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Abstract. Imitation is a well known method for learning. Case-based
reasoning is an important paradigm for imitation learning; thus, case
retrieval is a necessary step in case-based interpretation of skill demon-
strations. In the context of a case-based robot that learns by imitation,
each case may represent a demonstration of a skill that a robot has previ-
ously observed. Before it may reuse a familiar, source skill demonstration
to address a new, target problem, the robot must first retrieve from its
case memory the most relevant source skill demonstration. We describe
three techniques for visual case retrieval in this context: feature match-
ing, feature transformation matching, and feature transformation match-
ing using fractal representations. We found that each method enables
visual case retrieval under a different set of conditions pertaining to the
nature of the skill demonstration.

Keywords: Visual case retrieval · Case-based agents · Imitation
learning

1 Introduction

Learning by imitation is a well-researched methodology, both in human cogni-
tion and in cognitive robotics [2,18,26]. Robot learning by demonstration is an
approach which aims to enable imitation by having the robot receive a demon-
stration of a skill from a human teacher. The robot perceives the workspace and
objects involved in completing the skill during the demonstration, while also
recording the actions required to complete the skill. At a later time, the robot
may be asked to repeat the learned skill in the same or in a new workspace.

Case-based reasoning is an important paradigm for learning by imitation
(e.g. [6,7]). In the case-based approach to imitation, the robot would (i) store
the observed skill demonstrations as cases in a case memory, (ii) given a new,
related problem, retrieve the most similar case from the case memory, (iii) adapt
the demonstrated actions from the retrieved case to the new problem, and (iv) exe-
cute the adapted actions to address the new problem. We refer to the first two steps
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of this approach as skill demonstration interpretation. Note that a necessary step
in skill demonstration interpretation is for the robot to recall the skill demonstra-
tion most similar to the current configuration of objects. Thus, in this paper, we
focus solely on this task of case retrieval to enable case-based interpretation of skill
demonstrations in the context of interactive robot learning by imitation. The goal
of case retrieval in this context is to return a source case demonstrating the same
skill as shown in a new, uncategorized skill demonstration.

A critical question in case-based interpretation is that of case representation.
A case of a previously observed skill should be represented such that, given a
new skill demonstration, it is feasible for the robot to recognize the similarity
between the two. In the rest of this paper, we make the following contributions:

1. Propose three visual representations for skill demonstration cases, with cor-
responding source case retrieval algorithms.

2. Present experiments testing each representation on skill demonstrations pro-
vided in a table-top environment.

3. Test the effectiveness of Fractal reasoning on real-world images perceived
during skill demonstrations.

4. Compare the efficacy of the three case retrieval methods by providing an
analysis of situations in which each method performs better than the others.

2 Background

Case-based reasoning is a cognitively inspired paradigm for reasoning and learn-
ing [1,11–13,22,23]; Thagard [25] views case-based reasoning as a paradigm for
modeling human cognition. In case-based reasoning, new problems are addressed
by retrieving and adapting solutions to similar problems stored as cases in a
case memory. In case-based reasoning, (a) learning is incremental, (b) learning
is problem-specific in that the robot adapts the most similar case to address
the current problem, and (c) learning is lazy, meaning that the robot learns the
abstraction only when needed.

Ontanon et al. [19] studied case-based learning from demonstration in the
context of online case-based planning in real-time strategy games. While an
important domain for case-based reasoning, games do not offer the low-level
challenges of perception and action to the same degree that interactive robots
immediately pose. Floyd, Esfandiari and Lam [7] describe a case-based method
for learning soccer team skills by observing spatially distributed soccer team
plays. Ros et al. [24] present a case-based approach to action selection in robot
soccer. More recently, Floyd and Esfandiari [6] describe a preliminary scheme for
separating domain-independent case-based learning by observation from domain-
dependent sensors and effectors on a physical robot.

We seek to use visual case-based reasoning to recognize that a new target
demonstration, such as the overhead view of a box-closing skill shown in the top
row of Fig. 1, is similar to skill demonstrations previously stored in the robot’s
memory, such as the related box-closing demonstrations shown in the bottom two
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Fig. 1. Similar box-closing skill demonstrations

rows of Fig. 1. Visual case-based reasoning has been previously studied in tasks
ranging from interpreting line drawings [5,28] to image interpretation [8,20]
in domains ranging from molecular biology [4,10] to design [3,9,28]. Perner,
Hold and Richter [21] provide a review of some of these applications. Techniques
for visual case retrieval in these applications range from heuristic [9] to graph
matching [5] to constraint satisfaction [28]. Images in these applications typically
are static and often discrete (e.g., in the form of line drawings). In contrast,
images in case-based interpretation of skill demonstrations are dynamic and
continuous, requiring the development of new techniques for visual case retrieval.

The first column of Fig. 1 depicts the observed initial states of three demon-
strations of the same skill, and the second column depicts the corresponding final
states. As Fig. 1 illustrates, our current focus is on case-based interpretation of
skill demonstrations in a table-top learning environment. Our aim is to first
develop approaches for case-based interpretation, leaving the task of perception
in cluttered, occluded, messy, or poorly-lit environments to future work.

We first approach the problem of case-based skill interpretation using a Frac-
tal representation [17]. Instead of encoding the features detected within visual
scenes, the Fractal method encodes the visual transformations between initial
and final states of a skill demonstration. We wanted to use the Fractal method
because it allows automatic adjustment of the level of spatial resolution for eval-
uating similarity between two sets of images. While the Fractal method has been
applied to geometric analogies on intelligence tests, it has not yet been applied
to real-world images such as those a robot would perceive. To fully evaluate the
Fractal method for case-based interpretation, we chose to compare it to a base-
line method which uses the Scale-Invariant Feature Transform (SIFT) algorithm
to select image features. The SIFT algorithm identifies features regardless of the
image’s scale, translation, or rotation [14,15] and is widely used for computer
vision tasks in robotics research.
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Fig. 2. Analogical pouring skill demonstrations

3 Problem Characterization

We refer to a source case as a skill demonstration that has been provided to the
robot and is stored in the robot’s case memory. Thus, we use the terms demon-
stration, skill demonstration, and case interchangeably. Each demonstration is
defined as d = <p, a>, where p encodes the problem the demonstration seeks
to address and a encodes the demonstrated action. We focus on representing
demonstrations that illustrate only one action label (e.g. “pouring”, “opening”,
“stacking”). The list of observed objects, o, and the list of observed features of
the objects (color, size, etc.), f , are also elements of the demonstration repre-
sentation. A skill demonstration then consists of the following elements:

– The problem description p = <o, f, v>, where o and f are as described above,
and v is a set of parameters (e.g. initial object locations, initial end-effector
position)

– The action model a = {j0, j1, . . . , ji} encoding the robot’s end-effector posi-
tion at each time interval i.

The case-based interpretation process uses the problem descriptions of
sources cases in memory as input, such as the demonstrations shown in the
first two rows in Fig. 1, and a target problem, such as the third row in Fig. 1,
and maps the target problem to the most similar case in memory. Case-based
interpretation is completed by evaluating the similarity between the visual rep-
resentations of the target problem and the source cases, i.e., on o and f , and the
visual transformations in them, and does not require semantic information that
specifies the demonstrated action label.

We define a visual transformation as the tuple <Si, Sf , T>, where Si is an
overhead view of the initial state (the first column of images in Fig. 1), Sf is the
observed goal state that is reached following the skill completion (the second
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column of images in Fig. 1), and T is the visual relation, or transformation,
between the two images Si and Sf .

4 Algorithms

4.1 Fractal Method

Our first approach uses fractal representations to encode the visual transforma-
tion function T between two images [16], and is expressed as the set of opera-
tions that occur to transform the initial state image Si into the final state image
Sf . Thus, the transformation function T encodes a set of sub-transformations
between Si and Sf . The Fractal method evaluates similarity at several levels
of abstraction, allowing automatic adjustment of the level of spatial resolution.
The similarity between two image transformations can be determined using the
ratio model:

sim(T, T ′) = f(T ∩ T ′)/f(T ∪ T ′)

In this model, T encodes the first set of image transformations, T ′ encodes the
second set of image transformations, and f(x) returns the number of features in
the set x [16,27]. Thus, f(T ∩T ′) returns the number of transformations common
to both transformation sets, and f(T ∪ T ′) returns the number of transforma-
tions in either set. The following process encodes a visual transformation as a
fractal [16]:

1. The initial state image is segmented into a grid containing a specified number
of partitions, S = {s0, s1, . . . , sp}, where p is determined by the abstraction
level n.

2. For each sub-image s ∈ S, the destination image is searched for a sub-image
d such that for some transformation k ∈ K, k(s) is most similar to d.

3. The transformation k and shift c, the mean color-shift between d and k(s),
are used to create a fractal code fs.

4. The resulting fractal is defined by F = {f0, f1, . . . , fp}
This encoding process is repeated for multiple values of n, resulting in an

encoding of the transformation at n levels of abstraction, where n is derived
from the images’ pixel dimensions. Here, we partition each 300 px by 180 px
image at n = 7 levels of abstraction. A code is defined by the tuple

<<sx, sy>,<dx, dy>, k, c>

where:

– sx and sy are the coordinates of the source sub-image
– dx and dy are the coordinates of the destination sub-image
– k ∈ K represents the affine transformation between the source and destination

sub-images where K = { 90 ◦ clockwise rotation, 180 ◦ rotation, 270 ◦ clockwise
rotation, horizontal reflection (HR), vertical reflection (V R), identity (I) }. k
is the transformation that converts sub-image s into sub-image d minimally,
while requiring minimal color changes.
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– c is the mean color-shift between the two sub-images

A set of fractal features is derived as combinations of different aspects of each
fractal code. While the fractal code does describe the transformation from a
section of a source image into that of a target image, the analogical matching
occurs on a much more robust set of features than merely the transformation
taken by itself. The illustrations which visualize the fractal representation there-
fore demonstrate only those transformations, and not the features.

4.2 SIFT Feature-Matching

The SIFT algorithm selects keypoint features using the following steps [14].
First, candidate keypoints are chosen. These candidates are selected as interest
points with high visual variation. Candidate keypoints are tested to determine
their robustness to visual changes (i.e., illumination, rotation, scale, and noise).
Keypoints deemed “unstable” are removed from the candidate set. Each keypoint
is then assigned an orientation invariant to the image’s orientation. Once each
keypoint has been assigned a location, scale, and orientation, a descriptor is
allocated to each keypoint, representing it in the context of the local image.

Our second approach to source demonstration retrieval using SIFT features
is based on feature-matching. The target skill demonstration is represented by
the image pair (Si, Sf ). Using the SIFT algorithm, features are extracted from
each image and matched to features from the initial and final states of source
skill demonstrations. Each feature consists of the 16× 16 pixel area surround-
ing the feature keypoint. A brute-force method is used to determine that two
features match if they have the most similar 16× 16 surrounding area. The
source demonstration sharing the most features with the target demonstration
is retrieved using the following process:

1: Let D be a set of source skill demonstration images
2: c ← null; m ← 0
3: Ui ← SIFT features extracted from Si

4: Uf ← SIFT features extracted from Sf

5: for each demonstration d ∈ D do
6: Ci ← SIFT features extracted from di
7: Cf ← SIFT features extracted from df
8: T ← (Ui ∩ Ci) ∪ (Uf ∩ Cf )
9: If size(T ) > m, then: m ← size(T ), c ← d

10: end for
11: return c

Figure 3(e) illustrates a retrieval result, where the left-side image is Si and the
right-side image is the di selected with the highest number of matching SIFT
features.
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4.3 SIFT Feature-Transformation

Our final approach to source demonstration retrieval via the SIFT algorithm
serves as an intermediate method which incorporates aspects of the Fractal
method’s emphasis on visual transformations, while adopting the same feature
selection strategy as the previous SIFT feature-matching method. This approach
focuses on the transformation of SIFT features between a demonstration’s ini-
tial and final states. Rather than retrieve a source demonstration based on the
explicit features it shares with the target demonstration, this approach retrieves
a source demonstration according to the similarities between its feature transfor-
mations and those of the transformations observed in the target demonstration.

Each feature of the demonstration’s Si is matched to its corresponding feature
in Sf , as shown in Fig. 3(b). This method uses the same features and feature-
matching method as in the feature-matching approach described previously. We
define each SIFT feature transformation as the tuple

<<sx, sy>, θ, l>

where sx and sy are the coordinates of the feature in the initial state, θ is the
angular difference between the feature location in the initial and final states,
and l is the distance between the feature location in the initial and end state
images. Each feature transformation occurring between Si and Sf in the target
demonstration is compared to each transformation occurring between Si and
Sf in each source skill demonstration. The difference between two SIFT feature
transformations is calculated by weighting the transformations’ source location
change, angular difference, and distance.

Each comparison is performed over seven blurring levels, which serves to
reduce the number of irrelevant or noisy features comparably to the Fractal
method’s usage of multiple abstraction levels. At each blur level, a normalized
box filter kernel is used to blur the target and source demonstrations’ visual
states, with the kernel size increasing by a factor of two at each level. The SIFT
feature-transformation method retrieves a source demonstration as follows:

1: Let D be a set of source skill demonstration images
2: c ← null; m ← 0; x ← 0
3: for each demonstration d ∈ D do
4: n ← 0
5: while n < maximum abstraction level do
6: Blur Si, Sf , di, and df by a factor of 2n

7: Ui ← SIFT features extracted from Si

8: Uf ← SIFT features extracted from Sf

9: Tu ← getTransformations(Ui ∩ Uf )
10: Ci ← SIFT features extracted from di
11: Cf ← SIFT features extracted from df
12: Tc ← getTransformations(Ci ∩ Cf )
13: for each transformation tu ∈ Tu do
14: Find tc ∈ Tc that minimizes diff (tu, tc)
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15: end for
16: x ← 0
17: for each transformation tu ∈ Tu do
18: x ← x + diff (tu, tc)
19: end for
20: If c is null or x < m, then: c ← d, m ← x
21: n ← n + 1
22: end while
23: end for
24: return c

5 Experiment

Each approach was used to retrieve a source skill demonstration for three test
sets of target demonstrations. Each skill demonstration is a pair of two recorded
keyframe images depicting the initial state and end state of a box-closing or cup-
pouring skill performed by a human participant, as shown in Figs. 1 and 2. Nine
participants demonstrated the two skills, and were recorded using an overhead
camera above the tabletop workspace. Participants indicated the initial and final
states verbally, and were asked to remove their hands from view when the initial
and final states were recorded. Each participant’s demonstration set consisted
of nine demonstrations per skill, each skill being performed at the orientations
shown in Figs. 1 and 2.

We evaluated the algorithms on three test sets, each representing retrieval
problems of a different difficulty level. In the aggregate set, a source demon-
stration is retrieved for two participants’ demonstrations (two skills each per-
formed with two objects at three configurations, resulting in a total of 12 target
demonstrations) from a library of 48 source demonstrations, which included 24
demonstrations of each skill. All box-closing and pouring demonstrations used
the same two boxes and two pouring objects, respectively, shown in the first
two rows of Figs. 1 and 2. In the individual set, a source skill demonstration was
retrieved for each of 54 target demonstrations (27 per skill). Within each partic-
ipant’s demonstration set, the target demonstration was compared to the other
demonstrations by the same participant. As a result, a source was retrieved for
each target demonstration from a library containing two source demonstrations
of the same skill and three of the opposite skill. As in the aggregate test set,
demonstrations used the same two boxes and two pouring objects.

In the analogical set, a source demonstration was retrieved for each of 161
target demonstrations (80 box-closing, 81 pouring). Within each participant’s
demonstration set, the target demonstration was compared only to other demon-
strations performed by the same participant. Unlike the previous test sets, tar-
get demonstrations were compared to source demonstrations involving different
objects, as in Figs. 1 and 2. As a result, demonstrations involving a third kind of
box and pouring object were introduced, shown in the last row of Figs. 1 and 2. A
source demonstration was retrieved for each target demonstration from a library
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Table 1. Source Case Retrieval Results

Test set Fractal SIFT feature-matching SIFT feature-transformations

Aggregate 100 % 100 % 91.7 %

Individual 87 % 100 % 35.2 %

Analogical 65.3 % 93.8 % 84.5 %

containing six source demonstrations of the same skill and nine of the opposite
skill. One box-closing demonstration was incomplete and could not be included
in the test set; as a result, 17 target demonstrations were compared to one fewer
box-closing demonstration. The purpose of the analogical test set was to test
each retrieval method’s ability to retrieve a source skill demonstration, despite
containing a different set of objects than the target demonstration.

6 Experimental Results

Table 1 lists the overall accuracy of each method when applied to each test set.
Since the aggregate test contained a large set of source demonstrations and was
most likely to contain a demonstration similar to the target problem, we expected
that this test set would be the easiest test set for any of the three methods to
address.

6.1 Detailed Analysis

While the experimental results provide useful information about the accuracy of
the three methods, it is useful to also analyze the strengths of each method.

Case Study: Fractal Method Success. First, we analyze an example in
which only the Fractal method retrieved an appropriate source demonstration.
Figure 3(a) depicts the target problem demonstration, which the Fractal method
correctly matched to the source demonstration shown in Fig. 3(d). The Fractal
method offers both a decreased susceptibility to noise as well as a plethora of
fractal features over which to calculate a potential match (beyond the transfor-
mation itself).

The SIFT feature-matching method incorrectly classified Fig. 3(a) as a pour-
ing skill demonstration, due to the many features matched between the target
demonstration and pouring demonstration’s final states. Features of the demon-
strator’s hand were incorrectly matched to features of the pouring instrument,
as shown in Fig. 3(e). The SIFT feature-transformation method also incorrectly
classified the demonstration as a pouring skill demonstration. Figure 3(b) illus-
trates the feature transformations used to represent the target problem. Each
feature in the initial state was matched to the single feature identified in the
final state. Thus, the resulting feature transformations did not properly repre-
sent the skill being performed, which led to the retrieval of an incorrect source
demonstration (see Fig. 3(c)).
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(a) Target Problem (b) SIFT Feature-Transformation Repre-
sentation

(c) SIFT Feature-Transformation Result (d) Fractal Method Result

(e) SIFT Feature-Matching Result

Fig. 3. Case study 1: retrieval method results

We conclude that the Fractal method can be applied to source retrieval
problems in which the visual transformation, rather than keypoint features, are
indicative of the skill being performed. The Fractal method is also applicable to
demonstrations that include some clutter, such as the demonstrator’s hand or
other objects unrelated to the skill being performed. This case study also demon-
strates that the feature-matching method is sensitive to clutter. Additionally, the
feature-transformation method is less effective in classifying demonstrations in
which there are few features in the initial or final state, or in which there is
a poor correspondence between features matched between the initial and final
state images. As an example, the feature-transformation method would perform
poorly given a demonstration of a book-closing skill, where initial-state SIFT fea-
tures detected on the inside pages of the book cannot be matched to final-state
SIFT features on the cover of the book.

Case Study: SIFT Transformation Success. In the next case, only the SIFT
feature-transformation method retrieved an appropriate source demonstration
for the target problem shown in Fig. 4(a). The SIFT feature transformation
method retrieves visually analogical source demonstrations by identifying visual
transformations at multiple abstraction levels. The transformations in Fig. 4(c)
were deemed similar to those in the target problem. Features in the initial and
final states were matched correctly, which is why this method was able to succeed.

The Fractal method incorrectly retrieved the source demonstration shown in
Fig. 4(d) due to its emphasis on visual transformations independent of features,
and thus is less effective in distinguishing between skills that have similar visual
transformations. The more similar the visual transformations, the more common
and therefore the less salient are the Fractal method’s generated features derived
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(a) Target Problem (b) SIFT Feature-Transformation Repre-
sentation

(c) SIFT Feature-Transformation Result (d) Fractal Method Result

(e) SIFT Feature-Matching Result

Fig. 4. Case study 2: retrieval method results

from those transformations. The Fractal method chose this source demonstration
due to the similarity between the movement of the box lid from one part of
the target demonstration image to another, and the movement of coffee beans
from one part of the source demonstration image to another. The SIFT feature-
matching method also returned an incorrect source demonstration in this case,
as it erroneously matched features of the target demonstration’s initial state to
features of a pouring instrument (see Fig. 4(e)).

This case study teaches us that the feature-transformation method is best
applied to situations in which there are a large number of features in both the
initial and final state images, and the two sets of features have been mapped
correctly. Additionally, we find that the Fractal method is less effective in distin-
guishing between skills that have similar visual transformations. Finally, this case
study demonstrates how the feature-matching method relies on having a correct
mapping between features of the target demonstration and features extracted
from a potential source demonstration.

Case Study: SIFT Feature-Matching Success. In the final case study,
only the feature-matching method retrieved the correct source demonstration to
address the target problem shown in Fig. 5(a). This method correctly corresponds
features between the target problem and source demonstration’s initial and final
state features. The initial state feature mapping is shown in Fig. 5(e).

Just as in the first case study, the feature-transformation method does not
retrieve the correct source demonstration because there are not enough features
in the final state image. All features in the source demonstration’s initial state
are mapped to the single feature in the final state image, causing the feature
transformations to poorly reflect the skill being performed. The Fractal method
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(a) Target Problem (b) SIFT Feature-Transformation Repre-
sentation

(c) SIFT Feature-Transformation Result (d) Fractal Method Result

(e) SIFT Feature-Matching Result

Fig. 5. Case study 3: retrieval method results

retrieves an incorrect source demonstration due to its emphasis on the visual
transformation between the two states, without any weight to the objects being
moved. In this example, the Fractal method determined the movement of the
box lid to be analogical to the movement of coffee beans from the left side of the
image to the right side, as shown in Fig. 5(d).

Thus, the feature-matching method is most effective when there is a correct
correspondence between features of the target problem and matching features
in the potential source demonstration, and there are enough features in both
demonstrations to represent the objects being used. As it turns out, even our
analogical test set used objects that were similar enough for feature-matching to
achieve the highest success rate (e.g., even after switching from pouring coffee
beans to white beans, black flecks made them look enough like coffee beans to
match). We expect that for analogical images with less object feature correspon-
dence, this result would dramatically change.

The feature-matching method performed best on each test set. However, we
anticipate that this method would not perform well on skill demonstrations in
which irrelevant features are present, such as clutter or the demonstrator’s hand.
Additionally, this method would mistake skill demonstrations with the same
feature set; block-sorting and block-stacking demonstrations could be performed
using the same objects, and thus the two demonstrations would be matched as
a result of having the same set of features.

6.2 Discussion

Several variables may affect the accuracy of each skill interpretation method. The
Fractal method is affected by the heuristic used to select the abstraction level at
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which two demonstrations should be compared. We currently use the heuristic of
summing the similarity scores that are calculated at multiple abstraction levels.
However, this heuristic may negatively impact the Fractal method’s overall accu-
racy if skill types are most accurately classified at a certain abstraction level.
Additionally, the SIFT feature-transformation method is affected by the scoring
function used to determine the similarity of two transformations. The weight
values applied to the angular difference, change in transformation distance, and
change in start location between two feature transformations will impact how
accurately the method can determine the similarity between visual feature trans-
formations. These two variables, the abstraction-level selection heuristic and the
transformation similarity metric, may become the focus of future work.

7 Conclusion

We have explored visual case retrieval for case-based interpretation of skill
demonstrations as a precursor to case-based robot learning by imitation. We have
presented three methods for this task: SIFT feature-matching, SIFT feature-
transformation, and Fractal feature-transformation. Although the general SIFT
algorithm is widely used for computer vision tasks, the use of fractal and SIFT
features in case-based skill interpretation is new insofar as we know.

No single method works best for all case-based skill interpretation problems.
Rather, each method discussed in this paper is best suited for a particular type
of problem. The feature-matching method is best suited for interpretation prob-
lems in which enough visual features can be extracted to identify the skill and
no clutter is present. The SIFT feature-transformation method is most effective
in problems where many features can be extracted from the demonstrations,
and correspondences between features can be identified correctly. Finally, the
Fractal method is most effective in identifying skills in which the visual transfor-
mation should be emphasized, rather than features of the demonstration images
themselves. This suggests the use of a multi-strategy technique for visual case
retrieval in the domain of interpreting skill demonstrations.
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