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Abstract

The ability to correct mistakes and adapt to users’ changing
needs is critical for AI agents to remain robust and trust-
worthy. LLM-based agents are inherently prone to errors
like hallucinations and misinterpretations. We observed this
challenge in SAMI, an AI social agent deployed in Georgia
Tech’s OMSCS program for ten semesters (11,000+ users).
Users frequently requested the agent to revise its knowl-
edge base, both to correct LLM-induced errors and to update
their information. To support such revisions, we introduce a
two-level metacognitive self-adaptation architecture that in-
tegrates knowledge-based AI (KBAI) with LLMs. The archi-
tecture comprises a cognitive layer that performs the agent’s
core tasks, and a metacognitive layer that introspects on the
cognitive layer’s process using a Task–Method–Knowledge
(TMK) model of the agent. The metacognitive layer identi-
fies the task that needs revision, updates the knowledge base,
and communicates the revision process to the user.

Introduction
Artificial intelligence (AI) agents often face situations in
which revising their knowledge and outputs is crucial. For
example, agents that use large language models (LLMs)
such as ChatGPT are inherently prone to errors, including
hallucinations and misinterpretations (Bang et al. 2023; Ji
et al. 2023). Such mistakes erode trust in human–AI in-
teractions and harm perceptions of the agent’s intelligence
and likability (Honig and Oron-Gilad 2018; Lee et al. 2024;
Salem et al. 2015).

SAMI is an AI social agent deployed in Georgia Tech’s
Online Master of Science in Computer Science (OMSCS)
program for ten semesters, serving over 11,000 users. It
recommends social connections between users based on
shared interests and characteristics extracted from their on-
line posts (Kakar et al. 2024). SAMI uses ChatGPT for
core tasks, including identifying entities in user posts to
build its knowledge base and generating recommendation
responses. This reliance on ChatGPT can lead to incorrect
extractions or erroneous outputs. A prior user-perception
study on SAMI (Wang 2024), however, found that provid-
ing revisions to such errors and transparently communicat-
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ing the revision process can improve users’ perceptions of
the agent (Ashktorab et al. 2019).

Based on these insights, we propose equipping AI agents
with a metacognitive architecture. Metacognition is the pro-
cess of “reasoning about one’s own reasoning” (Cox 2005).
It provides a higher-level mechanism for agents to reflect
on and adapt their behavior (Cox and Raja 2007). Most
prior work on metacognition in AI has focused on build-
ing human-like cognitive models or optimizing task perfor-
mance (Ganapini et al. 2022; Schmill et al. 2008). Its po-
tential for correcting LLM-induced errors and transparently
communicating an agent’s adaptation process to users re-
mains underexplored (Wang 2024).

To address this gap, we introduce a metacognitive self-
adaptation architecture. We first categorize types of revision
needs by analyzing 32 GitHub issues observed during de-
ployments. We then implement a two-level self-adaptation
architecture that integrates knowledge-based AI (KBAI)
with LLMs. In this architecture, a cognitive layer performs
the agent’s core tasks, and a metacognitive layer uses the
Task–Method–Knowledge (TMK) model to introspect on
the cognitive layer. The metacognitive layer (1) localizes the
task requiring revision, (2) updates the knowledge base, and
(3) communicates the revision process back to the user as a
step-by-step explanation. We evaluate the architecture using
20 feedback cases drawn from real student data and demon-
strate a path to deployment in the OMSCS program.

We summarize our main contributions as follows.

• A two-level metacognitive self-adaptation architecture
that localizes and corrects LLM-induced errors in de-
ployed AI agents.

• An integration of KBAI and LLMs that combines TMK
and a knowledge graph with ChatGPT to support robust
and interpretable adaptation.

Related Work
Metacognition in AI agents has been studied as a means
of monitoring, explaining, and improving agent behavior.
Examples include self-diagnosis architectures that generate
self-expectations to monitor for violations and diagnose un-
derlying failures (Schmill et al. 2008), as well as delibera-
tive agents that arbitrate between thinking fast (System 1)
and thinking slow (System 2) (Ganapini et al. 2022).



TMK provides a structured, interpretable self-model of an
AI agent’s internal processes (Goel and Rugaber 2017; Mur-
dock and Goel 2008). TMK is more expressive than Hierar-
chical Task Networks (Erol, Hendler, and Nau 1994; Nau
et al. 2003) because it captures task and subtask expecta-
tions, supporting both prediction and explanation (Hoang,
Lee-Urban, and Muñoz Avila 2005; Lee-Urban and Muñoz-
Avila 2006). Prior work has used TMK for self-adaptation
of an agent’s design (Goel and Rugaber 2014, 2017) and,
more recently, for self-explanation in SAMI (Basappa et al.
2024).

Since the advent of LLMs such as ChatGPT, researchers
have explored several approaches to combining KBAI with
LLMs. These include infusing symbolic knowledge into
neural networks (Gaur and Sheth 2024), using LLMs to con-
struct knowledge representations used for symbolic reason-
ing (Kirk et al. 2024; Lawley and Maclellan 2024), and mod-
eling LLMs as System 1 and KBAI as System 2 (Ganapini
et al. 2022).

This paper builds on earlier work in three ways. First,
it adapts metacognition to a deployed AI agent that re-
pairs LLM-induced errors based on user feedback. Second,
it uses TMK to localize where revisions are needed within
the agent’s internal process. Third, it integrates KBAI, in-
cluding TMK and a knowledge graph, with LLMs such as
ChatGPT to revise the knowledge base and generate expla-
nations for users.

Problem Background
SAMI is an AI social agent designed to mitigate the social
challenges faced by online students by facilitating mean-
ingful social connections. It connects students by identify-
ing shared entities, such as locations and interests, inferred
from their discussion posts. SAMI was developed through
co-design workshops with students in Georgia Tech’s OM-
SCS program (Wang, Jing, and Goel 2022). It is inte-
grated into Ed Discussion (Ed) forums and has been de-
ployed in courses such as Human–Computer Interaction and
Knowledge-Based AI (Kakar et al. 2024).

Over ten semesters of deployment, students frequently
requested revisions to SAMI’s knowledge base. These re-
quests aimed to either correct agent-generated errors or to
update their own information. We categorized 32 GitHub
issues reported across deployments into types of revision
needs (Table 1). We addressed the issue types marked ∗

through software engineering. However, the remaining open
issue types concern the task of identifying and extracting en-
tities from Ed post, which is implemented using ChatGPT.
Although ChatGPT performs competitively in named-entity
recognition, it remains prone to errors in practice. Therefore,
these issues remain unresolved.

A prior empirical study of user perceptions (Wang 2024)
found that such errors undermine users’ trust in the agent
and discourage continued use. However, when the agent
revises its behavior based on user feedback and transpar-
ently communicates how it adapted, users’ perceptions of
the agent improve significantly. These observations under-
score the need for a self-adaptation architecture to support

Figure 1: Overview of the two-level metacognitive self-
adaptation architecture. Level 1 executes the agent’s primary
tasks, and Level 2 introspects on Level 1 to localize and re-
vise errors.

the agent with reliably identifying, revising, and explaining
errors.

A Metacognitive Self-Adaptation Architecture
We present a metacognitive self-adaptation architecture
comprising two layers: a cognitive layer (Level 1) and a
metacognitive layer (Level 2). At Level 1 (the cognitive
layer), the agent performs its core tasks. At Level 2 (the
metacognitive layer), it introspects on Level 1 to identify the
task requiring revision, update the knowledge base, and gen-
erate a revision message in response to user feedback (Fig-
ure 1).

Level 1 Reasoning
At Level 1, the agent generates initial social recommenda-
tions based on users’ introduction posts. The agent first clas-
sifies the type of post using LangChain1 and ChatGPT2. If
the post is an introduction, the agent uses ChatGPT to extract
entities such as hobbies, locations, and academic interests.
The agent stores the extracted information in a knowledge
base represented as a knowledge graph. It then applies a
matchmaking algorithm over the knowledge base to identify
users with shared attributes. Finally, it generates personal-
ized recommendation messages using ChatGPT (Kakar et al.
2024).

Task–Method–Knowledge Representation
To support Level 2 introspection over Level 1, we use TMK
to represent the agent’s Level 1 reasoning process. TMK
provides a structured and interpretable self-model of the
agent’s internal processes. It encodes three components:
Tasks denote the goals the agent tries to achieve, Methods
specify how these tasks are executed, and Knowledge refers
to the information the agent uses (Goel and Rugaber 2014).
TMK supports self-explanation, enabling the agent to an-
swer questions such as “What kind of data do you learn?”

1https://docs.langchain.com/
2We used OpenAI’s gpt-4o-mini model.



Task Type Definition Example Agent Behavior
Identify and
Extract Entities
from Ed post

Hallucination The agent extracts entities not
present in the post.

The agent extracts “Atlanta” as the
primary location, even though the
user did not mention it.

Omission The agent fails to extract some rel-
evant entities from the post.

The agent misses the hobby “hik-
ing” even though the user men-
tioned it.

Misinterpretation The agent correctly extracts enti-
ties but fails to infer the correct
contextual meaning.

The agent interprets “New York” as
the current primary location when
it is mentioned as a prior location.

User-Initiated Update The user requests a change to the
knowledge base due to external
changes or inaccuracies in the post.

The user requests an update of the
primary location from “Chicago”
to “Seattle” after a recent move.

Match Users Mismatch∗ The agent provides incorrect or un-
helpful matches.

The agent matches users solely by
enrollment in the same course, ap-
plying to all users in the same dis-
cussion forum.

Generate
Responses

Hallucination∗ The agent includes entities not
present in the knowledge base.

The agent describes “Knowledge-
Based AI” as a shared course, even
though it is not in the knowledge
base.

Misinterpretation∗ The agent misinterprets entities in
the knowledge base.

The agent marks shared locations
as “Unknown” when the shared
primary locations are absent from
the knowledge base.

Misattribution∗ The agent generates a correct re-
sponse, but associates it with the
wrong user.

The agent describes the user who
wrote the post rather than the
matched user.

Table 1: Categorization of observed types of revision needs in SAMI during deployments across ten semesters at Georgia
Tech’s OMSCS program. Each entry is classified according to the relevant Task, Definition, and Example Agent Behavior.
Types marked ∗ were successfully resolved through traditional software re-engineering. The remaining open issue types arise
from errors inherent to ChatGPT when used as a zero-shot learner.

and “How do you find matches for users?” (Basappa et al.
2024).

For self-adaptation, we focus on the Task model. It de-
composes the agent’s Level 1 process into interpretable units
(Table 2). This expressiveness provides the structural basis
for localizing where revisions are needed. Each Level 1 mis-
take can be traced to a specific task in the Task model. For
example, the agent may extract the wrong entity, make er-
rors in the matchmaking algorithm, or generate incorrect
responses (Table 1). We iteratively refined SAMI’s Task
model across deployments to reflect updates to its opera-
tional mechanism.

Level 2 Reasoning

At Level 2, the metacognitive layer leverages TMK to intro-
spect on Level 1. When a user’s post is classified as feed-
back requesting a revision, the agent executes Level 2 in
two stages. Task Localization identifies which task requires
revision, and Knowledge Revision updates the knowledge
base (Figure 2). Each stage generates intermediate natural-
language messages describing the agent’s actions and rea-
soning. These messages are combined into a single revision
explanation and presented to the user.

Schema Field Example
name Identify and Extract Entities from Ed post
description Extract entities (locations, names, de-

tails) from #connectme posts
inputs Sentence from Ed post
outputs Extracted entities
method ChatGPT-based Named Entity Recogni-

tion (NER)
parent NLPModule.prepare features

Table 2: Schema for one of the tasks in TMK. A task repre-
sents a functional unit of the agent and provides the structure
for localizing revision targets in Level 1.

Task Localization The agent localizes the task requiring
revision using Algorithm 1. First, it extracts task-relevant
entities, the specific information the user is requesting to
revise, from the user feedback. It then uses the FAISS li-
brary3 to compute similarity between the feedback and task
descriptions in TMK, selecting the most relevant task. Next,
the agent retrieves user data from the knowledge base. This

3https://faiss.ai/index.html



Figure 2: Data-flow diagram of SAMI’s metacognitive self-adaptation process, integrating KBAI (TMK, knowledge graph,
solution library) with LLMs (ChatGPT). The bottom flow (Level 1) shows how the agent extracts entities with ChatGPT,
builds a knowledge base, and generates social recommendations. The top flow (Level 2) shows how user feedback triggers
introspection. In Level 2, the agent identifies the task responsible for the error, applies a revision function from the solution
library, updates the knowledge base, and compiles a detailed explanation for the user. All natural-language messages generated
by the agent in the diagram, including the step-by-step explanations, are produced by ChatGPT (individual arrows for ChatGPT
calls are omitted for clarity).



Algorithm 1: Task Localization
Input: Feedback F , TMK M , knowledge base Kb, user
identifier U
Output: Task T , user data Udata, entities Ef , reasoning
R

1: Extract Ef from F .
2: Compute similarity between F and task descriptions in

M .
3: Let T ← task with highest similarity, with confidence

C.
4: if C < τ then
5: return “No relevant task”, C.
6: end if
7: Retrieve Udata from Kb[U ].
8: if Udata is empty then
9: return “No user data”.

10: end if
11: Apply reasoning with Ef and Udata to determine the

revision reason.
12: Let R← revision reason.
13: return (T, Udata, Ef , R).

Algorithm 2: Knowledge Revision
Input: Task T , user data Udata, entities Ef , reasoning R,
solution library L, knowledge base Kb

Output: Revision message M
1: Receive (T, Udata, Ef , R) from Algorithm 1.
2: Look up Fn ← L[T ].
3: if Fn is empty then
4: return “No function available”.
5: end if
6: Apply Fn(Ef , Udata,Kb) to update Kb[U ].
7: Append the revision result to R.
8: Compile R into M .
9: return M .

data includes the previously stored entities and the user’s
original post. Finally, a reasoning module implemented us-
ing LangChain and ChatGPT analyzes the feedback and re-
trieved data to classify the revision need into one of the types
in Table 1.

Knowledge Revision The agent revises its knowledge
base using Algorithm 2. Using the localized task from Task
Localization (Algorithm 1), the agent performs a dictionary
lookup in a solution library to retrieve the associated revision
function. We constructed this solution library from the types
of revision needs in Table 1 and their corresponding revi-
sion functions. The agent then applies the retrieved function
to update the user data stored in the knowledge base.

At each stage, the agent generates intermediate natural-
language messages describing its actions and reasoning us-
ing LangChain and ChatGPT. These messages are compiled
into a single step-by-step revision message and presented to
the user (Figure 2).

Illustrative Scenario
Figure 2 presents a scenario illustrating how the self-
adaptation architecture operates within SAMI. At Level 1,
the agent misinterprets a user’s mention of “Seoul” as their
current location and generates social recommendations ac-
cordingly. At Level 2, the user provides feedback indicating
the agent’s error. The agent extracts relevant entities from
the feedback, localizes the entity extraction task for revision,
and classifies the revision type as Misinterpretation. It then
updates the knowledge base by changing the user’s primary
location from “Seoul” to “Atlanta”. Finally, the agent com-
municates the revision process to the user through a step-by-
step explanation.

Evaluation
Design
To evaluate the architecture’s behavior across various re-
vision scenarios, we employed a controlled synthetic-data
validation (Nauta et al. 2023). We constructed 20 cases
based on real student data and types of revision needs ob-
served during deployment (Table 1). These cases were sys-
tematically designed to cover all four open types of revi-
sion needs (Hallucination, Omission, Misinterpretation, and
User-Initiated Update), with five cases per type.

The generation of these cases followed a three-step pro-
cess: (1) extracting real student data from the knowledge
base, (2) conditionally injecting an error based on the type
of revision need, and (3) creating user feedback. For step
(2), no error was added if the type of revision need was a
User-Initiated Update. For step (3), we generated short feed-
back messages to simulate how users typically respond in
deployments. Each case included the knowledge base and
the corresponding user feedback.

We evaluated the architecture along three dimensions: Lo-
calization, Revision, and Explanation. Downstream stages
were assessed independently, such that Revision or Expla-
nation could receive a point even if Localization failed. A
case was considered a complete success only if it achieved
all three points, reflecting end-to-end effectiveness.

• Localization (1 point): Did the agent correctly identify
the task and error type?

• Revision (1 point): Did the agent successfully revise the
knowledge base as intended?

• Explanation (1 point): Did the agent generate a correct
and complete explanation of the revision?

For Explanation, correctness was judged as “nothing but
the truth” (yes/partial/no), and completeness as “the whole
truth” (complete/incomplete) (Nauta et al. 2023). All expla-
nations were manually evaluated to ensure accurate assess-
ment.

For example, in a Hallucination case, we injected “New
York” as the user’s primary location into the knowledge
base, even though it did not appear in the post. The corre-
sponding user feedback was, “I don’t live in New York.” This
case received one point for Localization, when the agent



Type Locali-
zation

Revision Explan-
ation

Complete
Success

Hallucination 0.6 1.0 1.0 0.6
Omission 0.6 0.8 1.0 0.6
Misinterpretation 0.8 0.8 1.0 0.8
User Update 1.0 1.0 1.0 1.0
Average 0.75 0.9 1.0 0.75

Table 3: Evaluation scores across observed types of revision
needs with 20 feedback cases. Fifteen of the 20 achieved all
three evaluation points. Lower localization scores reflect the
use of minimal and informal user feedback to approximate
real deployment conditions.

correctly identified the task as Identify and Extract Enti-
ties from Ed post, and the error type as Hallucination. It re-
ceived one point for Revision when the agent removed “New
York” from its knowledge base, and one point for Explana-
tion when the agent generated a correct and complete revi-
sion message.

Results
Out of the 20 evaluation cases, the self-adaptation architec-
ture achieved complete success in 15 cases. Table 3 summa-
rizes the scores across types of revision needs.

The architecture achieved high scores in both Revision
(0.9 average) and Explanation (1.0). These results suggest
the benefits of combining KBAI and LLMs. TMK struc-
tures the agent’s internal processes into discrete, task-level
components (Goel and Rugaber 2014; Murdock and Goel
2008). In addition, the solution library and knowledge graph
provide explicit symbolic grounding for the LLMs’ out-
puts. These knowledge-based components support more in-
terpretable and controlled agent behavior (Pan et al. 2024;
Gaur and Sheth 2024). LLMs, in turn, provide the seman-
tic flexibility needed to generate natural-language reasoning
and responses based on these symbolic structures.

Localization showed a lower score (0.75), mainly because
the evaluation intentionally used brief feedback to reflect au-
thentic user behavior (e.g., “It’s ML for Trading”). This de-
sign limited the contextual cues available to the agent. In
a preliminary analysis, providing more detailed feedback
led to perfect performance across all 20 cases (e.g., “It’s
Machine Learning for Trading, not just Machine Learn-
ing”). Localization also showed suboptimal performance
when feedback included multiple entities of different types
(e.g., “I’m not in New York anymore, and I never mentioned
hiking”). Although the agent rarely makes more than one
mistake at a time, users may issue multiple updates simulta-
neously. Hence, future work will extend the architecture to
support diverse feedback and multi-entity corrections.

Path to Deployment
The self-adaptation architecture will be deployed in Spring
2026 within Georgia Tech’s OMSCS program, one of the
world’s most extensive online graduate programs. SAMI has
already been deployed at scale, with its self-explanation fea-
ture in active use (Basappa et al. 2024). Building on this

established foundation, we will integrate the self-adaptation
architecture into a Knowledge-Based AI course with over
500 students. This deployment will enable users to directly
correct and shape the agent’s knowledge base, thereby im-
proving recommendation accuracy and user satisfaction.

This in-situ application will provide an opportunity to
evaluate the architecture’s effectiveness in diagnosing and
correcting errors during real-world interactions. It will also
enable us to investigate how metacognitive adaptation in-
fluences user trust and long-term engagement. To capture
both agent reliability and user perceptions, we will employ a
mixed-methods design that extends empirical insights from
prior perception studies (Wang 2024) into the live educa-
tional context.

Conclusion

LLM-based agents inevitably make mistakes, which can un-
dermine user trust and discourage continued use. In real-
world deployments of SAMI in Georgia Tech’s OMSCS
program, we observed that the agent occasionally produces
incorrect outputs due to the inherent fallibility of underly-
ing LLMs. Furthermore, users frequently request updates as
their circumstances change (Table 1). To maintain robust-
ness and trust, the agent must adapt its knowledge to user
feedback and communicate revisions transparently.

Our two-level metacognitive architecture addresses these
challenges by enabling the agent to introspect on its own rea-
soning process (Figure 1). The architecture localizes LLM-
induced errors, updates the knowledge base, and provides
step-by-step explanations of revisions. These capabilities
stem from the complementary roles of KBAI and LLMs.
While TMK and the knowledge graph provide the symbolic
structure for reliable updates, LLMs supply the linguistic
flexibility for natural-language reasoning (Figure 2). Eval-
uation of 20 cases drawn from real student data demon-
strates the architecture’s efficacy in transforming informal
user feedback into reliable system updates (Table 3). Future
deployments will evaluate the architecture’s long-term ef-
fectiveness in maintaining agent reliability and user trust in
a live educational context.

Beyond SAMI, this work offers a generalizable archi-
tecture for developing robust and trustworthy AI agents. It
demonstrates how a metacognitive layer can support intro-
spection and how KBAI and LLMs can complement each
other to enable self-adaptation. This work opens new direc-
tions for AI agents that not only improve through user inter-
action but also foster trust by explaining how and why they
adapt.
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