
Structure, Behavior and Function of Complex Systems:

The SBF Modeling Language

Ashok Goel, Spencer Rugaber, Swaroop Vattam

Design Intelligence Laboratory

School of Interactive Computing, Georgia Institute of Technology

Atlanta, Georgia 30332, USA

{goel@cc.gatech.edu, spencer@cc.gatech.edu, svattam@cc.gatech.edu}

Corresponding author

Ashok Goel

School of Interactive Computing, Georgia Institute of Technology

Technology Square Research Building

85 5th Street NW

Atlanta, GA 30332-0760 USA

Email: goel@cc.gatech.edu

Phone: 404-894-4994

Fax: 404-894-0673

Short title: The SBF Modeling Language

Total number of pages: 44

Number of tables: 0

Number of figures: 8

Bryan
Sticky Note
Citation Information:

Ashok Goel, Spencer Rugaber & Swaroop Vattam. Structure, behavior, and function of complex systems: The structure, behavior, and function modeling language. International Journal of AI in Engineering Design, Analysis and Manufacturing, Special Issue on Developing and Using Engineering Ontologies, 23: 23-35, 2009.

Structure, Behavior and Function of Complex Systems:

The SBF Modeling Language

Abstract:

Teleological modeling is fundamental to understanding and explaining many complex systems,

especially engineered systems. Research on engineering design and problem solving has

developed several ontologies for expressing teleology, e.g., FR, FBS, and SBF. In this paper, we

view SBF as a programming language. SBF models of engineering systems have been used in

several computer programs for automated design and problem solving. The SBF language

captures the expressive power of the earlier programs and provides a basis for interactive

construction of SBF models. We provide a precise specification of the SBF language. We also

describe an interactive model construction tool called SBFAuthor.

Keywords: Ontology, Teleology, Structure, Behavior, Function

Section 1: Teleology of Complex Systems

Teleological modeling is fundamental to understanding and explaining many complex systems,

especially engineered systems. By complex system, we mean a system that not only has many

interconnected components, but also has causal processes at multiple levels of abstraction such

that a causal process at one level emerges out of component interactions at a lower level. By

teleological model of a system, we mean a representation that specifies both the functions of the

system and the causal processes that result in the system functions. It follows that a teleological

model of a complex system would specify the system functions, and the causal processes that

result in them, at multiple abstraction levels.

Of course teleological models are not necessarily useful for understanding or explaining all

artifacts. We may view artifacts as lying on a spectrum of teleological explanation. At one end of

this spectrum are artifacts for which teleological explanations are very useful. For example, the

door system in my office has a useful teleological explanation: it’s functions (closing and

opening) are accomplished by causal processes (pushing or pulling on the handle of the door,

which creates a torque about the hinges that connect the door to the wall, which generates an

angular motion about the hinges, and so on). While the physical structure of the door (e.g., its

connection to the wall) both affords and constrains its motion, it’s causal processes mediate

between it’s structure and it’s functions. At the other extreme of the teleological spectrum are

artifacts whose function directly emerges from the shape of its structural components. For

example, the function of the desk on which my computer sits (providing a flat space for placing

objects) directly emerges from the shape of its structure (a large flat top) without any mediation

by a causal process. Many artifacts lie in the middle of this teleological spectrum, containing

some subsystems that are teleological and others that are not. For example, on one hand, the

function of the chair that I am sitting on while I type these words directly emerges from the

shape of its structure. On the other hand, the chair also contains a lever so that when I push the

lever down, it lowers the height of the seat; this function is accomplished by a causal process. In

this paper, we are concerned solely with the ontology of complex systems in which causal

processes mediate between their structure and functions.

Computational research on engineering design and problem solving has led to several ontologies

for teleological modeling such as Functional Representation (Chandrasekaran 1994;

Chandrasekaran & Josephson 2004; Sembugamoorthy and Chandrasekaran 1986), Function-

Behavior-Structure (Gero 1990; Gero, Tham & Lee 1992), and Function-Behavior-State (Umeda

et. al. 1990; Umeda et. al. 1997; Umeda & Tomiyama 1996). By ontology, we mean a

vocabulary of knowledge representation (cf. Bunge (1977), who views ontology as pertaining to

the nature of the world). The Structure-Behavior-Function (or SBF) knowledge representation

language (Bhatta & Goel 1994, 1997; Goel et. al. 1996; Goel & Bhatta 2004; Prabhakar & Goel

1997) provides one such ontology for teleological modeling.

Although SBF modeling is fairly mature by now (as is indicated by the years of publication in

the list of references), recently our work has explored computational tools for interactive

construction of SBF models, which raises several new research issues. The design literature

typically described ontologies for teleological modeling only at a high level, often using

teleological models of specific systems as illustrations. This is because a high-level specification

of the ontology often is sufficient to explain a computational theory or model. However, a high-

level specification of our SBF ontology is inadequate for developing an interactive tool for

constructing an SBF model. This is because model building is an open-ended task, and the higher

the level of specification of the ontology the less constrained the task becomes and the less

guided is the human user. Users may potentially use the interactive tool to construct a variety of

SBF models in a variety of ways, many of which might be incorrect or incomplete. Furthermore,

the tool may need to incorporate model checking functionality to provide feedback to the users

about the correctness of their models, creating a need for more precise specification of the

ontology. Thus, for the purpose of developing an interactive tool, we need to view SBF as a

programming language with a well-defined syntax and semantics. An SBF language would both

constrain the actions of a user as well as afford the construction of useful SBF models. The

language would also enable automated model checking. In addition, it will enable the

construction of agents that both guide a user in constructing an SBF model as well as critique a

constructed model. The primary goal of this paper is to specify the abstract syntax of the SBF

language and to describe how the static semantics of the syntax enables interactive construction

of SBF models.

Section 2: An Illustrative Example of SBF Models

To motivate the SBF programming language, let us consider a simple example: teleological

modeling of a gyroscope follow-up, a device used in gyrocompasses on ships. (Briefly, the

gyrocompass, with its ability to track true north as compared to the unreliable magnetic north, is

an instrument for navigation and piloting aboard many ships. A gyroscope is an assembly with a

very rapidly spinning top. A gyroscope follow-up automatically tracks and amplifies the

movement of a spinning gyro. The follow-up servo can drive any number of gyrocompasses

located anywhere on a ship, each of which replicates the reading of the central gyro. Figure 1

illustrates the structure of a simple gyroscope follow-up with no feedback control.

------------- Figure 1 goes here --------------

Structure: In SBF models, structure is represented in terms of components, the substances

contained in the components, and connections among the components. The specification of a

component includes its functional abstractions, where a component can have multiple functions.

The specification of a substance includes its properties. Substances can be abstract, e.g., angular

momentum.

------------- Figure 2 goes here --------------

Function: A function is represented as a schema that specifies its preconditions and its

postconditions. The function schema contains a reference to the behavior that accomplishes the

function. This schema also may specify conditions under which the specified behavior achieves

the given function (e.g., an external stimulus). Figure 2 illustrates the schema for the function of

the gyroscope follow-up of Figure 1. Informally, the function specifies that the device takes as

input angular momentum of magnitude Li and of clockwise direction at the input (gyroscope)

location, and produces a proportional angular momentum of magnitude Lo and of clockwise

direction at the output shaft location. Lo fluctuates over a large range, i.e., Lo = Lavg ± ∆, where ∆

can be large.

------------- Figure 3 goes here --------------

Behavior: A behavior is represented as a sequence of states and transitions between them. The

states and the transitions are represented as state and transition schemas, respectively. The states

in a behavior specify the evolution in the values of the parameters of substances and/or

components. Continuous state variables are discretized, and temporal ordering is subsumed by

causal ordering. Each state transition in a behavior is annotated by the causes for the transition.

Causal explanations for state transitions may include physical laws, mathematical equations,

functions of its subsystems, structural constraints, other behaviors, or a state or transition in

another behavior. Figure 3 shows the behavior that explains how angular momentum from the

input gyroscope location is transferred to the output shaft location. The functional context

specified by the annotation USING-FUNCTION in Transition_3-4 indicates that the transition

occurs due to the primitive function “CREATE Angular Momentum” of Hydraulic-Motor.

Section 3: Background of SBF Models

Before we go further, we need to situate SBF modeling in the context of teleological modeling of

complex systems in general. In Sciences of the Artificial, Simon (1969, 1996) viewed a system as

having an inner and an outer environment. Further, he viewed a function of the system as an

abstraction of its inner environment, lying at the interface of its inner and outer environments.

Simon suggested that from the perspective of understanding the design of complex systems, the

right kind of explanations specified how the function of a system arises out of the components

and processes in the inner environment of the system.

In the early 1980’s, Chandrasekaran and his associates developed a Functional Representation

(FR) scheme for representing teleology (Chandrasekaran 1994; Sembugamoorthy and

Chandrasekaran 1986). They used the FR representation of a system for explanation and

diagnosis. The FR representation of a system explains how its causal processes accomplish its

functions, and how the causal processes hierarchically compose the functions of the system’s

components into the functions of the systems as a whole. Thus, FR not only represented the

functions of a system explicitly, but also used the functions as indices into the causal processes

(called behaviors) that accomplished the functions; the behaviors in turn indexed the functions of

the subsystems, and so on. At about the same time, Rasmussen developed a Structure Behavior

Function (SBF) scheme for representing teleology (Rasmussen 1985; Rasmussen, Pejterson &

Goodstein 1994). He and his colleagues used the SBF representations of very large complex

systems, such as an electrical power plant, to interactively aid human operators in

troubleshooting the system. Their SBF representations emphasized representation of the

functional roles of the structural components of the system.

In the late 1980s, Gero and his associates (Gero 1990; Gero, Tham & Lee 1992) and Tomiyama

and his colleagues (Umeda et. al. 1990; Umeda et. al. 1997; Umeda & Tomiyama 1996)

independently developed Function Behavior Structure (FBS) schemes for representing teleology.

(Tomiyama sometimes calls his representation scheme Function-Behavior-State models.) Gero

and Tomiyama used their respective FBS schemes for understanding the process of designing

engineered systems and for aiding human designers in the design process. In the 1990s,

Chakrabarti & Bligh (1996), Stone & Wood (2000), and Mizoguchi and his colleagues (Sasajima

et. al. 1995; Kitamura et. al. 2004), among others, developed similar functional representation

schemes and for similar uses. It is important to note that, as a consequence, there is not one but

several functional representation schemes currently in the field. While the various functional

representation schemes have many features in common, their ontologies often are quite different.

For example, behavior in Chandrasekaran’s FR scheme refers to a causal process while behavior

in Gero’s FBS representation pertains to the properties of a structural component. Erden et. al

(2008) provide a recent useful review of several major functional representation schemes.

The origin of our Structure Behavior Function (SBF) representation of teleology (Bhatta & Goel

1994, 1997; Goel et. al. 1996; Goel & Bhatta 2004; Prabhakar & Goel 1998) lies in

Chandrasekaran’s FR scheme (e.g., Goel & Chandrasekaran 1989; Chandrasekaran, Goel &

Iwasaki 1993). In particular, our SBF models both combine FR with Bylander’s component-

substance ontology and primitive functions (Bylander 1991), and extend FR to support the

inferences needed for automated design (Goel 1992; Goel & Chandrasekaran 1989, 1992; Goel,

Bhatta & Stroulia 1997). SBF models share the main features of the FR scheme: (i) functions of

devices are represented explicitly, (ii) functions act as indices into internal causal behaviors

responsible for them, (iii) behaviors are represented as an ordered sequence of states, (iv) state

transitions in a behavior are annotated by the causal explanations for them, (v) the causal

explanations can be of several types, e.g., component function, structural relation, domain

principle, another behavior, and (v) the component function explanations for transitions act as

indices into functions at the next (lower) level of aggregation. SBF models also extend the FR

scheme: (a) SBF models use a component-substance ontology of devices, which enables a more

precise specification of states in a behavior or in a function, (b) SBF models use an ontology of

primitive functions based on the component-substance ontology, which enables a more precise

specification of state transitions in a behavior, (c) in SBF models, separate behaviors are

constructed for substances and components, which makes for a more precise specification of

behaviors as a whole, (d) the functions of systems are viewed as a subset of its output behaviors,

and SBF models allow specification of all output behaviors of a device, (e) the internal causal

behaviors in an SBF model may branch and merge, and (f) the internal causal behaviors admit

inverse causality and bi-directional causality. While (d), (e), and (f) above enhance the

expressive power of FR, (a), (b), and (d) afford more precise and accurate inferences needed for

automated case-based design.

We have used SBF models in several design systems as briefly described below in Section 5. In

addition, the functional representations in the NIST design repository (Szykman et. al. 2000a,

2000b) were inspired in part by the SBF representations. Anthony et. al. (2001) have developed a

mark-up tool for interactive labeling of 3D CAD models by structures, behaviors and functions.

Section 4: Abstract Syntax of the SBF Language

This section presents a top-down, syntax-oriented grammatical description of SBF. The notation

used is a variant of BNF (International Organization for Standardization 1996) in which syntactic

definitions are described using production rules in which the term being defined appears on the

left of a separator (:=), and its definition appears on the right as a sequence of terminal and non-

terminal symbols. Terminal symbols denote categories of atomic words in an SBF model.

Important categories in SBF are STRINGS and INTEGERS. A specific literal string may also

appear in the grammar between straight apostrophes as in 'pump'. Other textual names denote

non-terminal units that are defined in other rules in the grammar.

Several operators are used in the syntactic definitions. Juxtaposition denotes concatenation; '|'

denotes alternative; '[T]' denotes optionality, where T is any string of symbols; '{T}*' and

'{T}+' denote respectively any number of occurrences of T and any non-zero number of

occurrences. Finally, '// ...' denotes a comment that proceeds from the slashes to the end of

the line.

Together, the following set of rules comprises an abstract syntax for SBF. The syntactic

description is abstract because it avoids concrete details such as punctuation and keywords.

SBF Model

At the highest level, an SBF specification looks like the following:

SBFModel := STRING // Model name

 [STRING] // Description

 StructureModel

 FunctionModel

 BehaviorModel

 {Stimulus}+

That is, an SBF specification comprises six parts, appearing consecutively: a name, an optional

description, specific submodels for structure, function, and behavior, and one or more external

stimuli to which the system being modeled might react. These latter four constituents are now

described in corresponding subsections.

Structure Model

StructureModel := {Element}+

 {Connection}*

A StructureModel is merely one or more Elements and the Connections among them.

Element := INTEGER // Element Id

 STRING // Element name

 [STRING] // Description

 {Property}*

 (Component | Substance)

 {INTEGER}* // Subelement Ids

An Element consists of a unique identifier followed by a name, an optional description, and a

list of Properties. An Element is either a physical Component or a Substance.

Moreover, an Element can itself have subcomponents, leading to a hierarchical structural

breakdown. Several comments are in order. First, Elements, like many other of the non-

terminals to be described below, have unique identifiers. This enables dependencies among the

Structure, Behavior and Function submodels to be described. Second, Properties are used

throughout SBF models to denote named, typed values. Here is the syntactic definition of a

Property.

Property := STRING // Property name

 Type

 Value

 Unit

 Constantp

Type := 'boolean' | 'integer' | 'real' | 'string' | ...

Value := STRING

Unit := 'gram' | 'meter' | 'second' | ...

Constantp := 'true' | 'false'

Properties have Types in the sense of belong to a set of related values, such as integers

or strings. Moreover, because SBF models physical devices, its supports the use of scientific

Units to further describe the Values. The non-terminal Constantp is intended to enable the

modeler to indicate that the Value of a particular Property is not subject to change.

Component := INTEGER // Function Id

 {ConnectingPoint}*

ConnectingPoint := INTEGER // ConnectingPoint Id

 STRING // ConnectingPoint name

Substance :=

Components are Elements that can be connected with other Components. They should be

distinguished from Substances, which are used to model fluids and forces.

Connection := INTEGER // ConnectionId

 STRING // Name of connection

 Mechanism

 INTEGER // Id of first connected Component

 INTEGER // First ConnectingPoint Id

 INTEGER // Id of second connected Component

 INTEGER // Second ConnectingPoint Id

Mechanism := 'parallel' | 'series' | 'touching' | 'adjoining'

 | 'bolted' | 'fused' | 'hinged' | 'jointed'

 | 'tied' | 'telescoped' | 'threaded'

 | 'frictionallyEmbedded' | 'sewn' | 'nailed'

 | 'clipped' | 'ballAndSocket' | 'glued'

Connections are binary, associating named ConnectingPoints in Components.

Moreover, Connections are partitioned into categories based on the way in which force is

transferred between the corresponding Components.

Behavior Model

Behavior is modeled in SBF with deterministic finite state machines. In fact, a Behavior is

nothing more than a set of States and related Transitions.

BehaviorModel := {Behavior}+

Behavior := INTEGER // BehaviorId

 STRING // Behavior name

 [STRING] // Description

 {State}+

 {Transition}+

State := INTEGER // State Id

 STRING // State name

 [STRING] // Description

 {Content}+

Content := INTEGER // ElementId

 {Property}*

 ConnectingPointId

States constrain the values of Properties at ConnectingPoints.

Transition := INTEGER // Transition Id

 [STRING] // Transition name

 [STRING] // Description

 INTEGER // Source State Id

 INTEGER // Target State Id

 {CausalExplanation}*

CausalExplanation := INTEGER // FunctionId

 | INTEGER // StateId in another Behavior

 | INTEGER // TransitionId

 | INTEGER // Structure connection

 | INTEGER // StimulusId

 | STRING // Domain principle

 | INTEGER // BehaviorId

Transitions are directed binary associations between States. Moreover, each

Transition might have a number of CausalExplanations motivating the change of

State.

Function Model

Functions in SBF describe the role that an Element plays in the overall operation of a

device. They express the purpose or goal of the Element, whereas the Behavior describes

how the purpose is accomplished. Each Element in an SBFModel has a Function, and each

Function has a corresponding Behavior.

FunctionModel := {Function}+

Function := INTEGER // Function Id

 Name // Function name

 [STRING] // Description

 FunctionType

 [INTEGER] // PrimaryArgument (ElementId)

 INTEGER // Behavior Id

 STRING // Provided

 INTEGER // Prerequisite StateId

 {INTEGER}+ // Resultant StateIds

 {INTEGER}* // StimulusIds

Name := Primitive

 | NonPrimitive

Primitive := 'create' | 'destroy' | 'expel' | 'allow' | 'pump'

 | 'move'

NonPrimitive := STRING

The SBF ontology comprises a number of primitive Functions useful for describing devices.

Moreover, modelers can define new (NonPrimitive) ones.

FunctionType := 'achievement' | 'maintenance' | 'prevention'

 | 'negation'

The SBF ontology also distinguishes categories of Functions, partitioned according to how

the corresponding Behavior affects the Element’s State.

Stimuli

The final constituent of an SBFModel describe the environmental Stimuli that can affect its

Behavior.

Stimulus := INTEGER // StimulusId

 STRING // Stimulus name

 [STRING] // Description

 [Value_Type]

A Stimulus may have an associated Typed Value, describing its amplitude.

Section 5: Static Semantics of the SBF Specification Language

The abstract syntax given above is useful for describing the appearance of SBF models, but not

how to interpret them. In particular, some syntactically correct models may be incomplete or

have inconsistencies. Here we present a series of rules that distinguish valid from invalid

SBFModels.

Uniqueness Constraints

The first category of rules merely specifies that the identifiers used to label different model

constituents are themselves different; for example, each ElementId in Element is unique.

Additional rules in this category include the following:

• There is only one (directed) Transition between any two States in the same

Behavior

• No two CausalExplanations on any Transition may be the same

• No NonPrimitive-Function Name can be the same as any Primitive-

Function Name

• For any given Connection, the FirstConnectingPointId must differ from the

SecondConnectingPointId

Referential Integrity Constraints

Another category of model rules has to do with referential integrity. This term refers to situations

in which an identifier in one place in a model refers to (is identical with) an identifier in another

place. In general, there should be no missing targets to any reference.

• Each StartStateId and StopStateId in Function correspond to actual States

existing in the Behavior referred to by BehaviorId in that same Function

• Each ElementId in Content refers to a Component that has a Function with the

Behavior containing the State that has that Content

• Each ConnectingPointId in Content refers to a ConnectingPoint in a

Component that has a Function with the Behavior containing the State that has

that Content

• Each SourceStateId and TargetStateId in Transition refers to States that

exist in the Behavior containing the Transition

Organizational Rules

Several other rules are necessary to further constrain valid SBFModels.

• A StructureModel contains exactly one Element that is not referred to by a

subElementId. That Element must be a Component and not a Substance. That

is, the device itself being modeled is considered as the outermost Element.

• Each SubElementId in any Element refers only to an Element below itself in the

containment hierarchy. That is, the Element containment hierarchy is a strict tree

structure.

• Each FunctionId in the CausalExplanation of a Transition in a Behavior

corresponds to a Function that does not have that Behavior

• Each StateId referred to in a CausalExplanation of a Transition in a

Behavior corresponds to a State in a different Behavior

• Each TransitionId referred to in a CausalExplanation of a Transition in a

Behavior corresponds to a Transition in a different Behavior

Section 6: Dynamic Semantics of the SBF Specification Language

SBF models of complex systems enable computer programs to draw inferences about the

systems. The inference rules for a particular program provide an interpretation of an SBF model.

The set of allowed interpretations for a program provide a specific dynamic semantics to the SBF

language. Here are several examples.

Kritik: Kritik (Goel 1992; Goel, Bhatta & Stroulia 1997; Goel & Chandrasekaran 1989, 1992)

was an early automated design system that integrated case-based and model-based reasoning for

generating conceptual designs of simple engineering devices. It indexed known designs by their

functions, and used SBF models of the known designs to guide the process of design adaptation.

Given the functional specification of a new problem, Kritik retrieved designs that delivered

similar functions, viewed a retrieved design as having failed to achieve the given desired

function, and used the SBF model of the design to diagnose the causes for the failure and

propose modifications to the design. Thus, the SBF models in Kritik enabled both design

retrieval and design adaptation.

Ideal: Ideal (Bhatta & Goel 1994, 1997; Goel & Bhatta 2004) was an early automated design

system that used cross-domain analogies for generating designs of simple engineering systems.

Like Kritik, it indexed known designs by their functions, and used SBF models of known designs

to guide the process of design adaptation. In addition, it used Behavior-Function (BF)

representations of abstract teleological mechanisms (such as “feedback”) for cross-domain

transfer. Given the functional specification of a new problem, Ideal retrieved a design that

delivered a similar function, viewed the retrieved design as having failed to achieve the given

desired function, used the SBF model of the design to diagnose the causes for the failure and

propose modifications to the design. If and when this adaptation process failed, however, Ideal

abstracted the functional specification of the problem, retrieved an abstract teleological solution

relevant to the abstract functional problem, and instantiated the mechanism in the context of the

design retrieved earlier. It also learned abstract teleological mechanisms from SBF models of

known designs, Thus SBF model in Ideal enabled abstraction, transfer and instantiation of

abstract teleological mechanisms,

Torque: Torque (Griffith, Nersessian & Goel 2000) modeled verbal protocols (Clement 1989) of

physicists addressing problems pertaining to spring systems. In Torque, retrieval of an analog

was based on structural similarity instead of functional similarity. The SBF model of the

retrieved analog enabled the transfer of qualitative mathematical knowledge across domains

(from the domain of bending beams to that of spring systems).

Archytas: Archytas (Yaner & Goel 2007, 2008) is a recent automated system that constructs

SBF models from design drawings by analogical transfer of SBF models of similar drawings.

Given a target design drawing, and given also a known design drawing and its SBF model,

Archytas maps, transfers and adapts the SBF model of the known drawing to the target drawing.

To do this, Archytas extends SBF models into DSSBF models (for Drawing-Shape-Structure-

Behavior-Function), thereby incorporating shapes and drawings into SBF models. In Archytas,

analogical mappings at one level of abstraction (e.g., shape) enable transfer at the next higher

level (e.g., structure).

Section 7: From Automated Systems to Interactive Environments

Kritik, Ideal, Torque and Archytas are automated systems. InteractiveKritik (Goel et. al. 1996;

Goel & Murdock 1996) enabled a human to browse the designs in Kritik’s design library, the

SBF models of the designs Kritik generated, and Kritik’s processing in generating a design.

InteractiveKritik, however, did not allow the user to interactively construct SBF models.

Interactive model construction environments provide external representations, which can be

powerful tools to support designing and learning. Clement (2000) has argued that learning is

fundamentally a process of model construction and revision. Buckley (2000) has shown that

interactive environments can help students learn about models of complex systems at multiple

levels of organization. Hmelo-Silver, Holton & Kolodner (2000) have suggested while experts

model a complex system in terms of its interrelated structure, behaviors and functions, novices

primarily express its structure, demonstrate limited understanding of its functions, and largely

miss its behaviors. Hmelo-Silver & Pfeffer (2004) have recommended use of interactive

environments that enable construction of SBF models to support learning about complex

systems. We have constructed an interactive SBF model construction tool, called SBFAuthor,

which will be used in several interactive environments. Here are a few examples.

ACT: SBF models are being used as the foundation for the Aquarium Construction Toolkit

(ACT), an interactive learning environment for modeling aquaria as a complex system (Hmelo-

Silver et. al. 2008). The idea is that middle school students may be better able to understand a

complex system such as an aquarium if they build a model of the system that includes not only

its structural descriptions, but also its functions and behaviors. SBFAuthor is the interactive tool

that will be used to construct these models. ACT also enables the students to simulate their

models using NetLogo (Wilensky 1999). Hence, SBF models must be executable by NetLogo,

and NetLogo provides an operational semantics for SBF. Thus far, we have been able to build

useful interpretations for a subclass of SBF models, and we are actively working on others.

DANTE: SBF models are also the foundation for an interactive environment, called DANTE, for

supporting biologically inspired design (Vattam, Helms & Goel 2008). The idea is that

representations of biological systems as SBF models may facilitate analogical transfer of

biological principles to engineering problems. DANTE provides another semantic interpretation

of SBF models. It does this with a feature called a critic. Critics are reactive checkers of a user’s

models. Consequently, DANTE must treat SBF models as potentially being incorrect. The

semantics of an incorrect model is the appropriate response (diagnosis and suggestion) from the

relevant critic to the modeler.

Section 8: SBFAuthor: An Interactive SBF Model Construction Tool

SBFAuthor is a computational tool for interactive construction of SBF models of complex

systems. SBFAuthor adds a visual syntax for the SBF specification language described above.

The utility of visual notation for modeling languages has been shown in practice through visual

modeling paradigms such as the Entity Relationship (ER) model and the Unified Modeling

Language (UML). Visual representations offer significant advantages over textual

representations for model building and model comprehension. For example, Nosek and Roth

(1990) noted that semantic networks (graphs) are more understandable than their equivalent

predicate logic (textual) representation. Particular knowledge representation frameworks such as

concept maps (Novak & Gowin 1984) are based on well-defined graphical notations.

------------- Figure 4 goes here --------------

SBFAuthor is an editor that facilitates building SBF models using visual notations. Figure 4

captures the correspondence between the elements of the abstract syntax of SBF specification

language and their visual counterparts.

------------- Figure 5 goes here --------------

SBFAuthor visually partitions an SBF model into three views: Structure view, Behavior view

and Function view, as shown in Figure 5. This figure depicts the SBF model of the Gyroscope

follow-up shown in Figure 1.

Structure View

The Structure view enables users to create the StructureModel portion of the SBF model in

terms of Components, Substances and their associated Connections. The Structure

model is presented as a graph. For each Component or Substance, a corresponding node is

created. The Connections are represented as labeled links between nodes in the graph. Figure

6a shows the Structure view of the gyroscope follow-up presented in Figure 1. It consists of

Component nodes like “Gyroscope,” “Worm Wheel,” “Pivot,” etc. It also contains a

Substance node “Angular momentum.” Links between these nodes indicate specific

kinds of Connections like “contains,” “connected,” etc.

------------- Figure 6 goes here --------------

Components and Substances can be described using dialogs boxes (see Figure 6b) that can

be invoked to enter their feature values (e.g. “name,” “description”) and to include their

Properties (e.g. “location” and “magnitude” in case of “Angular Momentum”).

According to the SBF specification, a Component can itself comprise a subsystem with its own

SBF model. In such situations users can create a separate SBF model for that Component and

include a reference to the Function of that model in the parent model.

Behavior View

The Behavior view allows users to create the BehaviorModel portion of the SBF model by

allowing them to create one or more Behaviors which appear as different tabs in the Behavior

view. For each Behavior, users can create States and Transitions. Each Behavior is

represented as a state-transition graph as shown in Figure 7a. Every State and Transition

is associated with a dialog box. Recall from the SBF specification that States can constrain the

values of Component/Substance Properties. The State dialog box allows the user to

model State variables and their values by choosing them from a list of Properties derived

from the StructureModel. For example, Figure 7b represents “State 1” of the behavior

model constructed in Figure 3 above. The variables “Location” and “Magnitude” of

“Angular Momentum” are assigned values “Gyroscope” and “M_input” respectively.

These variables are derived from the StructureModel.

------------- Figure 7 goes here --------------

Recall that Transitions capture the CausalExplanations in the form of references to

various model elements (like Functions, Behaviors, etc.). The Transition dialog box

enables a user to express this information. For instance, in Figure 7c the Transition named

“USING FUNCTION ALLOW Angular Momentum of Linkage-AB” contains a

reference to the Function “ALLOW Angular Momentum.” This captures one of the causes

for the Transition between “State 1” and “State 2,” reflecting the Function of a

particular linkage to allow angular momentum to move from the gyroscope to the pivot.

Function view

------------- Figure 8 goes here --------------

The Function view allows users to create the FunctionModel portion of the SBF model as

one or more Functions that appear as different tabs in the Function view as shown in Figure

8. For each Function users can state its type (Primitive or Non-primitive). If the

function being modeled is a Primitive Function, the user can choose from an existing set

of Primitive Functions that are present in the teleology. If it is a Non-primitive

Function, the user has to define the new Function and include a reference to a Behavior

that accomplishes it. In Figure 8, for example, the Function “Transfer Angular

Momentum” is accomplished by the Behavior “Transfer Angular Momentum

Behavior.” In addition to the reference to a Behavior, a user has to specify a StartState

labeled “Initial State” (e.g., “State 1” in Figure 8) and a StopState called

“Desired State” (e.g., “State 4” in Figure 8) associated with that Function, which the

user can specify by either choosing States existing in the BehaviorModel or by creating

new ones. In accordance with the SBF specification, users can also include a reference in the

Function view to an external Stimulus that initiates that Function.

Section 8: Conclusions

Research on engineering design and problem solving has developed several ontologies for

expressing teleology. The literature typically describes these ontologies only at a high level,

often using teleological models of specific systems as illustrations. However, the developments

of interactive tools for constructing teleological models of complex systems require a more

precise specification of the ontology. Giving a formal definition to SBF leads to a variety of

benefits including precision, consistent usage, and tool building. Each application of the SBF

language requires not only the abstract syntax and static semantics but also a concrete syntax and

a dynamic semantics. The precise specification potentially enables a range of additional

automated capabilities such as model checking, model simulation, and interactive guides and

critics for model construction. In this paper, we viewed SBF as a programming language. We

specified the abstract syntax and the static semantics of the SBF language. The next step in our

work is to develop the precise dynamic semantics of the language; in this paper, we simply

pointed to earlier work that illustrates the dynamic semantics. The SBF language captures the

expressive power of the earlier programs and provides a basis for interactive construction of SBF

models. We also described an interactive model construction tool called SBFAuthor that is based

on the abstract syntax and static semantics of the SBF language.

Acknowledgements

Over the years several people have contributed to the development of the SBF language,

especially Sambasiva Bhatta, Sattiraju Prabhakar and Patrick Yaner. This paper has benefited

from discussions with Michael Helms and Patrick Yaner. The domain of aquaria was suggested

by Cindy Hmelo-Silver and Rebecca Jordan, and the ACT project is joint work with them. The

DANTE project is in collaboration with Georgia Tech’s Center for Biologically Inspired Design.

This research is supported NFS (IIS) Grant (#0534622) on “Multimodal Case-Based Reasoning

in Modeling and Design,” NSF (ALT) Grant (#0632519) on “Learning About Complex Systems

in Middle School by Constructing Structure-Behavior-Function Models,” and NSF (CreativeIT)

Grant (#0733363) on “Towards a Computational Model of Biological Analogies in Innovative

Engineering Design.”

References

Anthony, L., Regli, Wi., John, J., & Lombeyda, S. (2001) An Approach to Capturing Structure,

Behavior and Function of Artifacts in CAD. Transactions of the ASME, the Journal of

Computing and Information Science in Engineering 1(2), pp. 186-192.

Bhatta, S. & Goel, A. (1994) Model-Based Discovery of Physical Principles from Design

Experiences. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, Special

Issue on Machine Learning in Design, 8(2):113-123, May 1994.

Bhatta, S. & Goel, A. (1997) Learning Generic Mechanisms for Innovative Design Adaptation.

Journal of Learning Sciences, 6(4): 367-396, 1997.

Buckley, B. (2000) Interactive Multimedia and Model-Based Learning in Science Education,

International Journal of Science Education, 22:895-935.

Bunge, M. (1977) Ontology I: The Furniture of the World (Treatise on Basic Philosophy, Vol. 3),

Berlin: Springer.

Bylander, T. (1991) A Theory of Consolidation for Reasoning About Devices, International

Journal of Man-Machine Studies, vol. 35, pp. 467-489, 1991.

Chakrabarti, A., & Bligh, T. (1996) Approach to functional synthesis of mechanical design

concepts: theory, applications, and emerging research issues. AI EDAM, 10(4): 313-331.

Chandrasekaran, B. (1994) Functional Representation: A Brief Historical Perspective. Applied

Artificial Intelligence, 8(2): 173-197.

Chandrasekaran, B., Goel, A., & Iwasaki, Y. (1993) Functional Representation as a Basis for

Design Rationale. IEEE Computer, 26(1):48-56.

Chandrasekaran, B., & Josephson, J. (2000) Function in Device Representation. Engineering

with Computers, Special Issue on Computer Aided Engineering, 16:162-177.

Clement, J. (1989) Learning via Model Construction and Criticism: Protocol Evidence on

Sources on Creativity in Science, In Handbook of Creativity: Assessment, Theory and Research,

Glover, Ronning & Reynolds (Eds.), chapter 20, pp. 341-381. New York: Plenum.

Clement, J. (2000) Model-Based Learning as a Key Research Area in Science Education.

International Journal of Science Education, 22:1041-1053.

Erden, M., Komoto, H., van Beek, T., D'Amelio, V., Echavarria, E., & Tomiyama, T. (2008) A

Review of Function Modeling: Approaches and Applications, AI EDAM, 22 (2): 147-169.

Gero, J. (1990). Design prototypes: a knowledge representation schema for design, AI

Magazine, 11(4): 26-36.

Gero, J. S., Tham, K. W., & Lee, H. S. (1992) "Behavior: A Link Between Function and

Structure in Design," in Intelligent Computer Aided Design, D. C. Brown, M. B. Waldron, and

H. Yoshikawa, Eds. Amsterdam: North Holland, pp. 193-225.

Goel, A. (1992) Representation of Design Functions in Experience-Based Design. In Intelligent

Computer Aided Design, D. Brown, M. Waldron, and H. Yoshikawa (editors), pp. 283-308,

Amsterdam, Netherlands: North-Holland, 1992.

Goel, A., & Bhatta, S. (2004) Design Patterns: An Unit of Analogical Transfer in Creative

Design. Advanced Engineering Informatics, 18(2):85-94, April 2004.

Goel, A., Bhatta, S., & Stroulia, E. (1997) Kritik: An Early Case-Based Design System. In Issues

and Applications of Case-Based Reasoning in Design, M. Maher and P. Pu (editors), Mahwah,

NJ: Erlbaum, pages 87-132, 1997.

Goel, A., & Chandrasekaran, B. (1989) Functional Representation of Designs and Redesign

Problem Solving. In Proc. Eleventh International Joint Conference on Artificial Intelligence

(IJCAI-89), Detroit, Michigan, August, 1989, pp. 1388-1394, Los Altos, California: Morgan

Kaufmann Publishers.

Goel, A, & Chandrasekaran, B. (1992) Case-Based Design: A Task Analysis. In Artificial

Intelligence Approaches to Engineering Design, Volume II: Innovative Design, C. Tong and D.

Sriram (editors), pp. 165-184, San Diego: Academic Press, 1992.

Goel, A., Gomez, A., Grue, N., Murdock, W., Recker, M., & Govindaraj, T. (1996) Towards

Design Learning Environments - Explaining How Devices Work. In Proc. International

Conference on Intelligent Tutoring Systems, Montreal, Canada, June 1996.

Goel, A., & Murdock, J. (1996) Meta-Cases: Explaining Case-Based Reasoning. In Lecture

Notes in Artificial Intelligence 1168: Advances in Case-Based Reasoning, Ian Smith and Boi

Faltings (editors), Berlin: Springer-Verlag, 1996.

Griffith, T., Nersessian, N., & Goel, A. (2000). Function-follows-form transformations in

scientific problem solving. In Proceedings of the Twenty-Second Annual Conference of the

Cognitive Science Society. Lawrence Erlbaum Associates. 196--201. Mahwah, New Jersey

Hmelo, C., Holton, D., & Kolodner, J. (2000). Designing to learn about complex systems.

Journal of the Learning Sciences, 9(3), 247–298.

Hmelo-Silver, C., Jordan, R., Liu, L., Gray, S., Demeter, M., Rugaber, S., Vattam, S., & Goel, A.

(2008) Focusing on Function: Thinking Below the Surface of Complex Natural Systems, Science

Scope, 27-35, Summer 2008.

Hmelo-Silver, C. & Pfeffer, M. (2004) Comparing Expert and Novice Understanding of a

Complex Systems from the Perspectives of Structures, Behaviors and Functions. Cognitive

Science, 28:127-138.

International Organization for Standardization and International Electrotechnical Commission

(1996) Information technology - Syntacticmetalanguage - Extended BNF. First edition; 1996-l 2-

l 5; ISO/IEC 14977 : 1996(E);

http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip

Kitamura, Y., Kashiwase, M., Fuse, M., Mizoguchi, R. (2004) Deployment of an Ontological

Framework of Functional Design Knowledge. Advanced Engineering Informatics, 18(2): 115-

127.

Nosek, J., & Roth, I. (1990). A Comparison of Formal Knowledge Representation Schemes as

Communication Tools: Predicate Logic vs. Semantic Network. International Journal of Man-

Machine Studies 33: 227-239.

Novak, J. & Gowin, D. (1984) Learning How to Learn. Cambridge, UK: Cambridge University

Press.

Prabhakar, S., & Goel, A. (1998) Functional Modeling for Enabling Adaptive Design of Devices

for New Environments. Artificial Intelligence in Engineering, 12:417-444, 1998.

Rasmussen, J. (1985). The Role of Hierarchical Knowledge Representation in Decision Making

and System Management. IEEE Transactions on Systems, Man, and Cybernetics, 15, 234-243.

Rasmussen, J., Pejterson, A. & Goodstein, L. (1994). Cognitive Systems Engineering. New

York: Wiley.

Rieger, C. & Grinberg, M. (1977). "The Declarative Representation and Procedural Simulation

of Causality in Physical Mechanisms," in Proc. International Joint Conf. on Artificial

Intelligence (IJCAI-77), pp. 250-256.

Sasajima M, Kitamura Y, Ikeda M, Mizoguchi R. (1995) FBRL: A Function and Behavior

Representation Language. In Proc. of IJCAI-95, p. 1830–6.

Sembugamoorthy, V., & Chandrasekaran, B. (1986) Functional Representation of Devices and

Compilation of Diagnostic Problem-Solving Systems. In Experience, Memory, and Reasoning,

Kolodner & Riesbeck (Eds), Lawrence Erlbaum Associates, 1986, pp. 47-73.

Simon, H. (1969) Sciences of the Artificial. 3
rd

 Edition, 1996. MIT Press.

Stone, R., & Wood, K. (2000) Development of a Functional Basis for Design. ASME

Transactions, Journal of Mechanical Design, 122(4): 359-370.

Szykman, S, , Racz, J., Bochenek, C., Sriram, R. (2000a) A Web-based System for Design

Artifact Modeling,” Design Studies, Vol. 21, No. 2, pp. 145-64.

Szykman, S., Sriram, R., Bochenek, C., Racz, J., & Senfaute, J. (2000b) Design Repositories:

Engineering Design's New Knowledge Base. IEEE Intelligent Systems, 15(3): 48-55.

Umeda, Y., Takeda, H., Tomiyama, T., & Yoshikawa, H. (1990). Function, Behavior, and

Structure. In AIENG '90 Applications of AI in Engineering (pp. 177-193). Southernpton and

Berlin: Computational Mechanics Publications and Springer-Verlag.

Umeda, Y., Ishii, M., Yoshioka, M., Shimomura,�Y., & Tomiyama, T. (1996) Supporting

conceptual design based on the function-behavior-state modeler, AI EDAM 10:44, 275-288.

Umeda, Y. & Tomiyama, T. (1997) Functional Reasoning in Design, IEEE Expert, Vol. 12,

No.2, March-April 1997, pp. 42-48.

Vattam, S., Helms, M., & Goel, A. (2008) Compound Analogical Design: Interaction Between

Problem Decomposition and Analogical Transfer in Biologically Inspired Design. In Proc.

Third International Conference on Design Computing and Cognition, J. Gero & A. Goel

(editors), Berlin: Springer, pp 377-396.

Wilensky, U. (1999) NetLogo Itself: 1999. http://ccl.northwestern.edu/netlogo/. Center for

Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

Yaner, P. & Goel, A. (2007) Understanding Drawings by Compositional Analogy. In Proc.

Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07), Hyderabad,

India, pp. 1131-1137.

Yaner, P. & Goel, A. (2008) Analogical recognition of shape and structure in design drawings.

AI EDAM, 22(2):117-128.

Ashok K. Goel is an Associate Professor of Computer and Cognitive Science and Director of

Design Intelligence Laboratory in the School of Interactive Computing at Georgia Institute of

Technology. He received his Ph.D. in Computer and Information Science from the Ohio State

University in 1989. His research interests are in using cognitive models and artificial intelligence

techniques to address problems in design, including creativity in design.

Dr. Spencer Rugaber is a Senior Research Scientist in the College of Computing at the Georgia

Institute of Technology. He received his PhD. in Computer Science from Yale University in

1978. His research interests are in the area of Software Engineering, specifically reverse

engineering and program comprehension, software evolution and maintenance and software

design. Dr. Rugaber has served as Program Director for the

Software Engineering and Languages Program in the Division of Computer-Communications

Research at the U. S. National Science Foundation and as Vice-Chairman of the IEEE Technical

Committee on Revere Engineering.

Swaroop Vattam is a graduate student in the College of Computing at the Georgia Institute of

Technology. He is a research assistant in the Design Intelligence Laboratory, where his main

interests are design cognition, knowledge capture and sharing, human-computer interaction and

the use of AI technology to enable communicative interactions between humans and computers.

He is currently exploring the domain of biologically inspired design and investigating the use of

AI technology to aid engineers seek and utilize knowledge of biological systems to develop

innovative design solutions.

Figure 1: A schematic diagram of the Gyroscope follow-up

Figure 2: Representation of Function

Figure 3: Representation of Behavior

Figure 4: Visual syntax of the SBFAuthor

Figure 5: A snapshot of SBFAuthor’s main interface

Figure 6: Structure view, (a) structure model of a Gyroscope follow-up, (b) Substance dialog box

Figure 7: Behavior view; (a) a specific behavior, (b) State, and (c) Transition dialog boxes

Figure 8: The Function view

