
While one group received guidance, such as giving the learners a specific
problem and instruction on problem-solving methods, the other group re-
ceived minimal guidance. The results indicate that, while performance in
a problem-solving task was not different between groups receiving more
vs. minimal guidance, the group that received minimal guidance adopted
a more exploratory strategy and generated more interesting models of
the given phenomena in a problem-solving task.

Keywords: Self-directed learning · Guided learning · Modeling and sim-
ulation · Ill-defined Problems · Online laboratory.

1 Introduction

Interactive Learning Environments (ILEs) enables learners to explore ill-defined
problems such as modeling complex systems [3][4]. Many studies have found that
while guided learning in ILEs leads to more efficient learning [6][10][15], it can
limit critical thinking and creative problem solving [7][11]. In contrast, while
self-directed exploration can be inefficient [15], it often results in more varied
and interesting solutions [18].

However, many studies exploring the effects of guidance in ILEs have fo-
cused on K-12 education with well-defined goals, assessments, and outcomes
[6][14][19][17][10]. The precise role of guidance in the context of ill-defined problem-
solving is not yet well understood. For example, Chen (2007) found that problem-
solving prompts did not have a positive effect on solving ill-structured problems
[5]. This contradicted Ge & Land’s (2003) study indicating that prompts had
significantly improved students’ problem-solving [8]. Koedinger & Aleven (2007)
called balancing the amount of guidance the “assistance dilemma” to achieve the
optimal learning [16]. To solve the assistance dilemma, it is necessary to under-
stand the trade-offs in providing guidance for learning on ill-defined problems as
well.
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We present a study on the use of an ILE called VERA (for Virtual Experi-
mentation Research Assistant) for learning about ill-defined problems in under-
graduate biology education. VERA is a web-based online laboratory that enables
users to construct conceptual models of ecological systems and run interactive
agent-based simulations of these models [1][2] (vera.cc.gatech.edu). This al-
lows learners to explore multiple hypotheses about ecological phenomena and
perform “what if” experiments to either explain an ecological phenomenon or
attempt to predict the outcomes of changes to an ecological system. Our goal
in this study was to answer two research questions. RQ1: Does more guidance
indeed make learning more efficient in ill-defined problem-solving contexts? RQ2:
Does minimal guidance indeed result in more varied and interesting models?

To answer these questions, we conducted an experiment to analyze the rela-
tive effects of guidance on the learning process and outcomes. Two groups of stu-
dents engaged in two different but related learning activities: one with guidance
such as giving the learners a specific problem and instruction on problem-solving
methods, and the other with minimal guidance. After the learning activities, a
new problem-solving task was given to students to examine which learning con-
text enabled the students to solve the task effectively and creatively.

2 A Brief Description of the VERA Online Laboratory

In VERA, learners build conceptual models of complex phenomena, evaluate
them through simulation, and revise the models as needed. VERA enables learn-
ers to construct Component-Mechanism-Phenomena (CMP) models [13] of eco-
logical phenomena that originate from our earlier work on Structure-Behavior-
Function models of complex systems [9]. A CMP model specifies the biotic and
abiotic components participating in an ecological phenomenon, the relationships
among the components, and the processes that arise through the interactions
among the components. VERA automatically translates a CMP model into an
agent-based simulation on the NetLogo platform [12] (ccl.northwestern.edu/
netlogo). Using VERA system involves three high-level activities: (1) model
construction (e.g., adding biotic/abiotic components and relationships), (2) pa-
rameterization (e.g. selecting a set of simulation parameters for each compo-
nent/relationship), and (3) execution of the agent-based simulation. Parame-
terization is further divided into four categories: (1) t-parameters (trivial pa-
rameter) that directly manipulates an initial population (e.g., initial population,
minimum population), (2) b-parameters related to the biological properties (e.g.,
lifespan, reproductive rate), (3) a-parameters related to the abiotic substances
(e.g., amount, growth rate), and (4) i-parameters that adjust the relationship
between two components (e.g., interaction probability, consumption rate).

3 Experimental Design

The goal of this study was to compare the relative effects of more guidance and
minimal guidance. Figure 1 illustrates a schematic diagram of the study. Inde-
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pendent variable is the amount of guidance in Phase 1 (problem representation)
and Phase 2 (problem solving). Dependent variables are outcomes (performance,
efficiency, model quality) in Phase 3.

3.1 Participants

The participants were college students in an undergraduate biology class at a
large public R1 institution located in the southeastern US. This class teaches
scientific methods and skills that address population ecology. Students in the
class used VERA in the accompanying laboratory sections. The duration of this
class was 2 hours and 45 minutes. Our study consisted of six lab sections (2
hr 45 min each) with 16 students for each section (N=96). The students were
assigned to either Group A (guided) or Group B (self-exploration) based on their
sections.

3.2 Procedure

As shown in Figure 1, the students in three lab sections were assigned to Group
A (N=48); The students in the remaining three sections were assigned to Group
B (N=48). As students arrived in the classroom, two teaching assistants played
a pre-recorded introduction video giving a high-level description of VERA and
how to use the system (5 minutes). All students were then asked to complete a
consent form and indicate their major and year. The modeling task consisted of
three phases: problem representation (Phase 1), problem solving (Phase 2), and
a problem-solving task (Phase 3). In Phase 1 and 2, Group A explored a given
problem with guidance in using VERA (e.g., representing a problem, solving a
problem, as described in detail below). Meanwhile, Group B explored a problem
of their choice with minimal guidance. In Phase 3, Group A and Group B were
given the same problem to solve.

Fig. 1. Schematic Diagram of Experimental Design.
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3.3 Group A: Guided Learning

The students in Group A were given some heuristics guidance during Phase 1
and Phase 2 (N=48). In Phase 1, the students were asked to create a model
that represents a common interaction in ecology: a predator-prey relationship
in which the predator consumes the prey and the prey gradually decreases. In
Phase 2, the students were asked to adjust their models by reducing the predator
population so that the prey can survive longer. In this way, the students were
given a problem representation as well as instructions on how to solve it. The in-
struction stated “there are many ways to reduce the population of the predators.
One way is to directly reduce the predator’s initial population. Another way is
to indirectly reduce the predator’s population by adjusting various parameter
values of the predator.”

3.4 Group B: Self-Exploration

The students in Group B were given minimum guidance during Phase 1 and
Phase 2 (N=48). In Phase 1, the students were asked to create a model that rep-
resents any problem in ecology which includes an abnormal increase or decrease
in the population of a target species. In Phase 2, the students were asked to adjust
their models to mitigate the problem in their previous model by adding/deleting
components and/or adjusting various parameter values. Since the students in
Group B received more general instructions, they had to define a problem as
well as explore various hypothetical solutions to solve the problem.

3.5 Problem-Solving Task

In Phase 3 (Problem-Solving Task), the students both in Group A and Group B
were given a new problem to solve. The pre-built model that represents a food
web between Osprey (Pandion haliaetus) and Atlantic Spadefish (Chaetodipterus
faber) was given to both groups of students (see 2 (A)). Their goal was to
adjust this model to create a stable ecosystem where both species can survive.
The students were asked to write a list of initial thoughts of how they would
change the model. Then, they tested their hypothetical solutions in VERA and
compared them in terms of effectiveness, cost, practicality, etc.

4 Data Analysis

4.1 Outcome Measures

The students’ outcomes during Phase 3 (problem-solving task) were measured
using the students’ models, their log data, and survey answers on Qualtrics based
on the following metrics.
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Fig. 2. (A) The Original Model Used in the Task. (B) The Simulation Output of the
Original Model. (C) The Simulation Output of the Successfully Adjusted Model (Both
Osprey and Atlanta Spadefish Survived Longer than the Original Model.)

– O1 Success in making models according to specification: The sim-
ulation outcomes between the original model and the students’ adjusted
models were compared. The score is 1 (correct) when both species (Osprey
and Atlantic Spadefish) survived longer than the original model (for exam-
ple, Figure 2 (C)); 0.5 (partially correct) when only one species survived
longer; and 0 (incorrect) when none of the species survived longer.

– O2 The number of hypothesis: The number of hypothetical solutions
and corresponding models generated by the students were measured.

– O3 Time taken to making models according to specification: The
time taken in the problem-solving task (Phase 3) was measured based on
the time the students submitted their answers on Qualtrics.

– O4 Model complexity (depth): Model complexity (the total number of
components and relationships that exist within a conceptual model) was
measured. If a student doesn’t add or delete any components (nodes) and
relationships (edges), the model complexity remains 5 as the original model
(e.g., see Figure 2).

– O5 Model variability (breadth): Model variability measures how many
distinct simulation parameter categories were used. It is calculated by the
percentage of the parameter categories changed within a conceptual model.
Since there was no abiotic substance in the original model, t-parameters,
b-parameters, and i-parameters were used.

4.2 Results

A total of 79 students consented to the study (A=39; B=40): Participants in-
cluded 53 female, 23 male, 3 prefer not to say; 19-23 years of age, mean 20.2
years. Group A created a total of 81 models for the task; Group B created 84
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models. A Shapiro-Wilk test was performed in each outcome and showed a sig-
nificant departure from normality. Based on this outcome, a non-parametric test,
Mann-Whitney U test, as well as descriptive statistics, were used to summarize
the results.

Performance and Efficiency (O1, O2, O3) Figure 3 shows comparative
outcomes O1 (Task score), O2 (The number of hypotheses), and O3 (Comple-
tion Time) between the two groups. The mean of the task score was higher
for the guided group (M = 0.91, SD = 0.17) and the self-exploration group
(M = 0.84, SD = 0.20) with the same median and the interquartile range
(Mdn = 1.0, IQR = 0.25). The number of hypotheses generated during the
problem-solving task was also higher for the guided group (M = 2.20, SD =
0.57) than the exploration group (M = 2.25, SD = 0.58) with the same me-
dian and the interquartile range (Mdn = 2.0, IQR = 0.0). On the other hand,
the mean and the median of completion time was lower for the guided group
(M = 842.55, SD = 511.19,Mdn = 708.34, IQR = 355.56) than the exploration
group (M = 957.49, SD = 565.41,Mdn = 832.20, IQR = 422.67).

Fig. 3. Comparative Outcomes: (O1) Task Score. (O2) The Number of Hypotheses.
(O3) Completion Time. (O4) Model Complexity.
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Model Quality (O4, O5) Wemeasured model quality using two proxies:model
complexity and model variability. Figure 3 shows comparative model complexity
between the two groups. The mean of the measured model complexity was higher
in the exploration group B (M = 8.02, SD = 1.45,Mdn = 5.0, IQR = 1.25)
than the guided group A (M = 7.09, SD = 0.74,Mdn = 5.0, IQR = 0.0). This
difference was statistically significant as determined by the Mann-Whitney U
test (U = 503.0, p < .0005).

Figure 4 shows comparative model variability between the two groups. The
most frequently used parameter for the guided group was the t-parameter of
the predator (Osprey) (M = 23.32, SD = 21.76), followed by b-parameter of
the prey (Atlantic Spadefish) (M = 21.07, SD = 25.65) and b-parameter of
the predator (M = 15.74, SD = 23.92). On the contrary, the most frequently
used parameter for the self-exploration group was i-parameter, the interaction
parameter, (M = 18.08, SD = 17.82), followed by t-parameter of the predator
(M = 17.67, SD = 24.56) and b-parameter of the prey (M = 17.44, SD =
24.02).

Fig. 4. The Percentage of Use of Each Parameter Type. *Parameters for Osprey
(Predator). O:Osprey. A:Atlantic Spadefish. P:Plankton.

5 Discussion

Our data concur with earlier findings in well-defined problem contexts (e.g., [6]),
specifically that giving more information or assistance leads to higher accuracy
and efficiency of learning [6][10]. In our study, the students who were given
guidance in solving an ill-defined problem solved the second ill-defined problem
in Phase 3 slightly more efficiently in terms of completion time (O3), but the
difference was not statistically significant. Irrespective of guidance, there does
not seem to be much difference in the ability to understand the problem, devise
hypothetical solutions, and test and validate one’s own hypotheses.
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However, our data adds to what is known about guidance in relation to the
complexity of models (O4). While the students in the guided group typically
made small changes by adjusting parameter values, some students in the self-
exploration group also added more components to the model. Given that the
performance between the two groups was similar (e.g., task score, the num-
ber of hypotheses, and completion time), the way they approached the problem
showed interesting differences. In addition to manipulating simulation parame-
ters, adding new components and relationships as we observed in our data likely
represents more constructivist learning and discovery learning described in other
studies [18][6][20][15]. Many studies have shown that minimally guided learning
can foster students’ creative thinking by having them independently explore
broader issues [21][18]. Similarly in our study, the students solved the task by
adding new components beyond manipulating existing variables.

The students in the guided group focused on adjusting the parameters of
the components, especially the parameters of the predator (see Figure 4). This
may be due to the fact that the students were asked to adjust their models
by reducing the predator population in Phase 2. On the contrary, the students
in the self-exploration group approached the problem in more varied ways. In
addition to adding new components and relationships, they commonly used i-
parameters such as interaction probability and consumption rate, which were
not frequently used by the guided group. This suggests that providing a specific
example or instruction on problem-solving methods has the potential to affect
students’ learning as it might restrict what learners try to do in learning.

6 Conclusion

In this paper, we presented a study in which two groups of college students
used the online laboratory called VERA to learn about ecological phenomena:
while one group received more guidance (e.g., heuristics), the other group re-
ceived minimal guidance (e.g., process constraints). The data indicates that the
group that received minimal guidance adopted a more exploratory strategy on
the problem-solving task and generated more varied and complex models of the
given phenomena. However, the group that received more guidance did not show
significant benefits in efficiency and accuracy, which was unexpected. These pre-
liminary results invite further research on the proper level of guidance in learning
about ill-defined problems in undergraduate science education.
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