
 

 

A HIGHLY CONFIGURABLE DATA ANALYTICS PIPELINE FOR 
LEARNING 

J.A. Santana, P. Thajchayapong, S. Rugaber, A. Goel 
Georgia Institute of Technology (UNITED STATES) 

Abstract 
Despite the widespread use of configurable data pipelines in enterprise settings, research on architectural 
considerations of learning analytics remains limited. We propose that an event-driven data analytics 
pipeline constitutes a Highly Configurable System (HCS) which provides an effective and adaptable 
framework for educational research. By leveraging a modular architecture with a front-loaded declarative 
configuration layer, our approach is designed to enhance extensibility, usability and efficiency, allowing 
domain researchers to conduct and replicate analyses on structured and semi-structured data without 
extensive code modifications. We demonstrate our architecture by executing the pipeline with data from 
various learning sessions conducted through the Georgia Tech Online Master of Science in Computer 
Science (OMSCS) program. Through this effort, we derive configuration templates with varying degrees 
of specificity, allowing analysis replication for comparable use cases. We also employ a set of metrics for 
evaluation based on feature modeling analysis to measure the configuration schema’s structural 
complexity and illustrate the likelihood of specific feature arrangements. Our work aims to establish a 
reusable learning analytics pipeline as part of a data architecture for AI-Augmented Learning (A4L) that 
can be reconfigured to the evolving demands of learning environments with minimal programming effort. 
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1 INTRODUCTION 
Learning analytics has become a cornerstone of modern educational systems, offering data-driven insights 
that inform both teaching and learning. By analyzing student behaviors, engagement, and performance 
metrics, it supports personalized learning pathways, targeted interventions, and improved instructional 
design [1]. However, despite its promise, the field faces several persistent challenges, especially around 
fragmented data. Educational data often resides in silos, spread across Learning Management Systems 
(LMS) and third-party educational tools limiting integration and interoperability. This fragmentation, coupled 
with data quality issues and privacy concerns, makes deriving meaningful insights difficult [2]. 

To address these issues, several educational data architectures have emerged, including the Total 
Learning Architecture (TLA), DataShop, Unizin Data Platform, and My Learning Analytics (MyLA) [3], 
[4], [5], [6]. While these systems standardize and store data, they often lack a highly configurable 
analytics engine that supports flexible and replicable workflows for research and instructional use. 
Recent studies by Donadio [7] and Sghir et al. [8] emphasize the importance of modular, interoperable 
infrastructures but also underscore their limitations in adapting to real-time, domain specific needs. 

In response, Georgia Tech’s Design Intelligence Laboratory is developing the Architecture for AI-
Augmented Learning (A4L) [9] with a focus on meso-learning patterns of learning across intermediate 
timeframes, such as a semester. Meso-learning relies on Integrated Data Analysis (IDA) [10] to 
aggregate heterogeneous data sources and reveal behavioral trends, supporting timely pedagogical 
interventions [11]. 

To enable this, we propose treating analytics pipelines as Highly Configurable Systems (HCS), which 
allow dynamic customization of analysis behavior through structured configuration inputs [12]. Unlike 
traditional Software Product Lines (SPLs) that require compile-time selection, HCSs support runtime 
variability and adaptability. Techniques from SPLs, such as feature modeling and configuration space 
analysis, can be adapted to model and constrain analytics workflows within HCS frameworks [13]. 

Building on this idea, we present a modular, event-driven analytics pipeline designed for educational 
data. It features a configuration-driven engine for specifying data sources, preprocessing actions, and 
statistical procedures. Deployed in a serverless cloud environment with containerization for 
reproducibility, the pipeline integrates seamlessly with visualization platforms. Using data from the 
Georgia Tech OMSCS program [14], we validate this system through feature variability modeling and 
use-case replication, demonstrating its flexibility and scalability. 
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The goal of this paper is to introduce a configurable architecture that automates the preprocessing, 
transformation, and analysis of educational data as part of A4L. This ensures that research workflows 
are reproducible across different instances of a domain, for example, across multiple semesters of a 
course offering AI teaching assistants. 

2 METHODOLOGY 

2.1 Data 
In developing solutions for meso-learning, the scope and complexity of the analytics problem are defined 
by the number, size, and the number of features they contain in the datasets involved. These attributes 
influence the choice of tools and techniques. To benchmark our pipeline’s capabilities, we reference 
Donadio (2024) and Sghir et al. (2024), who worked with modular infrastructures and high-dimensional 
cross-intuitional data, respectively [7], [8]. By comparison, our pipeline was designed to support a wider 
range of dataset sizes and feature complexities, requiring scalable preprocessing and transformation 
strategies. Table 1 outlines the datasets used across domains in this study. 

The KBAI-JW domain includes data from the OMSCS Knowledge-Based AI (KBAI) class, which used 
Jill Watson (JW) as a virtual teaching assistant [15] but has not yet developed into a full-scale 
conversational courseware [16]. Each instance of the KBAI-JW domain contains three core datasets: 
Demographics (e.g., race, gender and birth), LMS (e.g., final grade, student unique identifiers), and Chat 
Log (timestamped conversations between students and JW). 

The CogSci-VERA domain draws from the Cognitive Science class that employed VERA for conceptual 
model building [17], [18]. Its datasets include Demographics, User IDs, VERA Logs (student modeling 
actions), Threads (forum posts), and Surveys (Likert-scale psychometric data). We note that the 
Cognitive Science class also uses Jill Watson as a virtual teaching assistant. However, the data used 
in these experiments pertains only to the use of VERA in the Cognitive Science class. 

As shown in Table 1, all dataset collections show a gap between median and maximum sample sizes 
due to one-to-many relationships from users to logs and threads, highlighting the potential for 
aggregation. Additionally, while the maximum and median number of features shows a similarly large 
gap, the high feature count in the KBAI-JW Fall 2023 instance stands out. This discrepancy stems from 
the composite LMS dataset in this instance, which includes additional platform metadata and survey 
responses. During execution, a curated subset of features relevant to the target analyses must be 
selected from each dataset.  

While the chat logs in the KBAI-JW domain are virtually semi-structured datasets, they present a uniform 
structure across samples with finite levels of nesting in its log structure. This allows these datasets to 
be automatically loaded as tabular structures in the data warehouse, meaning they can be treated as 
structured data. The Threads dataset in the VERA collection has a recursively nested structure, where 
the top-level schema can appear inside each sample and even deeper within its nested objects, making 
it a more complex semi-structured dataset that requires specialized processing. Each collection’s 
composition largely supports structured, hypothesis-driven statistical analysis, though considerable pre-
processing is required for instances including datasets like VERA’s Threads dataset to enable inference. 

2.2 Timeline 
The pipeline was developed in three major iterations. Version 1 established the core execution flow, 
implementing transformations and statistical procedures (e.g., T-Test, Negative Binomial Regression) 
for the KBAI-JW Fall 2023 dataset. However, each new analysis required cloning the script file of another 
analysis and modifying it to fit the current use case, making the process inflexible and unscalable. 
Version 2 introduced a pipeline architecture deployed in AWS. The original script was modularized into 
an analysis component, refactored to accept dynamic input via configuration payloads, and validated by 
re-running the KBAI-JW Fall 2023 analysis through the pipeline.  

Version 3 focused on validating adaptability and production readiness through four tasks: (1) replicating 
the KBAI-JW Fall 2023 analysis on KBAI-JW Spring 2024 to test cross-instance consistency, (2) 
integrating new descriptive statistics analysis to evaluate extensibility within the same domain, and (3) 
adapting the pipeline to a new domain (CogSci-VERA) tested its cross-domain generalizability by 
verifying that the existing architecture could automatically reproduce results comparable to those 
generated by the original, domain-specific implementation. 
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The design of this infrastructure was guided by multiple factors, including the nature and scale of the 
data, the overall project scope, the selection of appropriate cloud services, and the criteria used to 
assess the system’s flexibility.  

Table 1. Composition of Dataset Collections. 

Domains 
Dataset 

Collections 
(Instances) 

Datasets 
Count 

Dataset Scale 
(Max | Median # of 

Samples) 

Dataset Complexity 
(Max | Median # of 

Features) 
Data Types 

KBAI-JW 

KBAI-JW Fall 
2023 3 3706 | 598 204 | 9 Structured 

KBAI-JW Spring 
2024 3 17970 | 611 40 | 7 Structured 

CogSci-
VERA 

CogSci-VERA 
Summer 2023 5 68682 | 160  58 | 11 Structured, 

Semi-Structured 

2.3 Architecture 
The architecture is defined as a state machine that initiates when an event occurs in the cloud environment, 
as depicted in Figure 1. In our AWS implementation, the event is defined as a time-based trigger, often 
referred to as a scheduled job, that activates the state machine at regular intervals (e.g. daily at 9AM). 

Upon being triggered, the state machine receives its input in the form of a payload. This input object 
defines the instructions and parameters needed for that run. Once received, the state machine proceeds 
to execute a sequence of code modules accordingly. 

The data fetch module makes the relevant datasets, specified in the payload, accessible to the 
downstream components in the pipeline. It achieves this by executing a query to the data warehouse 
with an UNLOAD command that compresses the data in an efficient, machine-readable format (Parquet) 
and stores it in a data store that holds these files temporarily. The data fetch module receives the status 
of the UNLOAD command as a response. It will then repeatedly ask for status updates in fixed intervals 
through polling until it gets a “Complete” status, along with file locations for each of its datasets. The 
pipeline proceeds to forward this information to the next module. 

 
Figure 1. A high-level diagram of the data analytics pipeline  

The analysis module is the core logical component of the pipeline. Its purpose is to produce analysis 
results based on the input configuration. As Figure 2 lays out, this module loads the datasets from the data 
store, cleans the data through specific pre-processing functions listed in the payload, applies 
transformations to the datasets as indicated on the payload, and executes statistical procedures for the 
desired experiment. The analysis results are compiled in a structured format and uploaded to a permanent 
data store in the cloud environment for other systems, such as for data visualization, to make use of them. 
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Figure 2. A sequence diagram of the analysis module 

The payload is a critical component of the pipeline that provides a declarative interface through which 
researchers specify analysis workflows. Structured as a JSON configuration file, this configuration 
shapes the effective behavior of the pipeline. 

In this project, the payload for the KBAI-JW Fall 2023 instance served as a baseline from which other 
payloads were derived. Toward the end of the project, a general-purpose payload template was created 
to formally capture the available attributes in a more reusable structure. The template can be populated 
to prepare an input configuration for any new analysis. Alternatively, for new instances within the same 
domain (e.g. KBAI-JW), it is more efficient to duplicate and modify the existing payload, requiring only 
moderate changes. The data model diagram in Figure 3 captures the structure and valid attributes, 
describing the full shape and semantics of this configuration. 

 
Figure 3. The payload’s data model. 
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3 ANALYSIS METHODOLOGY 

3.1 Representation 
While the pipeline’s payload is formatted as JSON for execution, our analysis focuses on its flexibility 
from the perspective of HCS, requiring a specialized representation. To this end, we adopt feature 
models, a hierarchical format that expresses the configuration’s key-value pairs as features. A feature 
refers to a distinctive characteristic of a system [19], which aptly describes the parameters and 
procedures used in our payload.  

In standard feature models, each feature is treated as a Boolean property, indicating whether it is 
selected in a given configuration. Features are grouped under parent features according to specific 
relationships, labeled as mandatory, optional, alternative (logical XOR, one feature must be selected) 
or some-out-of-many (logical OR, one or more features may be selected).  

Feature models can also express constraints, which are logical conditions that affect feature 
combinations. While feature modeling is most commonly associated with SPLs, it also provides a helpful 
framework for analyzing flexibility in HCS. 

To encode feature models, we use the Universal Variability Language (UVL), a community-driven 
standard for feature model representation in a consistent, unified format [20]. In our analysis, UVL 
captures the structure of the payload and its supported options, serving as a foundation for formal 
variability analysis. 

Figure 4 and 5 show how our earlier data model translates to a feature model representation. In this 
visualization, filled circles represent mandatory features, empty circles represent optional ones, filled 
half-circles indicate OR groups and empty half-circles indicate XOR groups. While this model is a 
simplification of what the payload can encode in raw JSON, it accurately captures the complete space 
of supported and validated configurations by the data analytics pipeline. 

 
Figure 4. The feature model mapping the payload. 

There are several terms that are important to understand feature modeling in this context. A selection 
of enabled features is called a configuration. A configuration is considered valid if all structural rules and 
constraints are satisfied. A variant feature is any feature that is not always present, which includes 
optional features, any features in OR or XOR groups, or features excluded through constraints. For 
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example, a rule like “if feature A is selected, then feature B must also be selected” affects the likelihood 
of feature A being selected. Variant features are very notable as they are directly connected to variability 
metrics, which we use to gauge our payload’s flexibility. 

Constraints can involve features at different levels of the hierarchy, aside from parent-child or sibling 
relationships. These are called cross-tree constraints. When constraints become overly restrictive, they 
can produce undesirable states for our features. Some outcomes include introducing dead features, 
which can never be selected in any valid configuration, or false-optional features, which are marked as 
optional in the model but are always included due to constraints, effectively behaving like mandatory 
features. 

 
Figure 5. Extension sections of the feature model mapping the payload shown in Figure 4. 

Since constraints can significantly reduce the space of valid configurations in elaborate ways, analyzing 
feature models becomes non-trivial. This complexity is why specialized tools are necessary for 
extracting insights from the configuration space. 

3.2 Tooling 
Our analysis is executed in Python 3.12 using FlamaPy for Feature Modeling Analysis. FlamaPy is an 
open-source Python framework designed to facilitate the modeling and automated analysis of SPLs and 
HCSs [21]. It leverages SAT and BDD under the hood, two frameworks used to analyze complex 
Boolean decision problems [22]. While similar tools use XML or other more obscure languages for 
feature modeling, FlamaPy primarily uses UVL as its representation of choice. FlamaPy enables access 
to a variety of functions to explore commonality, variability and combinatorics in a chosen feature model. 
These functions are discussed in the next section and used to produce the analysis results. FlamaPy is 
particularly valuable when working with configurable systems, as it enables validation of configuration 
models, quantification of flexibility, and systematic evaluation of design trade-offs. 
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3.3 Feature Modeling Metrics 
Feature Modeling enables the analysis of both the structural composition and probabilistic behavior of 
a configuration space. In addition to basic statistics such as the number of features and the number of 
valid configurations, it allows us to quantify configurability in formal terms through variability. Variability 
is defined as the ratio of valid configurations to the number of possible configurations. This definition 
yields two related but distinct metrics; Total Variability (V) measures the fraction of valid configurations 
relative to the entire theoretical configuration space, assuming no constraints. On the other hand, Partial 
Variability (Vp) restricts possible configurations to only variant features, providing a more precise 
estimate of flexibility by isolating the effect of constraints and disregarding fixed features [23].  Because 
it focuses on the features that contribute to actual configurability, partial variability is generally 
considered a stronger indicator of a system’s flexibility. 

Another key metric is homogeneity (H), which captures how uniformly features appear across all valid 
configurations [23]. A value of H ≈ 1 suggests that most features are fixed (mandatory or dead), 
indicating a rigid, low-variability model. Conversely, a value at H ≈ 0.5 means every feature is selected 
in about half of the configurations, implying all features are variant and the model exhibits maximum 
variability. Collectively, these metrics provide a multifaceted understanding of a feature model’s structure 
and variation potential, offering insights into how constraints shape the configuration space. 

3.4 Benchmarks 
To validate our claim that the pipeline qualifies as an HCS, and thus, a flexible architecture suited to the 
demands of educational data analytics, we conducted a benchmark comparison across three broad 
metric categories, evaluated over four models. The results are presented in Table 2. The Structure & 
Scale category includes counts of total and variant features and total versus valid configurations. The 
Variability section includes both Total and Partial Variability, along with homogeneity. The Correctness 
category evaluates the model integrity, capturing the number of dead features, false optional features, 
and structural conflicts, all of which ideally approach zero. 

We computed these metrics using FlamaPy, focusing on the pipeline’s payload as the central 
determinant of flexibility in our system, compared against three other reference models. From the 
FlamaPy web tool, we selected the Xiaomi Smartband 8 model, which captures the configuration space 
of a smartwatch product line [24]. The remaining two models, Berkeley DB and axTLS, were sourced 
from the UVL repository. Berkeley DB represents the configuration space for Oracle’s open-source 
embedded database library, while axTLS refers to the lightweight transport layer security (TLS) tailored 
for embedded and resource-environments [25], [26]. Both are recognized in the literature as highly 
configurable systems, making them suitable models to be used for comparison in this benchmark.  

4 RESULTS 
Our analysis results in Table 2 show that the A4L Data Analytics Pipeline (DAP) strikes a healthy balance 
between complexity and usability. With 66 configurable features (49 which are variant features), it offers a 
significant number of options without excessive intricacy. While our system supports fewer possible 
configurations than the more mature technical systems, it outranks the other models in partial variability, 
meaning the variant (optional) features that researchers might want to tune are more adaptable compared 
to its counterparts.  
The homogeneity score of 0.608 indicates our system achieves a healthy equilibrium between flexibility 
and consistency. On a scale where 0.5 is complete unrestricted flexibility and 1 is complete rigidity, this 
score indicates that while features are very permissible, there is enough structure to keep analyses 
coherent. 
The payload’s feature model performs well in most correctness checks. It contains no dead features, 
meaning every feature participates in at least one valid configuration. There is only one false-optional 
feature, CommonKey, which is flagged as optional, yet it’s consistently included in all actual configurations 
for the purposes of IDA. Compared to other models such as axTLS, with 11 dead feature and two false-
optional features, the DAP payload exhibits a healthy configuration profile. 
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Table 2. Feature Modelling Results. 

Category Metric A4L DAP 
Payload 

Xiaomi 
SmartBand 8 Berkeley DB axTLS 

Structure & 
Scale 

Total Features 66 37 76 96 

Variant Features 49 25 75 61 

Estimated Total Configurations 7.413e9 × 109 32256 1.150 × 1014 5.655 × 1014 

Valid Configurations 1.237 × 109 21 4.080 × 109 8.262 × 1011 

Variability Total Variability 1.677 × 10-11 1.528 × 10-10 5.400 × 10-14 1.043 × 10-17 

Partial Variability 2.198 × 10-6 6.258 × 10-7 1.080 × 10-13 3.583 × 10-7 

Homogeneity 0.608 0.628 0.724 0.561 

Correctness Dead Features 0 0 0 11 

False Optional Features 1 0 2 2 

Conflicts/Errors 0 0 0 0 

Figure 6 displays the distribution formed by the number of variant features plotted against the count of 
valid configurations for that many variants. The curve is approximately normal, peaking at 37 features 
per configuration. In absolute terms, the most common region, roughly 6 to 7 million configurations, 
represents about 1% of the entire valid configuration space. This indicates that researchers and other 
practitioners would be likely to gravitate to a relatively centralized band of features. This behavior 
matches the model’s homogeneity score, meaning roughly 60% of variant features appear in almost 
every configuration, while the remaining 40% appear occasionally in specialized use cases. Together, 
the distribution and the previous metrics reveal a configuration landscape that promotes a shared 
baseline while leaving enough room to accommodate domain-specific extensions. 

The model remains scalable while avoiding the brittleness that accompanies larger feature models. Its 
moderate complexity and sound structure provide an optimal balance of generality and specificity for 
educational data analytics workflows, making it a strong foundation for future studies and evolving 
educational technology applications. 

 
Figure 6. The payload’s configuration-size distribution. 
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5 CONCLUSIONS 
By analyzing the pipeline as a Highly Configurable System (HCS), we demonstrated how a modular, 
event-driven architecture with front-loaded declarative configuration can enhance extensibility, flexibility 
and efficiency in educational data analysis workflows. 

Our feature modeling analysis revealed that the data analytics pipeline achieves a strong balance 
between flexibility and structural coherence. With 66 total features (49 variant) and approximately 1.24 
× 10⁹ valid configurations, the pipeline maintains significant variability while avoiding the excessive 
complexity found in other mature, highly configurable systems. The comparatively high partial variability 
score (2.20 × 10⁻⁶) further validates our approach, indicating that the system successfully focuses 
variability on the optional features that enable customization for specific analytical needs, where they 
are most valuable. 

While our implementation demonstrates the value of a configurable analytics pipeline as part of a data 
Architecture for AI-Augmented Learning (A4L), several opportunities for improvement remain. In 
particular, the architecture could benefit from further decoupling of transformation and statistical analysis 
components, as exemplified by the VERA adaptation in Task 3. Exploring distributed computing patterns 
may support this goal but would require careful consideration of how added complexity affects the 
payload configuration and the constraint space of the feature model. Ensuring the system retains a 
balance of flexibility and stability will be necessary. 

A key limitation of our current modeling approach is the lack of cardinality-based feature modeling 
analysis. Although traditional feature models sufficed for our project scope, cardinality representations 
will be increasingly important as the pipeline scales. Continued development in this area will be crucial 
for more robust HCS evaluation. Further work should also include direct comparison to other data 
pipelines or ETL systems to better contextualize strengths and limitations of our architecture. 
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