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The ability to analyze complex systems is fundamental to ecology literacy (Jordan, Singer, Vaughan,
& Berkowitz, 2009; Sabelli, 2006). Yet deciphering ecosystems is challenging because, like all complex
systems, they transcend spatial, temporal, and cognitive boundaries (Pickett, et al, 1997) and necessitate
understanding how different components and processes are interconnected (Covitt, Gunckel, &
Anderson, 2009; Jacobson & Wilensky, 2006; Jordan et al., 2009; Mohan, Chen, & Anderson, 2009).
Furthermore, complex systems are comprised of multiple interrelated levels that are dynamically related,
making it difficult even for experts to understand and to predict (Simon, 1996).

The very nature of this complexity makes it challenging for learners to grasp associations and
interactions among a system’s components (Ben-Zvi Assaraf & Orion, 2005; Gallegos et al 1994;
Penner, 2000). Often, learners focus on simple linear relationships and visible components of an
ecosystem (Hmelo-Silver, Marathe, & Liu, 2007; Hogan, 2000; Hogan & Fisherkeller, 1996; Leach et
al. 1996; Reiner & Eilam, 2001). For example, when asked to draw or name components of an aquarium
system, novices tended to emphasize visible components, such as fish and rocks, and rarely mentioned
invisible components, such as oxygen, nitrogen, and bacteria (Hmelo-Silver, Marathe, & Liu 2007;
Hmelo-Silver & Pfeffer, 2004). Grotzer & Basca (2003) also report that student explanations favor
single causal and linear connections between system components.

In this paper, we present the results of a technology-intensive classroom intervention designed to
support middle schools students’ understanding of an aquatic ecosystem. The goals of our intervention
are to help learners develop deep understanding of ecosystems and to use tools that make the
relationships between a system’s structures, behaviors, and functions explicit.

Aquariums as Models for Learning

To help students understand complex systems, we implemented a two-week aquarium unit that was
designed by a team of learning scientists, middle school classroom teachers, and ecologists. The
technology consisted of a suite of computer tools: a function-oriented hypermedia (Liu & Hmelo-Silver,
2009), simulations of macro- and micro-level processes (Liu & Hmelo-Silver, 2008; Gray et al. 2008),
and the Aquarium Construction Kit (ACT; Goel et a. 2010; Vattam et al. in press).

Our instructional approach builds upon structure-behavior-function theory (Goel et al., 1996; Goel et
al., 2009). The structure-behavior-function (SBF) approach is useful to explain dynamic systems with
multiple components and levels (Goel et al., 2009; Liu & Hmelo-Silver, 2009). We view SBF theory as
providing a conceptual representation that is consistent with both canonical explanations in biological
systems and with expert understanding (Bechtel & Abrahamson, 2005; Hmelo-Silver et al., 2007). In
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addition to helping students organize their system knowledge, the SBF representation provides a
scaffold for overall knowledge organization.

In a biological system, structure refers to components of an ecosystem that have form, such as fish or
cells. Behaviors represent the processes within systems. These refer to mechanisms such as
photosynthesis or nitrification. Functions refer to the outputs of a system or the role(s) of a particular
structure within a system. An example of a function would be that fish produce energy.

Technology Support for Learning about Complex Systems

It 1s difficult for learners to understand many aspects of ecosystems because they have not had
opportunities to engage with those processes that are dynamic and outside their perceptual
understanding (Jacobson & Wilensky, 2006). In addition to helping students organize their system
knowledge, the SBF representation also provides a scaffold for overall knowledge organization because
it helps learners consider the relationships among form and function as well as the causal behaviors and
mechanisms. We make SBF explicit through the use of hypermedia, organized in terms of SBF (Figure
1), through NetLogo simulations that make behaviors visible (Figure 2a and b) and through the ACT
tool (Figure 3a and b), which makes SBF explicit as students build models using the language of the
SBF conceptual representation.
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Figure 1. Function-centered hypermedia

Along with the hypermedia and ACT tools, students also used NetLogo simulations to learn about the
behaviors and functions in an ecosystem (Wilensky & Reisman, 2006). Using these simulations, (Figure
2) students had opportunities to explore factors that would affect the dynamic balance in the aquarium.
For example, the macro fish spawn simulation allowed students to manipulate different aspects of the
ecosystem such as initial population, spawning rate, filtration level, and amount of food. Thus if the
students overfed the fish, then the increasing ammonia (from fish excretion) in the water would affect
water quality and have toxic effects on the fish, leading to mortality. This helped problematize water
quality, which is a black box in the macro simulation. This created the need for students to identify some
of the invisible components within an ecosystem. For example, using the micro-level simulation,
students could observe how crucial the nitrification cycle is for the overall health of an ecosystem and
understand the important role that bacteria play in converting toxic forms of nitrogen (ammonia) into
less toxic forms of nitrogen.
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Figure 2. NetlLogo Fish Spawn and Nitrification simulations
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Figure 3a. ACT: A space to create models
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Figure 3b. ACT: Example of model created by a student.

Instructional Context

The science teacher introduced the unit by asking students to articulate their ideas about the functions
of ecosystems. This allowed the teacher to gauge the students’ prior knowledge. The teacher then moved
on to the ACT modeling tool and asked the students to represent their thoughts about ecosystems as

structures behaviors and functions. The students recorded their ideas in a table within the ACT tool
(Figure 4).
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Figure 4: ACT table where students record ideas as structure, behavior, and function

The teacher also encouraged the students to use the hypermedia to build on their ideas about the
ecosystems. The teacher then asked students explore the NetLogo simulations. In the simulations,
students could manipulate various ecosystem components (e.g., number of fish, amount of food, number
of plants) in order to maintain a healthy ecosystem (Eberbach & Hmelo-Silver, 2010). The students
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worked in groups and had opportunities to refine their models. At the completion of the two-week
period, students presented their models to the rest of the class.

Methods
Participants
Fifty-four seventh grade students from a suburban public middle school in the northeast United States
participated in this study during their regular science instruction.

Data Sources

The students completed tests before and after the intervention. In each pre and post-test, students drew
components of an aquatic ecosystem and were asked to show relationships between these components.
In addition, students answered open-ended questions about different parts and processes of an aquatic
ecosystem as well as solved problems related to ecosystems.

Coding for pre and post tests

The scoring criteria for the pre and post tests are summarized in Table 1. All of the questions
(17) were coded based on two different scoring schemes. The first examined student explanations of
relationships between structures and their related behaviors and functions. The codes were assigned to
the answers/explanations on a four-point scale, shown in the upper part of Table 1. Each response was
scored for the complexity of the SBF relationship the student identified.

We also coded for whether the students were able to identify and explain relationships between
micro and macro elements within an ecosystem. Only eight of the 17 questions were coded for Macro
and Micro (MM) level because only these questions provided opportunities for students to explain both
micro and macro level connections. The other questions on the assessment were specific to either macro
or micro elements within an ecosystem. The micro-macro relationship score was assigned as shown in
the lower part of Table 1.

The following student response on the importance of ‘waste’ to the aquatic ecosystem illustrates
how these scoring schemes were applied. The student wrote:

Waste 1s normally produced by organisms such as fish. It contains ammonia. Through the
nitrogen cycle, bacteria breaks it down into nitrite then nitrate (which is a less toxic form
of nitrogen), which is then used for plant growth.

The response indicates the presence of multiple structures, such as fish, ammonia, bacteria, nitrites and
nitrates. We considered “waste” as a structure; we coded “bacteria breaks it down” as behavior and
“which is then used for plant growth” as its function. We assigned this response an SBF relation score of
4 as the student has identified at least one structure in relation to behaviors and functions. In addition,
we assigned this response the maximum score of 3 for the micro-macro coding it as reflects connecting
macro (waste) and micro (ammonia, nitrogen cycle) level structures and processes. Inter-rater reliability
was calculated by having two independent raters code 20% of the sample. The overall reliability was
87% agreement.
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Table 1. Scoring criteria for pre and post test

SBF Relation Explanation Score
No Answer 0
S Identifies structure without connecting to other structures, 1

behaviors, or functions. Ex: “An aquarium has fish, gravel, and
bacteria.” Ex: A drawing with no connections (written or
drawn).

S:S Identifies some relationship between structures. Ex: 2
“Bacteria are in the gravel.” Ex: A drawing with connections
but no elaboration (written or drawn).

S:B or S:F Identifies structures in relation to behaviors or functions. Ex: 3
(B) “Fish eat the food.” (F) “Fish get energy.” Ex: A drawing
with connections and elaboration (written or drawn).

S:B:F Identifies structures in relation to behaviors and functions. 4
Ex: “The fish eats food to get energy.”

Considerations:

-Students may include many individual SB’s and SF’s, but to
code an answer as SBF, the all three must reflect some
relationship to each other.

-SBF thinking is not necessarily represented in one sentence
as the example here.

Micro/Macro Explanation Score
Level
No Answer 0
Macro or Micro Identifies only macro or only micro structures or processes. 1
Macro + Micro Identifies both macro and micro structures or processes. 2
Macro 5 Micro Identifies some relationship between macro and micro 3

structures or processes.

Results

All pre and post tests were compared using a paired t-test. Overall, we found significant gains on all
measures from pre to post test as show in Table 2. The maximum score for the SBF relationship is 68
and for macro-micro is 24. We found that students reached near ceiling at posttest on both coding
schemes, with moderate to large effect sizes.

Table 2. Results for Pre and Post Tests (n=56)

SBF relationship Macro — Micro score
Pretest Mean (SD) 50.07 (24.68) 15.23 (6.48)
Posttest Mean (SD) 64.30 (17.75) 22.71 (6.62)
#(55) 3.43%* 5.99%*
Effect Size 0.66 1.14

*»<0.001
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Discussion

The results show that using SBF as a tool for instruction helps students deepen their understanding of
relationships within a system. Post-instruction, the relationships that students identified were more
complex. Students were more likely to identify relationships between the parts and the mechanisms of
the system. In addition to considering relationships across different levels of the system (i.e., across
structures, behaviors, and functions), students, post-intervention, were more likely to generate ideas at
both macro to micro levels, connecting the visible to the invisible. Indentifying more invisible structures
and relations is not surprising as it is a major focus of our instruction, but the connections across
different scales of a system, we contend, are a robust consequence of SBF oriented instruction.

The SBF language provides students with the opportunity to develop a conceptual framework where
multiple levels and non-linear phenomena can interact. Traditionally, such integration about ecosystem
abstractions has been difficult for students. As Linn and Hsi (2000) argue, students’ ideas are often
distinctly linked to particular contexts and experiences, and confronting novel ideas can cause cognitive
conflict. In addition, if students are generating ideas about complex systems in pieces (as suggested by
DiSessa, 1993), requiring the students to see the relevance of these pieces or cognitive resources when
encountering a problem may be a fruitful approach. Although this remains to be tested, perhaps the SBF
framework provides students with a “glue” to link ideas not only about the system being studied but also
to the cognitive resources they already hold. Certainly SBF-oriented instruction has resulted in more
sophisticated reasoning about problems related to complex systems (e.g., Liu & Hmelo-Silver, 2009).
Our future directions include an investigation into the potential for SBF instruction to result in students’
ability to transfer ideas from one complex system to another.
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