Perceptually Grounded Self-Diagnosis and Self-Repair
of Domain Knowledge

Joshua K. Jones, Ashok K. Goel

Design & Intelligence Laboratory
School of Interactive Computing
Georgia Institute of Technology

Abstract

We view incremental experiential learning in intelligent software agents
as progressive agent self-adaptation. When an agent produces an incorrect
behavior, then it may reflect on, and thus diagnose and repair, the reason-
ing and knowledge that produced the incorrect behavior. In particular, we
focus on the self-diagnosis and self-repair of an agent’s domain knowledge.
The core issue that this article addresses is: what kind of metaknowledge
may enable the agent to diagnose faults in its domain knowledge? To ad-
dress this question, we propose a representation that explicitly encodes meta-
knowledge in the form of Empirical Verification Procedures (EVPs). In the
proposed knowledge representation, an EVP may be associated with each
concept within the agent’s domain knowledge. Each EVP explicitly semanti-
cally grounds the associated concept in the agent’s perception, and can thus
be used as a test to determine the validity of knowledge of that concept dur-
ing diagnosis. We present the empirical evaluation of a system, Augur, that
makes use of EVP metaknowledge to adapt its own domain knowledge in the
context of a particular subclass of classification problem called Compositional
Classification.

Keywords: Knowledge Engineering, Knowledge Representation, Symbol
Grounding

Email addresses: jkj@cc.gatech.edu (Joshua K. Jones), goel@cc.gatech.edu
(Ashok K. Goel)

Preprint submitted to Knowledge-Based Systems August 10, 2011

Action
election

Control

Ground

Meta-Level
Level

Perception Monitoring

Doing Reasoning Metareasoning

Figure 1: A basic metareasoning architecture, adapted from [7].

1. Introduction

It is generally agreed in AI that the capability of metareasoning, rea-
soning about reasoning, is essential for achieving human-level intelligence [1]
2] [3] [4]. A canonical metareasoning architecture is depicted in Figure 1.
Metareasoning systems extend the basic view of a software agent, where the
agent receives percepts from and acts within an environment (called the 0b-
ject level in Figure 1), to include a reflective layer that monitors the agent
processing and exerts control over it, e.g. by altering the object level if it
becomes apparent that progress is not being made. Cox [5] and Anderson &
Oates [6] review Al research on metareasoning.

In this article, we describe work on enabling metareasoning agents, im-
plemented purely in software, to reflect upon and modify the agent’s domain
knowledge. Note that this research topic is related to, but distinct from, a
more common use of metareasoning for agent adaptation — the adaptation
of an agent’s processing. We are concerned here specifically with adapting
declarative domain knowledge and not an agent’s process within the context
of a domain. The central question addressed by this research is: what is the
form of metaknowledge that will be useful to an agent in reasoning over and
adapting its own knowledge? The overarching hypothesis adopted by this
work is that knowledge about domain knowledge (metaknowledge) should be
specified in the form of verifiable predictions.

The next question that arises is: how can one operationalize the verifi-
able predictions such that the agent can automatically check the correctness
of its knowledge? The answer we propose is that each piece of an agent’s
knowledge may have associated with it procedures consisting of sequences
of actions and observations in the environment that can be used to test the
veracity of an associated piece of domain knowledge. We call these pieces of
metaknowledge Empirical Verification Procedures (EVPs). We hypothesize
that they are a form of metaknowledge that will enable a system to suc-
cessfully self-diagnose and repair domain knowledge. The use of explicitly
represented EVP knowledge for the diagnosis and repair of domain knowl-
edge is the specific innovation of the research described here. An interesting
implication of this hypothesis is that domain knowledge is grounded in per-
ception, because that knowledge will be considered correct only if it leads to
accurate predictions about the world and modified to conform to that ideal
of correctness otherwise.

In order to test these hypotheses empirically, we must refine them still
further within the context of a specific problem so that we arrive at an im-
plementable level of detail. Since classification is a ubiquitous task in Al
([8] [9] [10] [11]), we have chosen to consider the problem of using meta-
knowledge for repairing classification knowledge when the classifier supplies
an incorrect class label. More specifically, we consider the subclass of classi-
fication problems that can be decomposed into a hierarchical set of smaller
classification problems; alternatively, problems in which features describing
the world are progressively aggregated and abstracted into higher-level ab-
stractions until a class label is produced at the root node. This subclass of
classification problems is recognized as capturing a common pattern of clas-
sification (e.g., [12] [13]). In fact, this class of problems is so common that
it has been identified as a Generic Task [14]. We will call this classification
task Compositional Classification, and the hierarchy of abstractions an Ab-
straction Network. In particular, we consider the problem of retrospective,
failure-driven adaptation of the content of the intermediate abstractions in
the Abstraction Network (and not its structure) when the classifier makes an
incorrect classification.

Refining our overall hypotheses in the context of Compositional Classi-
fication means that intermediate abstractions in the Abstraction Network
are chosen such that each abstraction corresponds to a prediction about
percepts in the world, metaknowledge comes in the form of verification pro-
cedures (EVPs) associated with the abstractions, and metareasoning invokes

3

the appropriate EVPs to perform structural credit assignment [1] [15] and
then adapt the abstractions. The EVPs explicitly encode the grounding
of intermediate abstractions in percepts from the environment, and will be
modified when the agent sees evidence that the associated abstraction fails to
support appropriate inference at the parent. This architecture for Composi-
tional Classification is depicted in Figure 2. To support empirical evaluation
of our theory within the domain of Compositional Classification, we have
implemented a system, Augur, that makes use of EVPs for self-adaptation
of Compositional Classification knowledge. In the remainder of this article
we illustrate, formalize and evaluate the use of EVPs for self-adaptation of
domain knowledge in Abstraction Networks, and present empirical results
obtained by applying Augur in both synthetic and real domains.

These hypotheses, and the corresponding observation about the predic-
tive nature of the knowledge used to adapt reasoning processes, suggest an
elaboration of the canonical metareasoning architecture of Figure 1, depicted
in Figure 3. In the view of metareasoning taken in this work, the meta-level
detects errors in processing and/or knowledge at the object level based on
violations of expectations expressed in terms of the environment. Thus, the
meta-level needs to observe not only the object level, but also the ground
level. Further, when problems are identified at the object level by this mon-
itoring, the meta-level may need to cause the system to take some actions in
the environment in order to gather more information needed to resolve the
problems. For example, the meta-level may execute EVPs at intermediate
nodes in a classification hierarchy to determine which pieces of knowledge are
responsible for an observed top-level classification error. Finally, as shown in
Figure 2, metaknowledge used by the meta-level process may be directly dis-
tributed over the object level knowledge structures rather than being strictly
confined to separate representations of the meta-level — here, EVPs are en-
coded as part of an agent’s hierarchical classification knowledge.

In the remainder of this paper, we more formally describe the problem do-
main to which ANs are applicable (Section 2), formally define EVPs and ANs
(Section 3), detail the design of and results obtained from our experiments
(Sections 4 & 5), discuss related research (Section 6), and finally conclude
(Section 7).

Environment
Agent

EVP

Top Level
Concept

| EvP

Intermediate

Percepts
i Concept
Intermediate
Concept
Intermediate EVP

Concept
Intermediate
Concept
EVP \
EVP
Leaf
Leaf Concept
Concept

Figure 2: Hierarchical classification knowledge structure with Empirical Verification Pro-
cedures grounding concepts in perception.

Y

Action

Control

Ground
Level

Meta-Lewﬂ

Monitoring* +

Doing Reasoning Metareasoning

Perception

Figure 3: Elaborated metareasoning architecture.

2. Problem Domain

We will consider a general classification problem to require the prediction
of a class label, ¢, given some set of features (random variables), F', the
values of which carry at least some information about the probable value of
the class label. A problem instance is obtained by jointly sampling F' U {t},
and providing the obtained values of the variables in F' to the classification
system. The system is considered to have correctly classified the example if it
accurately produces the (hidden) sampled value of ¢, and incorrect otherwise.

2.1. Illustrative Example

To make the problem concrete, we will present an example from the turn-
based strategy game called FreeCiv (www.freeciv.org). Building new cities
on the game map is a crucial action, as each city produces resources on
subsequent turns that can then be used by the player to further advance
their civilization. The quantity of resources produced by a city on each
turn is based on various factors, including the terrain and special resources
surrounding the city’s location on the map, and the skill with which the city’s
operations are managed.

city_quality

‘ shield_start | | shield_growth | shield_utilization

|shiel:l_developmenl_eﬂiciency | | shield_potential

|shield_lood_ incid | |, pulation_ i ‘ |_ pulation_growth |
| food_start | ‘ sufficient_squares ‘ | food_growth |
‘food; log t_efficiency ‘ ‘.. tential_food |

fresh_water

Figure 4: FreeCiv city production estimate classifier.

In the current example, when our agent selects the action for a unit that
is to build a city, a crucial decision is whether the location on the game
map currently occupied by the unit is suitable for the placement of the new
city. We will judge the quality of a potential city location based upon the
quantity of resources that we expect a city built in that location to produce
over time. This decision is an example of a Compositional Classification task.
Figure 4 illustrates a knowledge hierarchy for this task used by our FreeCiv
game-playing agent.

2.2. Compositional Classification

Let t be a discrete random variable representing the class label. Let S =
{s : s is empirically determinable and h[t] > hl[t|s]}, where h[z] denotes the
entropy of x. S is a set of discrete random variables that have nonzero mutual
information with the class label and are “empirically determinable” (defined
below). Each member s of S represents a related set of equivalence classes
(each value that can be taken by a variable s is a unique classification of the
portions of world state abstractly represented by the variable) , where each

value taken by s is a unique equivalence class. In the case of FreeCiv, things
like the future population growth of the potential city and the amount of food
provided by terrain squares around the city location constitute S. If, as above
in the description of the general classification problem, we call F' the set of
features provided to the classification system before classification, we have
F C S. A task instance is generated by jointly sampling the variables in S'U
{t}. In FreeCiv, the game engine handles this for us by randomly generating a
game map and handling game dynamics that govern the relationships among
the variables in S.

Empirical determinability captures the notion of predictivity, indicating
that each equivalence class represents some verifiable statement about the
world. In the simplest case, empirical determinability means that the value
taken by the variable in a given task instance is directly observable. In
general, some experiment (a branching sequence of actions and observations)
may need to be performed in order to observe the value of some s € S. The
simple case can be seen as a trivial experiment consisting of zero actions and
a single observation. In FreeCiv, all of the values can be directly observed,
though some (those members of S not in F') can be observed only after
classification has occurred.

Each experiment has some nonnegative cost. We denote by Cy(s) the cost
of the experiment required to determine s before predicting the class label.
The task is constrained by limited resources; only a fixed cost R, may be
incurred before the decision about the class label must be produced. For this
reason, the values of only a proper subset of S will in general be known when
the prediction must be produced. Let K C S with), . Cy(k) < Ry be
the information available at the time that classification must be performed.
In the FreeCiv task, the resource constraint is time. In order to be useful,
the prediction of city resource production must be made before the city is
actually constructed and its resource production rate can be observed. Thus,
we cannot directly observe the proper values of non-leaf nodes at inference
time, but can obtain the true values later in order to learn.

Learning is required in part because the distributions P(s|K),s € S U
{T'}, K C S are not assumed to be given, but must be inferred from expe-
rience. In this way, we are able to relax the requirements on the knowledge
engineer constructing the agent’s knowledge; if knowledge about the dis-
tributions is available a priori, it is possible to initialize the classification
knowledge accordingly and decrease the demands on learning. But, when
this knowledge is not available, not complete, or not correct, we require the

8

system to learn the correct values.

After the predictive class label is produced and some time passes, the
correct class label is determined and some additional quantity of resources
R, is allotted to the learner. These resources are then used to determine
the values of other variables empirically before the next task instance is
presented. The costs of performing experiments before predicting the class
label may not be the same as the costs of performing experiments afterwards.
For this reason, we denote by C,(s) the cost of performing experiment s after
class label prediction. For some domains we may have C, = (), but this
need not be true in general. In the subclass of Compositional Classification
problems addressed in this article, there is a proper subset of S that is always
available before classification and the remainder of S is never available until
after classification. This is a special case of the general domain, where R, =
0, Ra = > csuqsy Cals) and there is some (proper) subset of S's.t. Cy(z) =0
for all = in the subset. This characteristic is important because it makes the
value of information problem trivial. In this article, we focus exclusively on
problems with this characteristic in order to avoid the need to incorporate
strategies for determining information value at this time.

3. Applying Reflection to Compositional Classification Knowledge

In this section, the representational structures used to address the Com-
positional Classification problem and the reasoning processes that operate
over those structures are described formally.

3.1. Empirical Verification Procedures

Definition 1. An Empirical Verification Procedure is a tuple (E, O, Cy, C,)
where O is a set of output symbols (output space) and E is a possibly branch-
ing sequence of actions in the environment and observations from the envi-
ronment concluding with the selection of an o € O. Cy, and C, are the costs
of procedure E before and after classification, respectively.

We can now be more specific about what makes a set of equivalence classes
empirically determinable, a term used more informally in the description of
Compositional Classification in the prior section. Any output space O of
an Empirical Verification Procedure is an empirically determinable set of
equivalence classes. So, viewed from the other direction, a set of equivalence
classes is empirically determinable if an Empirical Verification Procedure can

be defined with an output space equal to that set of classes. Note that this
definition is in terms of the actions and observations available to the agent
that learns and reasons with the knowledge, making a commitment about
the way that interaction with the environment is expected to justify and give
meaning to knowledge in this system.

3.1.1. Taxonomy of EVP Types and Related Adaptations

The formal definition of EVPs given above remains silent about the types
of actions and observations that constitute . If one does not wish to operate
upon F, but simply execute it to verify the application of associated knowl-
edge, this definition is sufficient. As long as there is some way to execute
the EVP and retrieve the result, the kinds of operations performed are not
terribly important from a learning perspective. However, as noted in Section
1, one of the benefits of explicitly representing conceptual semantics is that
those semantics can then themselves be operated upon directly by the agent,
and automatically adjusted. However, if we wish to encode procedures for
such operations, it becomes important to know more about the kinds of oper-
ations that may be performed by EVPs, and how those procedures might be
adjusted. This section addresses these questions. Following is a taxonomy of
operation types that may be performed within an EVP. While this taxonomy
is not necessarily exhaustive, it is sufficient to cover all of the EVPs used in
the work described in this article, and appears likely to be sufficient for a
wide range of applications.

e Act and Continue: Take some action in the environment and con-
tinue to the next operation in the EVP.

e Observe, Branch and Continue: Make some observation from the
environment and conditionally branch based upon the percept’s value,
continuing to the next operation in the EVP along the selected branch.

e Emit Category: Return the value that would have properly predicted
the environmental situation measured by this EVP, and terminate.

e Fail: Abort and terminate, producing no value.

All branches within EVPs based on these primitives will terminate with
either "Emit Category’ or 'Fail’ operations. A limited number of potentially
useful ways to modify EVPs composed of such building blocks suggest them-
selves:

10

e Alter EVP composition, e.g. insert an "Act’ or an 'Observe/Branch’
along with new children.

e Adjust the conditions tested within a branch, e.g. change a perceptual
threshold used to choose one branch over another.

e Alter the number of outputs of a branch, e.g. add a new branch choice,
adjusting branching conditions such that the new branch may some-
times be selected.

3.2. Abstraction Networks for Compositional Classification

We will now move to the definition of the hierarchical classification struc-
tures used for Compositional Classification specifically. EVPs, described in
the previous section, will be used to semantically ground concepts within the
Abstraction Networks, and will become crucial in self-diagnosis when clas-
sification failures are detected. Informally, we begin by establishing a node
for each s € S U {t}. These nodes are connected according to the given
dependency structure, which we know will result in a hierarchy based on
the given assumptions. This structuring follows the pattern of structured
matching [16] [12]. A structure used for experimentation in the previously
discussed FreeCiv problem is depicted in Figure 4. Each node will handle the
subproblem of learning to predict the value of the variable with which it is as-
sociated given the values of its children, which are the variables upon which
the variable to be predicted has direct (forward) dependency. Organizing
the structure of the knowledge to be learned in this fashion has the ben-
efit of making full use of the dependency structure knowledge to limit the
hypothesis space while being certain not to eliminate any hypothesis that
could be correct, and also yields the proven efficiency benefits of hierarchical
classification [12].

Definition 2. Here, we will define a supervised classification learner as a
tuple (1,0, F,U), where I is a set of input strings (input space), O is a
set of output symbols (output space), F is a function from I to O, and U
is a function from (i,0) :i € 1,0 € O to the set of supervised classification
learners that share the same input space I and output space O. U is an update
function that has the effect of changing F' based upon a training example.

11

Environment
Agent

Top Level

Concept
(L)

Q)

——{EVP(P) ICn:termectiiate
oncep

Intermediate (L)
Concept

Percepts

(N)

Intermediate 0
Concept ©

(L)

Intermediate
Concept

Leaf

Leaf Concept
Concept

Figure 5: General Abstraction Network architecture with annotations from Definitions 1
and 3. This figure labels the same architecture shown in Figure 2 to illustrate how each
of the parts is identified in these formal definitions.

12

Definition 3. An Abstraction Network (AN) is recursively defined as fol-
lows. A tuple (0,0, L, P, last_input, last_value) is an Abstraction Network,
where O is a set of output symbols, L is a supervised classification learner,
and P is an Empirical Verification Procedure. last_input and last value are
used to cache input and return values at AN nodes in order to support the
learning procedure (detailed below). A tuple (N, O, L, P, last_input, last_value)
1s an Abstraction Network, where N is a set of Abstraction Networks. Let I
be the set of strings formable by imposing a fixed order on the members of N
and choosing exactly one output symbol from each n € N according to this
order. The supervised classification learner L has input space I and output
space O, and the Empirical Verification Procedure P has output space O.

Notice that this definition requires Abstraction Networks (ANs) to be
trees, rather than some more general structure such as directed acyclic graphs
(DAGs). Note also that each AN node contains its own supervised classifica-
tion learner. This means that both learned concept identification knowledge
and the learning algorithm can in principle be selected on a per-node basis.
Because each learner within an AN is required to conform to the notion of
supervised classification learner described in Definition 2, information can be
passed between different types of learners — notice that discrete sets of input
and output symbols are explicitly required. For learners types such as Arti-
ficial Neural Networks (ANNs) that produce real-valued outputs, a wrapper
is required to perform discretization and allow the learner to conform to our
definition. Figure 5 shows the general AN architecture with annotations from
Definitions 1 and 3.

When N is empty, L is trivial and has no use as the input space is empty.
In these cases (the leaves of the AN), the only way to make a value determi-
nation is to invoke P. Because the subproblem considered in this article is
restricted to cases where AN leaves are always determined empirically before
classification, this is not an issue. That is, in the current work, whenever
N =0, P.C, = 0. If the technique is generalized, provisions will have to be
made to deal with undetermined leaf values. Having described the AN rep-
resentation, we next turn to reasoning (performing predictive classification)
using an AN.

3.3. Reasoning

In a given task instance, the values of the leaf nodes are fixed by observa-
tion. As described above, in the problem settings considered here, obtaining

13

Table 1: Reasoning procedure used to produce a predictive classification from an Abstrac-
tion Network a.

/* Values from Definition 3:

* a.N - a set of ANs. The children of ‘a’.

* a.P - the EVP for ‘a’.

* a.last_input - the last input sequence provided to ‘a’.
* a.last_value - the last value produced by ‘a’.

* a.L - the learner associated with ‘a’.

*

* Values from Definition 2:

* L.F - the learner’s inference function.

*

* Subfunctions used:

* push back(String i, Value V):

* Appends the value provided as the second argument
* to the string provided as the first.

*/

begin AN-reasoning(Abstraction Network a)
String 1

/* 1f we are at a leaf, return the result of executing the local
* EVP, which for the domains considered here, is always possible
* at leaves. These values are the ‘‘inputs" to the AN inference
* process. */

if a.N =0, return a.P

/* Otherwise, build the input vector for the local learner
* and return the result of applying it. */
forall n € a.N:
push_back(i,AN-reasoning(n))
a.last_input < 1
a.last value < a.L.F (i)
return a.last_value
end

14

the values of the leaf nodes has zero cost, and no other values are available
before classification. Each node with fixed inputs then produces its predic-
tion. This is repeated until the value of the class label is predicted by the
root of the hierarchy. This procedure will produce the most likely class label
based on the current state of knowledge.

The reasoning procedure over an arbitrary AN a is more formally de-
scribed in Table 1. All fields referenced using the “dot” notation use the
names from the definitions of the previous section.

3.4. Self-Diagnosis and Repair

At some time after classification, the true value of the class label is ob-
tained by the monitoring process (see Figure 3). If the value produced by
object-level reasoning was correct, no further action is taken. If the value
is found to be incorrect, a self-diagnosis and repair procedure is followed.
The specifics of this procedure are dependent upon the characteristics of the
learner types that are used within nodes and the classification problem set-
ting. For most of the empirical results detailed in this article, the following
procedure is used, beginning with the root of the hierarchy as the “current
node” when external feedback indicates that the top level value produced
was incorrect:

1. The true value of each child of the current node is obtained by executing
the associated EVPs.

2. If the predictions of all children were correct, modify local knowledge
at the current node.

3. Otherwise, recursively repeat this procedure for each child node that
was found to have produced an incorrect prediction.

The procedure for self-repair and self-diagnosis, for an AN a, is more
formally described in Table 2, and illustrated in Figure 6 (note that last_value
and last_input, used in Table 2, are explained in Section 3.3 above). Notice
that this procedure has a base case when the leaves are reached, as their true
values were obtained before classification, and thus cannot be found to be
incorrect during learning.

Figure 6 depicts an example outcome of the diagnostic procedure de-
scribed in Table 2. In such a situation, top level feedback indicates a problem
with the overall classification produced at the root of the hierarchy. Then,
according to the procedure of 2, EVPs at successively deeper levels of the

15

hierarchy are progressively executed, resulting in the examination of various
percepts to establish a “frontier” of error-producing nodes, the children of
which produced values verified as correct. In the example, nodes marked
with an “X” were found to have produced incorrect values after EVP ex-
ecution, while those with checkmarks were found to be correct. No EVPs
beyond those associated with nodes for which results are shown would be
executed in this case, as diagnosis has located a frontier of correct nodes.
Local learning in this case would occur at the node with a bold border, as
it is the only incorrect node identified with children that produced correct
values — and thus, for this example, the only node at which the diagnosis
procedure can assign blame to incorrect knowledge within a node.

One point to notice here is that the specific procedure for the modifica-
tion of local knowledge is not specified. Any supervised classification learner
that satisfies the definition given in the Section 3.2 is acceptable. A closely
related point is that the representation of the knowledge, and thus the pro-
cedure for knowledge application within each node, is similarly unspecified.
This is quite intentional: any knowledge representation/inference/learning
technique can be used within each node. Heterogenous sets of techniques
could in principle be used within a single hierarchy. The specific technique
or set of techniques that will perform best on a given problem depends on
the specifics of the subproblems — choosing learning techniques that exploit
known characteristics of each subproblem will, of course, lead to the best
overall results. For instance, for some kinds of problems it may be that
Bayesian learning of probabilities is the most effective technique at all nodes.
In this case, the overall learner is somewhat similar to a particular type of
Bayes net, augmented with a learning procedure that is sensitive to knowl-
edge acquisition costs. In other cases, it may make sense to use Artificial
Neural Networks (ANNs) [17] within some or all nodes, in order to intro-
duce a different kind of inductive bias (based on smooth interpolation) for
some subproblems. Generally, the point is that because the characteristics of
the dependencies between members of S U {T'} are not fixed over the entire
domain of interest, it does not make sense to fix a learning method for the
subproblems in the absence of knowledge, nor is it necessary to do so in or-
der to specify a solution exploiting domain characteristics that are given. Of
course, when instantiating this technique for a specific domain, these choices
must be made.

It is important to note here that, based upon the choice of learner type(s)
to be used within an AN, other choices such as the diagnostic procedure to be

16

Table 2: Self-diagnosis and self-repair procedure used to correct knowledge stored in an
Abstraction Network a.

~
*

* X X X X % X X

*
~

beg

end

Values from Definition 3:

a.p - the EVP for ‘a’.

a.last_value - the last value produced by ‘a’.

a.N - a set of ANs. The children of ‘a’.

a.L - the learner associated with ‘a’.
a.last_input - the last input sequence provided to ‘a’.
Values from Definition 2:

L.U - the learner’s update (learning) function.

in AN-learning(Abstraction Network a)
Bool flag < true
if a.P() = a.last_value, return true
forall n € a.N
if AN-learning(n) = false, flag < false
if !flag, return false
a.L < a.L.U((a.last_input,a.P()))
return false.

17

Environment

Percepts

Top Level Feedback

| EVP

Intermediate

[

Agent

EVP

Top Level
Concept

Concept

Intermediate
Concept

EVP

Leaf
Concept

Intermediate
Concept

EVP

Intermediate \/

Concept

EVP \

Leaf
Concept

Figure 6: An example outcome of the diagnostic procedure of Table 2.

18

followed may be constrained. For example, some learner types such as ANNs
depend upon training examples being drawn from a stable distribution. The
diagnostic procedure discussed in this section cannot make such a guarantee.
However, we have identified at least one simple diagnostic procedure that
can make this sort of guarantee: execute all EVPs within an AN for each
diagnostic episode, performing this operation even when the top-level classi-
fication was found to be correct. This linked pair of choices, learner type and
diagnostic procedure, illustrates a tradeoff that must be considered when a
designer is instantiating an AN for a specific problem. Is it more important
to use a learner type with a particular bias? Or to use a diagnostic proce-
dure that parsimoniously executes EVPs? The answer will depend upon the
relative costs of example acquisition and EVP execution within the domain
addressed.

3.5. Computational Complexity

The effect of hierarchicalization on inference complexity is already well
understood and is known to make inference significantly more manageable
[12]. However, it is more difficult to characterize the impact of this tech-
nique on the computation time required for learning. This is due to wide
variation in the conceivable contexts and domains in which AN learning
might be deployed. For instance, consider the variety of learner types that
may be employed within ANs. If the per-instance learning complexity of
the supervised classification learner type used within AN nodes is relatively
low for the problem at hand, and scales well with problem dimensionality,
the diagnostic overhead of ANs may lead to a higher per-instance learning
complexity. However, as the experimental results reported in this paper in-
dicate, ANs generally allow learning from many fewer instances, offsetting
the per-instance diagnostic cost. Also, hierarchicalization decreases problem
dimensionality for any given internal supervised classification learner, which
may have a significant impact on techniques that scale poorly with problem
dimensionality. Perhaps the largest variable is the cost of EVP execution
within a domain in which ANs are to be employed. EVP details may vary
widely, ranging from a simple inspection of the environment to an involved
and possibly branching procedure that must be executed (e.g. performing
medical laboratory tests). However, in the latter case, collection of data for
a standard (non-AN) learning technique is also likely to be very expensive,
though these data collection costs are often neglected in analyzing learning
complexity. Though space prohibits a complete reproduction of the proof

19

here, we have proven that the diagnostic procedure described above is opti-
mal with respect to maximizing expected decrease in diagnostic search space
entropy with each EVP execution [18]. Also in [18], an empirical comparison
between AN learning and basic Bayes net (BN) learning is presented, show-
ing that AN learning scales favorably with respect to standard BN learning
as problem complexity grows. In general, the practitioner should weigh (1)
per-instance learning cost of the supervised classification technique to be
used, (2) problem dimensionality, and the sensitivity of the learner type to
dimensionality, and (3) expected EVP execution cost within the domain in
deciding whether ANs are a practical solution in a given problem context.

4. Experimental Design

In this section, we describe the set of experiments that we have performed
with the Augur system primarily in order to test the efficacy of EVPs in allow-
ing an agent to reflect upon and adapt its own domain-specific classification
knowledge. Given that we are working within the setting of Compositional
(Classification, many of these experiments also provide results relevant to
characteristics of Compositional Classification and particularly the use of
hierarchical classification knowledge structures to learn within the problem
setting. The usefulness of EVPs is supported by each of the experiments,
which demonstrate the generality of the usefulness of EVP metaknowledge
along several dimensions:

e Types of learners used within nodes: We have experimented with
rote table-based learners, k-Nearest Neighbor learners and Artificial
Neural Networks operating within AN nodes.

e Problem domain: We have experimented in the game FreeCiv, a Dow
Jones Industrial Average prediction problem, and a sports prediction
problem as well as a synthetic domain.

e Quality of knowledge engineering: We have systematically de-
graded the quality of knowledge engineering in two ways, by removing
individual nodes from an AN hierarchy and by removing entire sub-
trees.

20

4.1. Rote Learners

As noted above, we have integrated three types of learners with the Augur
system, and we have performed some experiments with each of them. In
this section we define the table-based rote learners with which some of the
experiments are performed. The table-based rote learners are an instance of
the supervised classification learners of Definition 2.

Definition 4. A rote learner is a tuple (I,T,0, F,U), solving a classifica-
tion problem that requires mapping a finite input space I onto a finite set of
contiguous integers O. T is a finite set of contiguous integers that is sym-
metric about zero, and we call (|T|—1)/2 the “learning threshold” of the rote
learner. F is a function from I to O, implemented as a composition of two
functions, Fy and Fs. Fy maps from I to O x T and Fy maps from O x T to
O. F; is defined such that Vt € T)o € O, (o,t) — o.

Given an input example (i,0"), U returns a new rote learner (1, T,0, F' U")
where F' is a composition Fy o F|. Yz # i, F|(x) = Fy(x). Let Fy(i) = (o,1).
Then, ift4 (o' —o) € T, F{(i) = (0,t+ (0’ —0)). Otherwise, ift+ (o' —o0) <0,
Fl(i)=(0—1,0) orift+ (o' —0) >0, F{(i) = (0 +1,0). U’ is an update to
U to embed knowledge of the new function F' such that the next update can
proceed by the same logic.

Informally, the rote learner requires indication of a significant error (an
(,0") where o' is quite different from F'(i)) or demands some consistency in
feedback before making a change to the classification of a given input. The
purpose of Fj is to record the amount of error seen so far with respect to a
particular input sequence. The purpose of Fj, then, is simply to strip this
error information away and return the desired output value. At each update,
the update function U checks whether the error threshold has been exceeded
by looking at the information recorded for the appropriate input sequence
by function F}, updating the output value only if the threshold has been
exceeded in either the positive or negative direction. Otherwise, the error
measure is updated but the output value for the input sequence is not.

Similar rote learners are discussed by Kohavi in [19]. These learners share
the same basic principle as those used in this work — memorize input exam-
ples. However, there are some key differences. Most importantly, Kohavi’s
work described in [19] illustrates the generalization power imparted on rote
learners by a principled process of feature selection. His learning system
generalizes over training examples by selectively discarding features that are

21

found statistically irrelevant to the output class. The rote learners used in
this work are imbued with no such automatic feature selection procedure,
and have no generalization power of their own.

5. Experimental Results

In this section, we detail empirical results that have been obtained to test
several aspects of EVP-based self-diagnosis and learning. These experiments
also demonstrate some characteristics of Abstraction Networks. All of these
experiments make use of the Augur system’s AN implementation. Results
are presented in a synthetic problem, as well as in three non-synthetic in-
stances of the Compositional Classification problem. Results include tests
with table-based rote learners, Artificial Neural Networks (ANNs) [17] and
k-Nearest Neighbor learners (kNNs) [10] working within AN nodes. Beyond
experiments that test the central hypothesis of this article, that EVPs pro-
vide adequate metaknowledge for an agent to self-diagnose and repair faults
in its classification knowledge (Sections 5.1 & 5.2), we also describe experi-
ments dealing with the effects of faulty structural knowledge engineering on
AN performance (Section 5.3).

5.1. Synthetic Domain

In order to verify that EVP-based self-diagnosis does allow for correction
of faulty knowledge engineered content in an AN and to demonstrate some
degree of generality of ANs with respect to the learner types used within
nodes, we have performed a set of experiments in a synthetic domain. The
environment in this domain consists of a fixed Abstraction Network, over
which no learning will occur, that represents the correct, target content (and
structure) for the problem. Given this fixed AN, we then create a separate
learner AN that will be initialized with incorrect knowledge content and
expected to learn to functionally match the content of the target AN. This
is implemented by initializing the knowledge content of both the fixed and
learner AN nodes separately with pseudo-random values. The randomly-
generated content of the fixed AN forms the target knowledge for the learner
AN. Because the work described here is concerned only with repairing content
and not structure, we do build the learner AN with a correct structure that
matches that of the fixed AN. Training proceeds by repeating the following
steps:

22

1. Generating a pseudo-random sequence of floating point numbers to
serve as the observations for the input nodes of the ANs.

2. Performing inference with the fixed AN, saving the values produced by
all intermediate nodes as well as the root node.

3. Performing inference with the learner AN.

4. Performing EVP-based self-diagnosis and learning over the learner AN
according to either the procedure described in Section 3.4 for table-
based rote learners and kNN learners, or by executing all EVPs within
the learner AN in the case of ANN learners within nodes.

There is another small adjustment to this procedure in the case of ANN
learners within nodes, where we wish to use a batch-style training set/test
set approach rather than sampling training examples continuously, as this is
more traditional for ANN learning. This is described in more detail below in
Section 5.1.2. In all cases in the synthetic domain, EVPs within the inputs
of both ANs are set up to quantize the floating point observations. EVPs are
not needed at non-leaf nodes in the fixed AN, since no learning will occur.
EVPs at non-leaf nodes in the learning AN are set up to examine the saved
output value from the corresponding node in the fixed AN. In the first set of
experiments we used simple table-based rote learners within each node.

5.1.1. Rote Learners

In this section, we describe results in the synthetic domain using rote
learners within the nodes of an AN learner. Each rote learner used a threshold
value of 5. In the experiments in the synthetic domain, all of the structured
ANs take the form of binary trees (each non-leaf node has a fan in of two).
Every node, including the leaves and the root, chooses from among 3 possible
output values in this set of experiments. Thus, each table update learner used
in structured learners in the synthetic domain has 3% = 9 entries, while the
flat learner has 377" entries. This set of experiments using rote learners
includes three problem sizes. The largest has 16 inputs, with the binary
structure yielding 8, 4 and 2 nodes at each subsequent layer. The other two
problems use 8 and 4 inputs, respectively.

In addition to verifying that EVP-based self-diagnosis allows for correc-
tion of faulty AN content, we wished to empirically illustrate the benefit of
using a structured knowledge representation matching domain structure vs.
using a “flat”, unstructured representation. Thus, in addition to the learner
AN described above, we also trained a flat learner in each problem setting for

23

which we report results in the synthetic domain. These flat learners are im-
plemented as ANs where the input layer is connected directly to the output
node. Thus, in the flat learners used in these experiments, there is a single
rote learner that must learn the full mapping from inputs to output values
without the generalization enabled by a structured representation. Results
in each tested configuration are reported for both a structured AN learner
and a flat learner.

We train and evaluate these learners in an on-line, incremental fashion,
evaluating the learners’ performance improvement during training by seg-
menting the sequence of examples into multi-example blocks and comparing
overall error rate between blocks. An error is counted whenever the learner’s
output on a given example does not match the output produced by the
fixed AN. In this way, we are able to compare error rate around the be-
ginning of a training sequence with the error rate around the end of that
sequence. As noted in the previous section, this set of experiments uses the
non-exhaustive diagnostic procedure described in Section 3.4. This means
that in general, not all EVPs within the learner AN will be executed for a
given example. Under this procedure, diagnosis immediately returns without
performing learning if no error is detected at the AN root. In this domain,
as in other domains, we first expect the learner AN to produce a prediction,
and then subsequently expect more information to become available to allow
the diagnostic procedure to be run (i.e. for EVPs to be executable).

The results of these experiments for the three synthetic domain sizes are
depicted in Figures 7-9 in terms of per-block error rate. The results shown
are an average of 100 independent runs in each setting, with separate random
table initialization at the beginning of each run. Randomly initializing the
tables in the generator ANs means randomly selecting an output value for
each input combination. This process can lead to complex functions being
produced by each generator AN node. Each run in the large problem setting
consists of 10,000 generated examples, which we segment into 100 blocks of
100 examples for the purposes of visualization. In the medium-sized prob-
lem setting, 100 blocks of 50 examples were used in each run. Finally, in
the small problem setting, each run consisted of 100 blocks of 10 examples
each. These results demonstrate the efficacy of EVP-based self-diagnosis in
repairing faulty knowledge engineered AN content, as well as the significant
advantage of structured knowledge that reflects domain structure vs. flat
representations in terms of learning speed. Of course, as problem size in-
creases, the benefit of knowledge structure becomes more apparent, as can

24

Structured Learner ——
Flat Learner ——

Errors

L:] 18 20 38 40 50 608 70 88 98 108

Black Mumber

Figure 7: Per-block error rates of AN-rote learners vs. flat rote learners for layer sizes 4,
2, 1.

38 T T T T T T T T T
Structured Learner —+—

Flat Learner ——

Errors

| hL:) 28 38 48 58 68 7a i} 98 168

Block Mumber

Figure 8: Per-block error rates of AN-rote learners vs. flat rote learners for Layer sizes 8,
4,2, 1.

25

58

Structured Learner ——
Flat Learner —<—

Errors

a 18 28 38 48 a8 68 78 a8 98 188
Block Mumber

Figure 9: Per-block error rates of AN-rote learners vs. flat rote learners for Layer sizes
16, 8, 4, 2, 1.

be seen in these results. This benefit is due to the restriction bias imposed on
the hypothesis space available to the learner by the hierarchical knowledge
structure and the semantic constraints encoded by EVPs.

5.1.2. Artificial Neural Networks

In order to demonstrate the generality of ANs with respect to the clas-
sification learners used within nodes, this section describes results obtained
after integrating the AN framework with artificial neural networks (ANNS).
This integration allows us to replace the rote learners used within AN nodes
in most of the experiments described here with ANNs. These results show,
as expected, that an AN-ANN system has significant advantages over an
ANN-only classifier.

We used a randomly generated set of synthetic learning problems to com-
pare the performance of AN-ANNs with unaugmented ANNs. As in the syn-
thetic experiments described previously, the environment consists of a fixed
Abstraction Network, over which no learning will occur, that represents the
correct, target content (and structure) for the problem. Given this fixed AN,
we then again create a separate learner AN, with an ANN inside each node,
that will be initialized with random knowledge content and be expected to
learn to functionally match the content of the target AN. We also create a

26

randomly initialized unaugmented ANN that will be used to learn the same
classification task. All ANNs, whether within the AN structure or operating
in isolation, used the same backpropagation algorithm for learning. For these
experiments, learning rate was fixed at 0.3, momentum was fixed at 0.3, in-
put layers contain one node per input, output layers contain one node per
possible output value, and hidden layers contain a number of nodes equal to
3 times the number of nodes in the input layer. As before, because the work
described here is concerned only with repairing content and not structure,
we build the AN-ANN learner with correct structure that matches that of
the fixed AN. Departing from the other experiments, in these experiments
we first generate training and test sets. For every example that will be part
of either the fixed training set or fixed test set, we generate a pseudo-random
sequence of floating point numbers to serve as input values. Next, we repeat
the following procedure, one repetition of which we call an epoch:

1. For each example in the training set:

(a) Perform inference with the fixed AN, saving the output values of
all intermediate nodes and the root.

(b) Train both the AN-ANN and the unaugmented ANN systems
based on the preceding substep’s inference over the fixed AN.
In these experiments we do not use the self-diagnosis procedure
described in Section 3.4, but instead execute every EVP in the
learner AN for every training example, and train the associated
learner whether the value produced was correct or incorrect. This
procedure ensures a stable distribution of training examples for
ANNSs within each AN node, while still depending crucially upon
the availability of EVPs at each AN node.

2. For each example in the test set:

(a) Perform inference with the fixed AN, noting the value produced
at the root.

(b) Perform inference with both the AN-ANN and unaugmented ANN
systems, and determine whether the top-level values produced
match that produced by the fixed AN. If the value produced by a
given learner does not match that of the fixed AN, count an error
for that learner.

27

As before, EVPs within the inputs of both ANs are set up to quantize the
floating point observations, and these quantized values also form the inputs
to the unaugmented ANN. EVPs are not needed at non-leaf nodes in the fixed
AN, since no learning will occur. EVPs at non-leaf nodes in the learning AN
are set up to examine the saved output value from the corresponding node in
the fixed AN, while the output value from the root of the fixed AN is all that
is needed to train the unaugmented ANN. In these experiments we again use
randomly-initialized table based rote “learners” within each node in the fized
AN;, to simply provide a randomized mapping from inputs to outputs (that
is, we simply use these as fixed tables, and not really as learners). Results
obtained in three representative experiments are depicted in Figures 10-12.
In these experiments, we again use ANs with a binary tree structure, with
varying layer sizes — either 8-4-2-1 or 16-8-4-2-1. We also varied the number
of choices that could be produced by each node, using either 3 or 4 values per
node. For the experiment shown in Figure 12, the training set contains 1,000
examples, while the test set contains 10,000 examples. For the experiments
shown in Figures 10 and 11, both the training and test sets contained 1,000
examples. We wished to ensure that we were sampling the problem space
sufficiently to achieve consistent results, and once we found that this could
be done with a test set consisting of 1,000 examples we continued to test with
this smaller, more rapidly completing test set size. In each case, we ran the
complete experiment 5 times (re-randomizing all learners and the fixed AN
each time, etc.), and Figures 10-12 depict the average error values in each
epoch across these runs.

Clearly, it appears that AN-ANNs have a distinct advantage in error
decrease per example and in the final error achieved. Based on these results,
it does appear, as expected, that the advantage of adding AN structure to an
ANN-based solution to a classification problem grows as problem complexity
increases.

5.1.3. k-Nearest Neighbor Learners

We also integrated ANs with kNN learners. As with the two previously
integrated learner types, we performed experiments in a synthetic domain
to gauge performance of KNN learners working in conjunction with the AN
framework to unstructured (flat) kNN learners working on the same tasks.
The experimental conditions for these experiments match those used for
table-based rote learners. The 'k’ parameter in these tests was set to 1.
Results for problems of varying complexity are summarized in Figures 13-15,

28

0.45 T T T

04 F

03}

% Error
o
no
o
i

02

0.15

"Flat ANN

AN-ANN

0.1

e P B— B— F— B— — P—— — |
0.05

0 1000 2000 3000 4000 5000 6000 700D BOOO 9000 10000

Epoch Number

Figure 10: % Per-epoch error rates (% error) of AN-ANN vs.

layer sizes 8-4-2-1, 3 choices per node.

0.6 T

unaugmented ANNs for

055 F

Flat ANN
AN-ANN

05 k

045 -
0.4 |
035

R

% Error

025 %,

0.2

01 F

0.05 L

300 400 500

Epoch Number

Figure 11: % Per-epoch error rates (% error) of AN-ANN vs.

layer sizes 8-4-2-1, 4 choices per node.

29

600

unaugmented ANNs for

Figure 12: % Per-epoch error rates (% error) of AN-ANN vs.

% Errar

0.55

0.45 |

0.35

0.25

015

05

0.4

0.3

0.2

01

' ' ' Flat ANN
AN-ANN
i
* "
:
- " -
gy

0 100 200 300 400 500

Epoch Number

layer sizes 16-8-4-2-1, 3 choices per node.

Errors

60

50

40

30

20

10

800

unaugmented ANNs for

' ' Flat KNN
ANKNN -
i |
\
1
1
1
1
1
L i
1
I|
{
A
‘II
\'.
\
LY
‘\
'\\X\
e
| D e SRR L
0 5 10 15 20

Training Blocks

25

Figure 13: Per-block error rates of AN-kNN vs. unaugmented kNNs for layer sizes 4-2-1,

4 choices per node.

30

a0 T T T
Flat KNN
AN-KNN

80 [i

Errors

10 F g

0 : L L L
0 5 10 15 20 25

Training Blocks

Figure 14: Per-block error rates of AN-KNN vs. unaugmented kNNs for layer sizes 4-2-1,
8 choices per node.

70 . T ~ |
E—— =y e Flat KNN
" \ —ANKNN s

60 | B

Errors

20 B

10 .

Training Blocks

Figure 15: Per-block error rates of AN-kNN vs. unaugmented kNNs for layer sizes 16-8-
4-2-1, 4 choices per node.

31

and are similar to those demonstrated for the two other learner types. As
in past experiments, the difference between learners structured with the AN
framework and unstructured learners increases with problem complexity, as
expected.

5.2. Real Domains
5.2.1. FreeCiv City Location

In this section, the use of Abstraction Networks for the city resource
production prediction problem first described in Section 1 is given in detail.
Results of this experimentation are also given.

For the FreeCiv city resource production prediction task described at the
beginning of Section 2, we use the Compositional Classifier depicted in Fig-
ure 4, producing predictive classifications of map locations in a sequence of
games. Within each node, we use a simple rote learner, defined in Section
4.1, with a threshold of 5. We have experimentally compared an AN-based
learner using the network depicted in Figure 4 to a flat table-based rote
learner. The goals of this experiment were to (1) determine the effectiveness
of EVP-based metareasoning in increasing robustness in the face of faulty
knowledge engineering and (2) to empirically illustrate the effect of hier-
archicalization on learning speed outside of the synthetic domains already
discussed. As mentioned previously, the effect of hierarchicalization on infer-
ence complexity is already well understood and is known to make inference
significantly more manageable [12]. The flat learner consists of a single rote
learner (rote learners are defined above) with an input formed from the out-
puts at all leaf nodes in the AN from Figure 4 and yielding the same output
set as this AN. This output set contains three values, corresponding to poor,
moderate and good resource production. These values indicate predictions
about the resource production expected from a city built on a considered map
location. Specifically, the values correspond to an expected degree and di-
rection of deviation from a logarithmic baseline resource production function
that was manually tuned to reflect roughly average city resource production.
Each of the intermediate nodes in the AN has an output set consisting of 5
values in this experiment. The Empirical Verification Procedures are quan-
tizing E'VPs, described in Section 3.1, in that they simply check values in the
game, such as the population growth of a city, and discretize the value into
one of the 5 available output categories. The discretization functions were
manually tuned in this experiment. The content of all involved table-based
rote learners (those constituting the AN and the single one used for the flat

32

learner) was initialized to zeros, which was known to be incorrect in some
cases for each of the learners. All table-based rote learners used a learning
threshold of 5. Because we expect resource production from cities built on
various kinds of map locations to potentially differ qualitatively as games
progress, we trained 3 AN-based learners and 3 flat rote learners, with one
of each learning to make predictions about resource production in the early,
middle or late stages of the game. Results reported are cumulative across all
three learners of the appropriate type.

As in the non-batch experiments in the synthetic domain, here we train
and evaluate the learners in an on-line, incremental fashion. Again, we eval-
uate prediction improvement during training by segmenting the sequence of
examples into multi-example blocks, and comparing overall error rate be-
tween blocks. In this way, we are able to compare error rate around the
beginning of a training sequence with the error rate around the end of that
sequence.

Each turn of each game played is treated as a separate example. This
means that an error is potentially counted on each turn of each game by
producing a prediction based on the current state of knowledge, finishing
the turn, perceiving the outcome of the turn, and then determining whether
the value produced correctly reflects the resource production actually experi-
enced on that turn. If the value is incorrect, an error is counted. Though as
the game progresses, additional information becomes available, predictions
are always made using only information available at the beginning of the
game. Note that this error counting procedure contrasts with another pos-
sibility; producing a value only at the beginning of each game, and counting
errors on each turn of the game based on this value, while continuing to learn
on each turn. If the classification knowledge encoded by this FreeCiv domain
AN were being used by a larger agent to actually play a game, a classification
produced by the structure would only be useful when the agent was deciding
whether to place a city in a given location, and not after the city had already
been placed. However, while the alternative of classifying only at the begin-
ning of the game, before the city is built, more closely matches the intended
use of the learned knowledge within a larger agent, we chose to instead allow
a value to be produced on each turn in order to reflect the evolving state of
knowledge as closely as possible in the error count. A negative consequence
of this choice is that some overfitting within games may be reflected in the
error count. However, a decrease in error rate between the first and last block
in a sequence can be seen as evidence of true learning (vs. overfitting), since

33

any advantage due to overfitting will be as pronounced in the first block of
games as in the last.

In each trial, a sequence of games is run, and learning and evaluation oc-
curs on-line as described above. The AN-based learner is trained on sequences
of 175 games, while the flat rote learner is allowed to train on sequences of
525 games. We trained the flat rote learner on sequences three times longer
than those provided to the AN learner to determine whether the flat rote
learner’s performance would approach that of the AN learner over a longer
training sequence. As described above, we segment these sequences of games
into multi-game blocks for the purpose of evaluation; the block size used is 7
games. Each game played used a (potentially) different randomly generated
map, with no opponents. The agent always builds a city on the first occu-
pied square, after making an estimate of the square’s quality. Building in the
first randomly generated occupied square ensures that the learners will have
opportunities to acquire knowledge in a variety of states. In order to compen-
sate for variation due to randomness in starting position and game evolution,
results are averaged over multiple independent trial sequences. Each result
for the AN learner is an average of 60 independent trials. Each result for the
flat rote learner is an average over 25 independent trials; each trial is time
consuming, as each trial for the flat rote learner is three times as long as for
the AN-learner, and it did not seem likely that further trials with the flat
rote learner would offer significantly more information.

To compare the speed with which learning occurs in the two agents, we
ran two separate sets of trials. The first set of trials was run in an environ-
ment where no city improvements were constructed in the area surrounding
the city. The second set of trials did allow for the construction of city im-
provements, but had an identical environment in all other ways. For each set
of environmental conditions, we measure the quality of learning by compar-
ing the average number of errors counted in the first block of the sequences
to the number of errors counted in the last block. In the case of the flat
table learner, we make two comparisons. The first compares error in the first
block to the block containing the 175th game, illustrating decrease in error
over the same sequence length provided to the AN learner. We also compare
error in the first block to error in the last block of the flat table learner’s
sequences, to determine whether the flat table learner’s improvement will
approach that of the AN learner over sequences three times as long. We
perform this evaluation separately for each of the two environmental setups.

The results of the experiment are summarized in Table 3 and are shown in

34

Table 3: Average percent decrease (or increase, shown in parentheses) in error for
decomposition-based learning implementation from block 1 to 7, and for the flat table
learner from block 1 to blocks 7 and 21.

AN learner | Flat Table Learner
7% block | 7*" block | 21%* block
Without city 24% (4%) 1%
improvements
With city 29% 7% 10%
improvements

10500 T T T T T
Without improvements —+—
With improvements ---X---

10000 F==---- . a

9500

9000

8500 - S]

8000

T
1

7500

Error (# triggered reevaluations)

7000

6500

6000

5500 1 1 1 1 1
0

Game trial blocks

Figure 16: Average error rates by block in each FreeCiv trial.

detail for the AN learners across each block of games in Figure 16. The AN-
based learner is able to produce a greater improvement in error rate in each
case, as compared to the flat table learner, both after the same number of
games and after the flat table learner has played three times as many games.

35

For the two scenarios, the average improvement in error rate is 26.5% for the
AN-based learners, compared to only 1.5% after the same number of training
examples for the flat learner. The decrease in error across a typical sequence
was not strictly monotonic, but did exhibit progressive decrease rather than
wild fluctuation. Even after three times as many games had been played
by the flat table learner, the decrease in error rate is significantly less than
that achieved using ANs after only seven blocks. In one case, it appears that
learning has not yielded an advantage in error rate in the flat table learner
even after 525 games. Examining the complete set of results for intervening
blocks does mitigate this impression to some extent, as an overall downward
trend is observed, with some fluctuations. However, given that, for the flat
learner, the fluctuations can be of greater magnitude than the decrease in
error, the learning that has been achieved after this number of games does not
appear significant. Based on the significant difference in observed learning
rate, these trials provide evidence that the composite structure of ANs allow
learning to occur more quickly in a large state space than is possible with
a flat knowledge representation. Because the AN-based learners are able to
improve their performance over time, it also appears that again, as in the
synthetic experiments, EVP-based self-diagnosis and learning is effective in
repairing content deficiencies in hierarchical classification knowledge.

5.2.2. Dow Jones Industrial Average Prediction

To demonstrate that neither the learning task nor the learning method
is restricted to the FreeCiv game, we will also describe results in a different
domain in the economic arena. In this domain, we are interested in classifying
the current economic status as described by various economic indicators (see
Figure 17) into one of two classes: the Dow Jones Industrial Average (DJIA)
will rise next month or DJIA will fall next month (these class labels form 7).
We chose the indicators and set up the structure shown in Figure 17 based
on some studies of economic indicators [20][21][22]. S contains the values of
these selected economic indicators. Some of the values can be obtained before
classification; these values come from the current or past months. However,
some of these variables represent future values that cannot be observed at
classification time, but must be inferred along with the class label. The
same special conditions regarding experimentation cost that were described
for FreeCiv also hold here. All leaves in Figure 17 can be observed before
classification, while the remainder are future values at classification time,
available only in retrospect.

36

Direction of
DJIA
GDP Inflation
Leading ISM new Unempl.
chain orders rate GDP 3
store sales index quarters ago
index CRB
Overtime Consumer NASM | | commodity Actual Job)
sentiment ISM futures hours vacancies 2
hours index PMI index worked | | quarters ago

Figure 17: DJIA Abstraction Network

We used data from Jan 1960 - Nov 2005, yielding a total of 497 training
examples. As in FreeCiv, in these experiments rote learners were used within
each node in the network. We manually tuned the number of output classes
available to each node, based on observations of learning behavior. Again,
each entry in each rote learner was initialized to zero. We observed a 23.4%
decrease in error, comparing blocks consisting of the first 213 and the last
213 examples. The error rates for blocks sized 71 examples are depicted in
Figure 18, which also includes data for a flat learner. This experiment helps
to show that there is some more general applicability of EVP-based AN
learning beyond the FreeCiv problem in the context of which it was initially
tested.

5.2.3. Football Prediction

We have applied EVP-based AN learning with both rote table learners
and kNN learners to the problem of predicting the outcome (final score) of
an NFL game. The AN learner depicted in Figure 19 was used in these
experiments.

We used data for all games played in the 2006-2007 and 2007-2008 NF'L
seasons to train and test the learners, with the same online training/testing
based strategy used in previous experiments. The results reported here are
based on 50 separate random learning trials, each using exactly the same

37

45
40 |
,:\\\
\\
35
’ Flat ——
:2 Rote-AN
£
z 30F
251
20 . . . a -
1 2 3 4 5 6 7

Block Number

Figure 18: Average error rates by block in each DJIA trial.

data but with randomized initialization of the learners’ knowledge.

Results for these experiments are shown in Figure 20. Learner types
shown include AN-kNN, AN-Rote and flat kNN. Flat rote learners could not
be used because the memory requirements of the table were too large. It
is interesting to note that the AN-Rote learner essentially fails to learn. It
is likely that this is because of the size (input dimension) of the learning
problem. Even with the additional bias afforded by the AN knowledge struc-
ture and the associated EVPs, it appears that this problem (or at least, this
framing of this problem) is complex enough, and examples limited enough,

38

Total Points

Turnover Differential

‘ Fumble Differential | | Interception Differential ‘
Avg. PPG Def. Avg. Allowed PPG
Def. Avg. Opp Avg. Opp Def. Avg Def. Avg
Lost Fumbles LostFumbles | |ints Caught Ints Thrown
Avg. Ints Caught
Avg Lost Fumbles Lost Fumbles
Avg. Ints Thrown
Total Yards
Rushing Yards Passing Yards Punting Yards Penalty Yards
Def. Avg. Allowed - Avg. Penalty Yds
- Avg. Kickoff
Def. Avg. Allowed [Avg. Pass ves | | Avg. Times Sacked]
Rush Yds

Avg. Net Punt Yds Kickoff Ret Yds Ret Yds Def Avg
Def. Avg. Allowed Def. Avg. Sacks Def. Avg Allowed Def. Avg. Allowed Avg. Punt Ret Yds Penalty Yds
Pass Yds Net Punt Yds Punt Ret Yds

Avg. Rush Yds

Figure 19: AN structure used in NFL prediction problem.

to require some inductive bias within the learners at individual nodes. Thus,
this set of experiments demonstrates the importance of selecting intra-node
learners with appropriate characteristics (e.g. bias) for a given application
of ANs. After an initial lag, the AN-kNN learner matches or exceeds the
performance of the flat kNN learner. This may be because, as a result of
the non-exhaustive diagnostic procedure of Table 2, learning at the higher
levels of the AN hierarchy depends on learning at the lower levels. But it
may also reflect the fact that flat kNN learning is very fast. Indeed, it is
often very difficult to improve upon kNN. The fact that AN-kNN beats flat
kNN demonstrates the power of the abstraction hierarchy.

Further, the basic claim that knowledge repair is supported by EVP-based
diagnosis and repair is supported by the decrease in error rate observed for
the AN-kNN learner. However, it is unfortunately not clear that this domain,
or either of the others, has so far provided a decisive and spectacular display
of the advantages of AN technology in terms of reaching an extremely low
final error rate. However, experiments in these domains have demonstrated
the effectiveness of EVP-based diagnosis in allowing a metareasoning system
to successfully repair knowledge stored in classification hierarchies and reduce
error. Of course, in this case and in the cases of FreeCiv and DJIA prediction,
it is highly likely that flaws in the knowledge engineering (KE) or gaps in
available input features are responsible for failure to reach a lower final error.

39

13000

Flat KNN ———

AN-Rote
AN-KNN - v

12000
11000 |
10000 f
9000
8000 p

7000 |

Per-block error (sum of deviations from correct output)

6000

Block number

Figure 20: Per-block error vs. block number for various learner types in the NFL football
domain.

40

This issue is addressed more directly by work on faulty KE, which provides
some evidence of the benefit of using ANs to structure classification learning
even if KE is faulty. This work is discussed in the following section.

5.8. Effects of Degraded Knowledge Engineering

We have performed two sets of experiments in the synthetic domain of
Section 5.1 dealing with the performance of AN learners when knowledge en-
gineering is imperfect. In all of these experiments, a binary AN hierarchy was
used, with level sizes 16-8-4-2-1. We allowed each node in the hierarchy to
produce 4 output values. Each non-leaf node contained a kNN learner with a
k-value of 1. The results shown in this section are an average of 20 random-
ized trials, each consisting of sequences of randomly selected examples split
into blocks of 100 for graphing purposes. In the first of these experiments,
specific nodes are ablated from within the learner AN, connecting the child
nodes of the removed node to the parent node of the removed node. In these
experiments, no input information is lost through the node removals (inputs
are never ablated), but we expect the hypothesis space restriction imposed
by the AN structure to be diminished, and thus the efficiency of learning
to decrease. This expectation is indeed borne out by the experiments, sum-
marized in Figure 21. In these experiments, we still reach or approach zero
error, as expected because the correct hypothesis is never eliminated from
those expressible by an AN through this kind of ablation. However, the
learning rate is negatively impacted as the restriction bias imposed by the
AN is reduced. The keys for the graphs in this section refer to the location
of nodes ablated by level. We consider leaf nodes to be level 0, the direct
parents of leaf nodes to be level 1, etc. This notation is possible because of
the balanced binary structure used in these experiments. An interesting note
about these results is that, when ablating a single node, it appears to make
no significant difference at which level of the hierarchy the node is removed.
This suggests that impact on overall hypothesis space size is not dependent
upon a concept’s level of abstraction.

In the second set of experiments, whole subtrees beneath a selected node
(or nodes) are pruned from the learner AN. This kind of ablation actually has
the effect of increasing the restriction bias of the AN, as all hypotheses de-
pendent upon the inputs beneath the ablated node are no longer expressible
at all. This kind of removal is equivalent to forcing complete information loss
at the root of the ablated subtree. The problem here is that the restriction
bias is likely to have now excluded the correct hypothesis, as inputs that may

41

70
60

50

1
E,
i
3

0F &% Flat KNN ——
% ‘_ AN_KNN
: s Ablated AN-KNN Level 3
Ablated AN-KNN Level 3 All
Ablated AN-KNN Level 1 Two Non-Sibling Nodes ======

Errors

30

20

0 2 4 6 8 10 12 14
Block Number (100 examples per block)

Figure 21: Results of ablating (groups of) individual nodes from an AN learner.

be needed for discrimination between two states could have been removed.
These induced deficiencies are much more severe than those of the first set
of experiments. As expected, the ability of the learner to correctly match
the target function are more severely hampered, as illustrated in Figure 22.
However, the final error reached is still below that of an unaugmented kNN
learner after 1000 training examples — illustrating that, if any reliable struc-
tural information is available about a domain, there is substantial benefit
to its exploitation if few training examples are available. Of course, over
time the unaugmented kNN learner would reach zero error in this synthetic
domain, once it has seen and memorized by rote each problem instance.
However, in practical terms this situation would not arise. If it is known
that some inputs are or may be pertinent, one can always feed them directly
into the root node of an AN hierarchy even if intervening structure is not
known. But it is interesting to note that in some sense, a designer is bet-
ter off knowing about only a subset of the inputs relevant to a classification
problem and having some good knowledge about an intervening abstraction
structure than having full knowledge of the relevant inputs but no knowledge
of the structure. While the latter scenario allows the designer to produce a

42

70

,,,,,
>,
-,
.....
.....................
..
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

40 Flat KNN ——

kY AN-KNN sessssannss

Hard Ablated AN-KNN Level 3 +
% Hard Ablated AN-KNN Level 1 Two (Non-Sibling) Nodes

30 -__ Hard Ablated AN-KNN Level 2 Two (Non-Sibling) Nodes ======

Errors

20

0 1 2 3 4 5 6 7 8 9
Block Number (100 examples per block)

Figure 22: Results of ablating (groups of) subtrees from an AN learner.

learner that theoretically can express the correct hypothesis and thus would
eventually reach zero error, in practical terms for large problems it will not
be possible to gather enough training examples to get there. On the other
hand while in the former scenario zero error will never be reached, some level
of useful generalization can be made after relatively few input examples. In
the trial where we ablated two non-sibling level 2 nodes, we have literally
removed half of the problem inputs and still get a better error rate after
1000 examples have been seen!

The key finding in these experiments is that as knowledge engineering
quality degrades, there is a corresponding gradual degradation in the benefit
obtained from using AN structure. Of course, here we have tested only two
kinds of incorrectness in knowledge engineering. One could imagine many
other kinds of errors, such as wiring nodes into the wrong location in an AN.
In this case, one would expect the AN to learn to ignore information that
is not pertinent to a particular classification. This would slow learning but
should not impact final error beyond the effect of not having the information
available in the correct location. Thus, the effect of such an error could be
expected to be similar to that of ablating the subtree beneath the miswired

43

node. In any case, it is not the intent of this article to experiment with,
or even identify an exhaustive taxonomy of conceivable errors in knowledge
engineering. However, this section does provide some sense of the kinds of
degradation in learning rate (when intermediate abstractions are missed but
all needed inputs are intact) and final error levels (when needed inputs are not
present) that one can expect under two kinds of faulty knowledge engineering
that seem likely to occur in practice when designing classification hierarchies.

5.4. Additional Comments

One would naturally also wish to determine whether, beyond the hierar-
chical knowledge representation integral to ANs, there is also generalization
power imparted particularly by the use of EVPs. EVPs essentially fix, or pin
the semantics of nodes within an AN structure by defining the appropriate
values that should be produced in any situation. Intuitively, this kind of se-
mantic pinning should reduce the number of hypotheses that are expressible
by a knowledge representation, and as such, represent a restriction bias that
increases generalization power. However, the experiments reported on in this
paper do not serve to distinguish the inductive bias provided by EVPs from
the inductive bias imparted by the hierarchical structuring of knowledge. We
have performed an extensive set of experiments that compare learning hierar-
chically structured knowledge both with and without EVPs. Space prohibits
a complete discussion of those experiements here, but such a discussion can
be found in Jones [18]. The general finding is that while, as expected, the hi-
erarchical structuring of knowledge does itself provide some benefit in terms
of generalization power, EVPs also provide additional generalization power.
That is, of three tested learner types, flat learners fare the worst, hierarchical
learners without EVPs perform somewhat better, and the best performance
is realized by hierarchical learners that do make use of EVPs. Further, when
hierarchical learners have EVPs at some, but not all nodes, there is a grad-
ual degredation of performance as fewer and fewer EVPs are made avaliable.
Thus, it is worth adding EVPs at some nodes in a hierarchical learner even
if it is not possible to do so at all nodes.

6. Related Research

Beyond the classifiers which we have integrated directly with the Augur
system (kNNs [10] and ANNs [17]), there are several lines of research that
are relevant to the AN representation and algorithms that we use to address

44

the Compositional Classification problem chosen as a test domain for EVP
theory.

6.1. Learning With Structured Representations

There is a myriad of work on learning that makes use of structured rep-
resentations. In this section, we highlight and discuss some research that
is particularly pertinent to the techniques we have developed in this work.
For the purposes of comparison, we will situate each technique discussed in
this section along two axes of variation — first, the degree to which the tech-
nique exploits prior knowledge of decompositional hierarchical structure, and
second, the degree to which the technique exploits semantic pinning (alter-
natively, the degree of supervision) of nodes within the hierarchy. ANs make
strong use of both kinds of background knowledge, so this is an interesting
basis for comparison of techniques. Notice that these axes are not orthogo-
nal — it is not possible to semantically pin the components of decomposition
within a hierarchy that does not exist! The next subsection covers those
structured learning techniques that fit well within the taxonomy suggested
by these axes, and the following subsection covers those that do not fit as
neatly.

6.1.1. Classification Learners using Decomposition

In this subsection, we discuss classification learners that use structured
representations to decompose the overall problem into a set of sub-classification
problems. Table 4 summarizes where these learning methods fit into the space
defined by the two axes described at the head of this section.

Work on tree-structured bias (TSB) [13][23] is the most closely related
to ANs and the problem domain of Compositional Classification used to test
EVP-based learning. In systems that make use of tree structured bias, a
concept hierarchy like those represented by ANs is used to limit the hy-
pothesis space that must be searched by a learner. So, like ANs, there is a
strong exploitation of tree structure under TSB. One of the contributions of
experimentation with Augur is the application of the general idea of tree-
structured bias in new settings, including the use of ML techniques that
have not been combined with tree-structured bias in the past and applica-
tion to non-synthetic problems. This research also moves beyond past work
on TSB in several other directions, studying, for example, the effects of faulty
knowledge structures on learning and expanding on theoretical results. More
significantly, there are several fundamental differences between ANs and past

45

Table 4: A partial taxonomy of structured classification techniques.

use of Structure
For Problem Decomp.

Strang Weak
Strong, with
. " AMs
explicit abstraction
1th Hybrid ANs,
e Strong, without 758, Layered Learning,
Use of Supervision explicit abstraction structured Induction, BNs
at Internal Nodes
Modorata KBAMNN, EBNN
Waak HMES

work on tree-structured bias. First, TSB has dealt only with binary classi-
fications at all nodes in the hierarchy, while ANs can deal with multivalue
classifications. As noted above, the primary distinction is that TSB research
does not have the concept of EVPs. Though this is true of all of the tech-
niques discussed in this section, there are some comparisons worth drawing
here. In lieu of EVPs, TSB learners instead rely on carefully constructed
queries to the environment to learn the functions at internal nodes. This
procedure can be construed as requiring a very specific kind of empirical ver-
ifiability for internal nodes — thus forcing a particular (and rather complex)
form on the EVPs that a designer would write if applying TSB procedures
within the AN framework. In particular, an EVP for an internal node in a
hierarchical classifier can be written such that it makes a series of TSB-style
queries to the environment to determine the correct value of the associated
node during learning. Tadepalli and Russell [23] show how to simulate an
oracle function at internal nodes in a TSB hierarchy using the queries their
work requires. This procedure is exactly what would be placed within an
EVP. Hence, like ANs, TSB exploits semantic pinning at all nodes within
the hierarchy, though this pinning is more implicitly expressed by the struc-
ture of the hierarchy in conjunction with the queries assumed available and
the procedure for their use. In the work described here, we take the stance
that, in general, a broader set of queries to the environment may be possible.

46

If this is the case, it will be more efficient to make use of the observations
that most directly allow us to determine the value of an internal node when
learning. In fact, the motivating example given by Tadepalli and Russell
(23], concerning a credit-card domain, appears clearly to have a strong kind
of direct empirical verifiability at internal nodes that could be exploited by
an AN using very simple EVPs. Thus, past work on TSB can be seen as a
specialization of the techniques described in this paper, where only a partic-
ular kind of query is supported by the learning environment. Note also that
the requirement that any example can be obtained from the environment by
the learner is a rather strong assumption which may not hold in domains
where only limited training samples are available. ANs do not require this
assumption to hold. AN research also moves beyond TSB by allowing the
construction of hybrid learners, where semantic pinning is employed only at
some subset of nodes within the classification hierarchy:.

Layered learning [24] makes use of decomposition hierarchies to address
large learning problems. In layered learning, each component’s learner is
trained in a tailored environment specific to the component. Our AN tech-
nique is more akin to what is called “coevolution” of components in work
on layered learning, where multiple learners in the decomposition hierarchy
are trained simultaneously in the actual target domain. However, in layered
learning, genetic algorithms are used for training. This means that the struc-
tural credit assignment problem is addressed through trial and error, which
will not provide the type of scalability characteristics we expect to achieve
with a systematic approach to credit assignment. An additional distinction is
that ANs focus on progressive abstraction, limiting the number of inputs to
each component and ensuring a learning problem of manageable dimension-
ality at each component. In contrast, layered learning focuses on temporal
abstraction, where components responsible for selection of abstract actions
are not necessarily shielded from the need to consider many raw state fea-
tures. And ANs also allow the use of arbitrary (in principle, heterogeneous)
learners within each component. Layered learning makes use of both strong
hierarchical knowledge and strong semantic knowledge at each node.

Like the basic form of layered learning, Shapiro’s structured induction
[25] makes use of a hierarchical knowledge structure for classification, and
trains each element individually from the bottom up. Shapiro’s technique is
specifically tailored to aid with the process of information extraction from
an expert in building an expert system. This work goes beyond Shapiro’s
by proposing methods to automatically adjust node semantics, performing

47

end-to-end training of the hierarchies, admitting multiple types of super-
vised classification learners within nodes, and implementing mixed hierar-
chies, where the semantics of only a subset of nodes are known. Shapiro
also describes a mechanism by which a knowledge hierarchy may produce a
human-readable explanation of its reasoning. The work described in this ar-
ticle does not incorporate such a mechanism, but in principle such a feature
could be added. Like layered learning, both strong hierarchical knowledge
and strong semantic pinning are used in structured induction.

Knowledge-based ANNs [26] and Explanation-based NNs [27] both apply
background knowledge in order to speed up learning in supervised classifi-
cation problems. In KBANN learning, neural network structure and initial-
ization are informed by background knowledge in the form of Horn clauses.
Then, the network is trained using a standard method such as backprop-
agation. That is, credit assignment during learning is based on structural
and numerical properties of the knowledge representation. In contrast, credit
assignment over ANs is based on fixed semantic properties of the structural
elements. These semantic properties are explicitly encoded as Empirical Ver-
ification Procedures that ground the knowledge contained within a structural
element in terms of falsifiable predictions about the environment. Also notice
that the result of learning is different. With ANs, the structural elements
of knowledge retain known, explicitly specified meanings. With KBANN,
there is no guarantee that structural elements of the neural network that
results from training will have any particular or identifiable meaning. So
both the considered hypothesis spaces and the nature of the search through
those spaces is different in KBANN vs. AN learning. Beyond the restric-
tion bias of requiring fixed semantics for intermediate nodes, there are also
other advantages such as the potential for transfer of partial networks to new
problems and inspectability of knowledge. KBANN does exploit structural
background knowledge, as well as semantic background knowledge for the
purposes of initialization. However, there is no semantic pinning maintained
at nodes within a KBANN hierarchy during training.

In EBNN, a neural network is trained via the TangentProp algorithm.
TangentProp works as backpropagation, however it is augmented with knowl-
edge about the desired derivatives of the output function with respect to
changes in the input values. EBNN finds the derivatives used as input to
TangentProp on a per-example basis using provided background knowledge.
This background knowledge is in the form of an approximate representation
of the target function by a set of neural networks. The representation used

48

for the domain theory is similar to an AN with ANNs at each node, but
EBNN does not deal with learning over this representation, but rather learns
while treating this information as fixed background knowledge. As in the
discussion about KBANN above, notice that AN learning differs from EBNN
in both representation and in the procedure for credit assignment. EBNN
learning results in a trained neural network, where intermediate nodes are not
guaranteed to have any identifiable interpretation. In contrast, the AN repre-
sentation always maintains known, explicitly represented interpretations for
all intermediate nodes. In a related point, TangentProp credit assignment
distributes blame across network weights based on structural characteristics
of the network, rather than based on analysis of fixed node interpretations
as is the case in AN learning. EBNN makes use of both structural and
semantic background knowledge, though its use of semantic knowledge at
nodes within the classification structure is better described as influence than
pinning — preference bias vs. restriction.

Hierarchical Mixture of Experts (HME) learning [28] trains multiple ex-
perts (learners) to solve the same problem and then combines their outputs
via a series of gates in order to produce a result. By training both the experts
and gates, the HME is able to learn complex decision boundaries. However,
an identifiable interpretation of the purposes of the experts and gates is not
guaranteed by the training algorithm. This differs from the AN technique,
where a single learner addresses each learning task within a network and an
analytical credit assignment algorithm that respects assigned node semantics
is used. HME learning uses neither background knowledge of the structure
of a problem decomposition, nor the capacity for direct supervision of sub-
problems.

Bayesian Networks (BNs) [29] represent joint probability distributions
efficiently by making use of conditional independence relationships among
features. On the other hand, Abstraction Networks capture progressive ag-
gregation and abstraction into equivalence classes, culminating in abstraction
into a desired classification. This distinction has practical implications for the
methods that operate on Abstraction Networks. First, the credit assignment
procedure for ANs differs from learning in Bayes nets. During AN learning,
Empirical Verification Procedures must be invoked to determine whether a
particular abstraction (intermediate equivalence classification) was accurate.
When learning over a Bayes net, this is never required as the represented
variables are expected to be directly observable, or are estimated (e.g. using
EM). The fact that there is a level of abstraction between concepts repre-

49

sented at nodes in an AN and features directly observable in the environment
is also a source of power for ANs. Next, because this level of abstraction is via
an explicitly represented mechanism (the Empirical Verification Procedure),
this abstraction can be directly operated upon by learning. This means that
the number of distinctions made by a given AN node can be adjusted, in-
creasing or decreasing the level of distinction made by a particular set of
equivalence classes. Also, the specific division of actual world states into
these equivalence classes can be directly operated upon, potentially chang-
ing the constitution of equivalence classes. Because Bayes nets do not deal
with features in terms of such explicitly represented abstractions, this type
of operation is not possible when learning over Bayes nets. Of course, one
could manually tune the equivalence classes used at various nodes within a
Bayes net (presumably because the human designer is able to understand
the abstraction mechanism at work even though it is not explicitly encoded).
However, we are speaking here of the automatic adjustment of these equiva-
lence classes by the learner. Of course, it is also quite possible that one could
apply EVPs to Bayes nets. This would imbue Bayes nets with an explicit
representation of their features’ abstraction from raw perception, and the
automation of equivalence class tuning should also be possible for Bayes nets
if this were done.

6.2. Model-Based Self-Adaptation

EVP-based learning takes a particular view of the learning process, specif-
ically that learning can be viewed as self-adaptation through a process of self-
diagnosis and self-repair. The general diagnosis (credit assignment) problem
has been characterized as a core problem in learning [1]. Samuel [15] first
identified the problem in his work on checkers playing programs. Minsky [1]
identified credit assignment as one of the core problems in Al.

Al systems have used a variety of techniques for self-diagnosis and self-
repair in different kinds of agents addressing different tasks in different do-
mains. For example, while Cox & Ram [30] describe the use of explanation
patterns for self-diagnosis in a planning agent, Stroulia & Goel [31] describe
the use of model-based self-diagnosis and self-repair in a situated, reactive
agent. In the model-based method, a self-model that explicitly represents the
agent’s knowledge and processing that can be operated over by a reasoning
process in attempting to identify causes for (or localize) failures, as well as
when deciding upon and implementing adaptations. Birnbaum et al. [32]
describe model-based adaptation in planning agents. Fox & Leake [33] [34]

50

demonstrate how model-based introspective reasoning can help refine case
indexing in a case-based planning agent and lead to better case retrieval.
For instance, Williams’ work on immobots [35] imbues systems viewed as
immobile robots with the ability to self-regulate and self-repair by making
physical configuration changes when problems are detected.

The REM [36] [37] [38] and Autognostic [39] [40] [31] systems also make
use of self-models with predictive information about a system’s intended func-
tioning. These systems truly do engage in metareasoning, as the models that
they use are not models of physical systems but rather of (portions of) their
own reasoning processes. Both of these systems have the capability to recog-
nize failures of reasoning and intervene either through configuration changes
or hard modifications in order to correct errors. Once again, failure detection
and localization is made possible through the inclusion of predictive infor-
mation within the self-models. REM is also capable of proactive adaptation
if provided a description of a new problem domain, through the use of the
same self-model used for retrospective (failure-driven) adaptation. Jones et
al. [41] describe GAIA, a system that uses REM’s technique for model-based
self-adaptation in interactive game-playing agents. Goel & Jones [42] related
work on REM with the research described here.

Ladagga [43] and Robertson & Ladagga [44] have also applied the Al
techniques of model-based self-adaptation to software agents. Williams &
Mayak’s work on immobots [35] imbues systems viewed as immobile robots
with the ability to self-regulate and self-repair by making physical configu-
ration changes when problems are detected. We believe that an especially
productive research direction is the use of model-based self-adaptation for
steering [45] or localizing [46] reinforcement learning. Anderson et al. [47]
provide a review of some of these model-based techniques for designing au-
tonomous systems.

6.3. Intelligent Agents and Knowledge Systems

Work in the knowledge-based systems community on expert systems has
advocated the use of empirical methods to ensure the correctness of the
domain knowledge encoded in a system [48] [49]. These empirical methods
involve using a system to solve a predefined set of problems constituting a
set of test cases with known desired solutions. EVPs are related to these
methods in that they can be viewed as implicitly defining a universal set of
test cases for each concept within a hierarchy of domain knowledge. That is,
by defining the semantics of a concept in terms of actions and perceptions

51

within the environment, EVPs allow the appropriate value of a concept to
be determined (for a cost) in any circumstance. Further, in this work we
advocate the enforcement of desired semantics at both a holistic level (due
to the incremental diagnostic method) and at the more fine-grained level
of individual concepts. This kind of semantic enforcement facilitates the
automatic repair of faulty knowledge.

In this work, we give an account of a diagnostic method useful for repair
and refinement of attribute-based concept classification knowledge within a
known, fixed concept hierarchy. We do not give an account of how either the
concepts themselves (i.e. the semantic definition of concepts via EVPs), or
the structural arrangement of those concepts into a useful hierarchy might
be automatically derived. Rather, we expect knowledge engineers to man-
ually encode these aspects of domain knowledge. However, there has been
much work on learning of classification knowledge in general [50] [51], in
various settings. Work on Tree-Structured Bias [13], described above, gives
one account of how the hierarchical knowledge might be discovered from a
set of background facts. Fisher [52] gives another account of incremental
conceptual clustering.

Another approach to the automatic generation of concepts and relevant
relationships from background facts and examples is Inductive Logic Pro-
gramming (ILP) [53] [54]. However, the representational form of knowledge
manipulated by ILP is substantially different from that encoded in an Ab-
straction Network. Thus, the problem framing demanded for the application
of ANs is distinct from that demanded for the application of ILP. Practi-
cally speaking, it is likely that the form in which background knowledge is
available (or can be produced) in a given problem setting will determine the
relative applicability of ANs vs ILP-based methods.

7. Conclusion

The central claim that we make in this article is that explicit seman-
tic grounding of domain knowledge in perception makes it possible to self-
diagnose and repair errors within that domain knowledge. Further, we claim
that this semantic grounding in perception constrains the expressivity of the
concepts that form the domain knowledge. These constraints form a restric-
tion bias when learning over knowledge structures containing the concepts,
and thus increase generalization from training examples. The experiments
of Section 5 support this claim. The experiments demonstrate the general

52

usefulness of Empirical Verification Procedures that ground knowledge in
perception across problem instances and learner types within Compositional
(Classification, and the gains in learning efficiency that can be attributed to
the use of EVPs within hierarchical classification structures. We do experi-
ment in some non-synthetic domains, with positive results. While ANs have
not yet been deployed in the field, we feel that the domains tested, par-
ticularly the economic and game-playing settings, are good candidates for
practical use of the technology. In particular, ANs have the potential to be
valuable tools for validating models of economic and other complex systems.
In such settings, both successful learning and problems with concept learn-
ing (i.e. vacillation within nodes) can provide valuable feedback about the
quality of the structure and conceptual content of the model.

The view taken here is that knowledge has meaning because it entails
predictions about perceptions, and that conceptual knowledge is valuable
in the extent to which it ultimately contributes to action selection. This
perspective on the meaning and the value of knowledge leads directly to a
particular view of error within classification hierarchies, where we see the
need to alter knowledge at a node only if it is both objectively incorrect,
based upon violation of the perceptual predictions it entails (EVP violation)
and subjectively incorrect, based recursively upon the existence of an error
at the parent node. That is, the knowledge in question must both contradict
perception and fail to fulfill its functional role in the overall structure in
which it exists. This view of error, then, leads to the “causal backtracing”
style of diagnosis described in Section 3.4.

We have also presented empirical results of the impact of degraded knowl-
edge engineering on the effectiveness of learning using an Abstraction Net-
work (Section 5.3). These experiments show a graceful degradation of the
performance of an AN-based learner as increasingly severe deficits in knowl-
edge engineering are introduced. When no input information is lost, this
degradation takes the form of decreased learning speed due to a reduced re-
striction bias. When input information is lost, the final error rate reached is
also higher. However, the general finding is that use of structural information
is substantially beneficial even if it is significantly incomplete.

Acknowledgements

We would like to acknowledge Tom Dietterich and Charles Isbell for
their helpful comments on earlier versions of this work. We also thank Tom

53

Mitchell for providing code for training Artificial Neural Networks that served
as the basis of the ANN code used in our experiments. This research is sup-
ported by an NSF (SoD) Grant (#0613744) on Teleological Reasoning in
Adaptive Software Design.

References

1]

2]

[10]

[11]

M. Minsky, Steps towards artificial intelligence, In E. A. Feigenbaum
and J. Feldman eds. Computers and Thought (1963) 406-450.

M. Minsky, P. Singh, A. Sloman, The St. Thomas common sense sympo-
sium: Designing architectures for human-level intelligence, Al Magazine
25 (2004) 113-124.

R. Brachman, Systems that know what they are doing, IEEE Intelligent
Systems (2002) 67-71.

M. Cox, A. Raja (Eds.), Metareasoning: Thinking about Thinking, MIT
Press, 2011.

M. T. Cox, Metacognition in computation: A selected research review,
Artif. Intell. 169 (2005) 104-141.

M. L. Anderson, T. Oates, A review of recent research in metareasoning
and metalearning, Al Magazine 28 (2007) 7-16.

M. T. Cox, A. Raja, Metareasoning: A Manifesto, Technical Report,
BBN TM-2028, BBN Technologies (2007).

A. K. Goel, N. Soundararajan, B. Chandrasekaran, Complexity in clas-
sificatory reasoning, in: AAAI pp. 421-425.

B. Chandrasekaran, A. Goel, From numbers to symbols to knowledge
structures: Artificial Intelligence perspectives on the classification task,
IEEE Trans. Systems, Man & Cybernetics 18 (1988) 415-424.

R. O. Duda, P. E. Hart, D. G. Stork, Pattern classification and scene
analysis, Wiley New York, 1973.

W. J. Clancey, Heuristic classification., Artificial Intelligence 27 (1985)
289-350.

o4

[12]
[13]

[14]

[15]

[18]

[19]

[20]

[21]

[22]

23]

[24]

A. Goel, T. Bylander, Computational feasibility of structured matching,
IEEE Trans. Pattern Anal. Mach. Intell. 11 (1989) 1312-1316.

S. J. Russell, Tree-structured bias, in: AAAIL pp. 641-645.

B. Chandrasekaran, Generic tasks as building blocks for knowledge-
based systems: The diagnosis and routine design examples, in: The
Knowledge Engineering Review, volume 3, 1988, pp. 183-210.

A. Samuel, Some studies in machine learning using the game of checkers,
IBM Journal of Research and Development 3 (1957) 210-229.

T. Bylander, T. Johnson, A. Goel, Structured matching: a task-specific
technique for making decisions, Knowledge Acquisition 3 (1991) 1-20.

D. E. Rumelhart, J. L. Mcclelland (Eds.), Parallel distributed process-
ing: Explorations in the microstructure of cognition, volume Volumes 1
& 2, MIT Press, 1986.

J. Jones, Empirically-Based Self-Diagnosis and Repair of Domain
Knowledge, Ph.D. thesis, Georgia Institute of Technology, 2010.

R. Kohavi, The power of decision tables, in: Proceedings of the Eu-
ropean Conference on Machine Learning, Springer Verlag, 1995, pp.
174-189.

Leading indicators of employment, Australian Economic Indicators
1350.0 (2004).

R. H. Webb, T. S. Rowe, An index of leading indicators for inflation,
Economic Quarterly (1995) 75-96.

RBC US leading economic indicator, Economics Department, RBC Fi-
nancial Group (2005).

P. Tadepalli, S. J. Russell, Learning from examples and membership
queries with structured determinations, in: Machine Learning, vol-
ume 32, pp. 245-295.

S. Whiteson, N. Kohl, R. Miikkulainen, P. Stone, Evolving keepaway
soccer players through task decomposition, Machine Learning 59(1)

(2005) 5-30.

95

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

A. D. Shapiro, Structured induction in expert systems, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1987.

G. G. Towell, J. W. Shavlik, Knowledge-based artificial neural networks,
Artificial Intelligence 70 (1994) 119-165.

T. M. Mitchell, S. B. Thrun, Explanation-based neural network learning
for robot control, in: C. L. Giles, S. J. Hanson, J. D. Cowan (Eds.),
Advances in Neural Information Processing Systems 5, Proceedings of
the IEEE Conference in Denver, Morgan Kaufmann, San Mateo, CA,
1993.

M. 1. Jordan, R. A. Jacobs, Hierarchical Mixtures of Experts and the
EM Algorithm, Technical Report AIM-1440, 1993.

J. Pearl, Probabilistic reasoning in intelligent systems: networks of plau-
sible inference, Morgan Kaufmann, San Mateo, CA, 1988.

M. Cox, A. Ram, Introspective multistrategy learning: On the construc-
tion of learning strategies, Artificial Intelligence 112 (1999) 1-55.

E. Stroulia, A. K. Goel, Evaluating problem-solving methods in evolu-
tionary design: the Autognostic experiments, International Journal of
Human-Computer Studies, Special Issue on Evaluation Methodologies
51 (1999) 825-847.

L. Birnbaum, G. Collins, M. Freed, B. Krulwich, Model-based diagnosis
of planning failures, In Proceedings of the Eighth National Conference
on Artificial Intelligence (1990) 318-323.

S. Fox, D. B. Leake, Using introspective reasoning to refine indexing,
in: Proceedings of the Thirteenth International Joint Conference on
Artificial Intelligence.

S. Fox, D. Leake, Introspective reasoning for index refinement in case-
based reasoning, Journal of Experimental and Theoretical Artificial
Intelligence 13 (2001) 63-88.

B. C. Williams, P. P. Nayak, Immobile robots: Al in the new millen-
nium, Al Magazine 17 (1996) 16-35.

56

[36]

[37]

[38]

J. W. Murdock, A. K. Goel, Learning about constraints by reflection,
in: AI '01: Proceedings of the 14th Biennial Conference of the Cana-
dian Society on Computational Studies of Intelligence, Springer-Verlag,
London, UK, 2001, pp. 131-140.

W. Murdock, A. K. Goel, Localizing planning using functional process
models, in: Proceedings of the Thirteenth International Conference on
Automated Planning and Scheduling (ICAPS-03).

J. W. Murdock, A. K. Goel, Meta-case-based reasoning: self-
improvement through self-understanding, J. Exp. Theor. Artif. Intell.
20 (2008) 1-36.

E. Stroulia, A. Goel, Functional representation and reasoning in reflec-
tive systems, Journal of Applied Intelligence, Special Issue on Functional
Reasoning 9 (1995) 101-124.

E. Stroulia, A. K. Goel, Redesigning a problem-solver’s operations to

improve solution quality, 15th International Joint Conference on Artifi-
cial Intelligence (IJCAI-97) (1997) 562-567.

J. Jones, C. Parnin, A. Sinharoy, S. Rugaber, A. K. Goel, Teleologi-
cal metareasoning for automating software adaptation, in: Third IEEE
Conference on Self-Adaptive and Self-Organizing Systems, San Fran-
cisco, pp. 198-205.

A. Goel, J. Jones, Metareasoning for self-adaptation in intelligent
agents, in: M. Cox, A. Raja (Eds.), Metareasoning: Thinking about
Thinking, MIT Press, 2011.

R. Laddaga, Guest editor’s introduction: Creating robust software
through self-adaptation, IEEE Intelligent Systems 14 (1999) 26-29.

P. Robertson, R. Laddaga, Model Based Diagnosis and Contexts in Self
Adaptive Software, 2005, pp. 112-127.

M. L. Anderson, T. Oates, W. Chong, D. Perlis, The metacognitive loop
I: Enhancing reinforcement learning with metacognitive monitoring and

control for improved perturbation tolerance, J. Exp. Theor. Artif. Intell.
18 (2006) 387-411.

o7

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

P. Ulam, J. Jones, A. K. Goel, Using model-based reflection to guide
reinforcement learning, in: Fourth AAAT Conference on Al in Interactive
Digital Entertainment (AIIDE-08).

M. L. Anderson, S. Fults, D. P. Josyula, T. Oates, D. Perlis, S. Wilson,
D. Wright, A self-help guide for autonomous systems, Al Magazine 29
(2008) 67-73.

S. Hanks, M. E. Pollack, P. R. Cohen, Benchmarks, test beds, controlled
experimentation, and the design of agent architectures, Al Mag. 14
(1993) 17-42.

J. Baumeister, Advanced empirical testing, Know.-Based Syst. 24 (2011)
83-94.

P. Langley, Elements of machine learning, Morgan Kaufmann series in
machine learning, Morgan Kaufmann, 1996.

T. M. Mitchell, Machine Learning, McGraw-Hill, Inc., New York, NY,
USA, 1 edition, 1997.

D. H. Fisher, Knowledge acquisition via incremental conceptual cluster-
ing, Machine Learning (1987).

S. Muggleton, Inductive Logic Programming: Theory and methods, The
Journal of Logic Programming 19-20 (1994) 629-679.

Y. Kavurucu, P. Senkul, I. H. Toroslu, Concept discovery on relational
databases: New techniques for search space pruning and rule quality
improvement, Know.-Based Syst. 23 (2010) 743-756.

58

