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Abstract

Validation as a field of study is important to the development
of educational Interactive Learning Environments (ILEs), a
type of software that allows dynamic and active engagement
with educational material. However, as ILEs become more
complex, borrowing from fields such as agent-based model-
ing, simulation, and “serious games”, the educational domain
has lagged in adopting the rigorous validation standards typ-
ical in these fields. Traditional methods, such as face valida-
tion by subject matter experts, are often criticized for their
subjectivity and lack of thoroughness for validating pedagog-
ical content or underlying theory. To address this, we present
a machine learning-based methodology to validate the con-
tent and educational theory of ILEs in the context of complex
systems. By demonstrating automated labeling of time-series
data from VERA, an ecology focused agent-based modeling
and simulation tool, we report a success rate of 92.79% on
a manually collected sample. This promising result not only
validates VERA but also suggests the broader applicability of
our approach to other time series-based ILEs.

Introduction

Interactive Learning Environments (ILEs) are software en-
able educational tools that enable users to experience hand-
on learning of complex subject matter. Further, validation
is an important and well studied topic across the education
domain. Educational applications and ILEs are often eval-
uated on a series of axis including learner perspective, sys-
tem quality, ethical considerations, motivation, accessibility,
etc (Lee and Kim 2015; Ozkan and Koseler 2009). Typi-
cally, in reference to how the educational content is pre-
sented, validation of ILEs focuses on the correctness of the
vocabulary used or the procedural rules demonstrated in the
ILE. (Ozkan and Koseler 2009; Kim and Lee 2008). How-
ever, this may become insufficient or intractable for emerg-
ing classes of ILEs.

The introduction of computers into classrooms has al-
lowed for more complex representations of educational con-
tent to emerge, such as agent-based modeling, simulation, or
“serious games ~ (Cook and Hatala 2016). Typically, a do-
main expert systematically assesses whether these tools ac-
curately represent the educational content. This type of val-
idation is referred to as face validation (Arifin and Madey
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2015; Hermann 1967). However, with the increasing com-
plexity of ILEs, face validation has proven insufficient, as it
is often impractical to verify the content representation man-
ually (Qiao et al. 2018; Niazi, Hussain, and Kolberg 2017).
Often times these ILEs are so complex that it is infeasible
for a human to verify that the ILE properly represents the
content it is trying to teach (Cock et al. 2022). Put simply,
face validation is slow and subjective.

Liu et al. describe “theory validity” as the alignment be-
tween the way educational content is presented within a
learning tool and the actual information being taught (Liu
et al. 2011). In simpler terms, it measures how accurately
the educational tools represent the underlying concepts they
aim to teach. Ensuring this type of validity is particularly
challenging in ILEs with complex content representations.
Developing an automated method to check for theory valid-
ity would allow educators to validate these complex peda-
gogical tools in a more robust manner.

This brings us to our research questions:

1. Can we develop a method that can demonstrate the-
ory validity in an automated fashion?

2. Can this method avoid the drawbacks of face valida-
tion (being slow and subjective)?

To address this, we propose a novel methodology for
demonstrating theory validity in an ecological modeling and
simulation system called VERA. The Virtual Experimental
Research Assistant or “VERA” employs agent-based mod-
eling and simulation to help users create models of ecosys-
tems and analyze population dynamics over time (An et al.
2018, 2020). These agent-based models are expressed in the
Component-Mechanism-Phenomenon (CMP) language, an
extension of Structure-Behavior-Function models (Joyner,
Goel, and Papin 2014; Goel and Joyner 2015; Goel, Ru-
gaber, and Vattam 2009).

The models represent the behavior of a system by defin-
ing its components and relations (An et al. 2020, 2018). This
format of modeling allows users to define components such
as biotics, abiotics, and habitats, as well as their relation-
ships (An et al. 2018). Each component type has a set of
up to 13 adjustable parameters that can be tailored to partic-
ular species, such as number of offspring, age of maturity,
and age of death. Running the simulation allows the user
to see a time-series graph representation of the population



size over time. For a domain expert to face validate VERA,
they would need to check that any model a user might cre-
ate aligns with typical time series population graphs found in
ecology. In practice, this requires manually iterating through
an innumerable number of model and parameter changes.

Our methodology, further outlined and justified in the
Methodology Section, consists of tuning two machine learn-
ing models typically used in time-series analysis such that
they have a high success when compared to a face vali-
dated dataset we collected from learners using VERA. We
first develop a Hierarchical Clustering method in order to
demonstrate that underlying patterns in time-series creation
by VERA match Face Validated labeling. Hierarchical Clus-
tering, by nature of being a bottom up method, ensures that
any grouping of data is not influenced by human subjectiv-
ity. Next, we develop a curve fitting method to determine if
we can automate the slow process of expert labeling. Agree-
ment between these methods function as an answer to our
second research question. We then apply these two methods
to a test dataset in order to demonstrate that the method can
generalize to all datasets created by VERA. This generaliz-
ability is proof of our first research question.

Our methodology revealed a 92.79% label agreement be-
tween curve fitting and hierarchical clustering on the test
dataset. For the rest of this paper, unless otherwise clearly
stated, we will refer to this agreement between methods
(Curve Fitting and Clustering) as accuracy.

Background

This research aims to develop a method for determining
the theory validity of open-domain pedagogical modeling,
simulation, and “serious games”’ using content overlap met-
rics (Jia et al. 2022). According to Cook and Hatala (Cook
and Hatala 2016), despite the increasingly popularity of
simulation-based tools, there is a notable lack of any valida-
tion studies supporting their use within education. Research
into the pedagogical validity of these tools is still in its in-
fancy, with the majority of discussions on validation being
limited to the medical field (Bogomolova et al. 2021; Mc-
Grath et al. 2018; Kong and Wang 2021). Although there has
been research into using agent-based modeling and simula-
tion tools for education, none of these studies discuss valid-
ity (Janssen, Lee, and Waring 2014; Day-Black 2015; De la
Torre et al. 2021). Conversely, although there is substantial
research on the empirical validity of agent-based modeling
for scientific research, none has investigated the educational
value of these tools (Moon and Bae 2015; Gu and Novak
2009).

For the majority of these tools, especially agent-based
modeling and simulation tools like VERA, the most com-
mon method of validation, and typically the only method
used, is Face Validation (Arifin and Madey 2015; Niazi,
Hussain, and Kolberg 2017). In this method, a domain ex-
pert ensures that the tool reasonably represents the concepts
they aim to demonstrate. This is a highly subjective process
(Jia et al. 2022; Niazi, Hussain, and Kolberg 2017).

As shown by Cook (Cook et al. 2014) in an earlier paper
concerning what counts as validity evidence, the two most
popular forms of content evidence were “group consensus

or expert review”, and creating an instrument “based on (or
modified from) a previously validated instrument.” VERA
has already undergone “expert review”, by domain experts
inside and outside our institution. In other words, VERA has
been Face Validated. This paper presents a method by which
ILEs can be validated against the “previous instrument” of
mathematical models. Mathematical models are widely used
in education as the theoretical foundation of many disci-
plines, for example in Economics (Windrum, Fagiolo, and
Moneta 2007; Tesfatsion 2006), Ecology, and Epidemiol-
ogy (Gu and Novak 2009). They serve as a ground truth
which we validate against. However, when engaging in sys-
tems thinking, mathematical models become exponentially
more complex and challenging to understand (Pielou 1981),
hence the popularity of ILEs used to illustrate them.

Inspired by studies on the empirical validity of agent-
based models, our research uses Model Docking (Arifin and
Madey 2015), the process of validating against another in-
strument. This shows the content overlap between VERA
and mathematical ecological models, thereby demonstrating
VERA’s “theory validity” (Liu et al. 2011). Similar com-
parisons have been used in Epidemiology (Gu and Novak
2009), and City Commerce Models (Moon and Bae 2015),
however, these are attempts at proving the empirical validity
of the agent based models instead of showing the education
value.

Methodology

Our methodology employs two machine learning tech-
niques: Curve Fitting and Hierarchical Clustering. Curve fit-
ting was chosen as a well-established top-down approach to
classifying time series data (Eberhardt, Breiwick, and De-
master 2008). This approach involves selecting a set of eco-
logical mathematical models (curves) and assessing their fit
with VERA’s time series output. Curve Fitting is often more
adaptable than other empirical methods and is effective at
suppressing noise (Zeng et al. 2020). Additionally, Curve
Fitting has been used extensively for extracting vegetation
phenological metrics with different curve types including
Logistic (Cao et al. 2015) and Gaussian (Jonsson and Ek-
lundh 2002) curves. By using this approach, we can label
each curve and compare that to the results found through the
clustering method.

Conversely, clustering is a bottom-up method that groups
similar data samples within unlabeled data (Murtagh and
Contreras 2017; Kassambara 2017; Luczak 2016). We fo-
cus on agglomerative Hierarchical Clustering, which begins
with each data sample as its own cluster and iteratively
merges the closest pairs of clusters until they form one clus-
ter (Omran, Engelbrecht, and Salman 2007). Although this
approach has previously been applied to a variety of time
series datasets, which served as inspiration for our use, we
aim to apply it within the context of theory validity at the
intersection of ecology and education.

Both curve fitting and hierarchical clustering methods are
applied to the time series output generated by VERA to
cross-validate the results. The curve fitting approach assigns
a label to each time-series based on predefined mathemati-
cal models. This can obscure the distinction between noise



and significant features of the data. In contrast, the clustering
approach treats all portions of the data equally, preserving
patterns that may be overlooked by curve fitting. By identi-
fying general cluster boundaries that align with the curve fit-
ting methods, while acknowledging potential outliers within
clusters, we can affirm that VERA’s simulation output rein-
forces the population curves taught in the classroom.

Ecological Curves

Prior research on self-directed learning sought to better un-
derstand the types of models created by people outside class-
room settings, where the models created are not influenced
by any assignment (An et al. 2022). To understand model
behaviors, we aimed to align the simulation outputs with
expected ecological relationships. For example, oscillation
could represent a predator-prey relationship where the pop-
ulations cycle with each other (An et al. 2020).

While these relationships are well-defined ecologically, it
was not clear how to align them with the simulation outputs.
This serves as the initial motivation for the development of
this methodology. While in practical terms, this methodol-
ogy allows us to classify the simulation outputs of VERA
according to mathematical models founds in ecology, in the-
oretical terms, it offers another avenue of demonstrating the-
ory validity for the system as a whole.

In this study, we classify simulation outputs using seven
distinct curve categories derived from ecological mathemat-
ical modeling. These categories include Constant (Con), Dy-
ing Off (Die), Oscillation (Osc), Exponential Growth (Exp),
Capped Growth (Cap), and Gaussian (Gau). Additionally,
we introduced an ‘outlier’ (Out) category for population
graphs that do not align with any of the aforementioned
curves. These categories serve as the basis for applying ma-
chine learning methods to classify the simulation data.

The curve fitting approach was then developed with these
meaningful curves in mind, however, many different other
types of curves were tested but were found to be unsuccess-
ful, either not being chosen by the curve fitting or only being
chosen incorrectly. In Figure 1, we can see all the different
curve types, not including constant which would just be a
straight line across the top. While this classification list is
non-exhaustive of all the curves in ecological modeling, we
will see that it is comprehensive enough for testing purposes.
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Figure 1: From top left to bottom right (1) dying off, (2)
capped growth, (3) exponential, (4) oscillation, (5) gaussian,
(6) outlier

Datasets and Data Processing

As part of the manual process to collect our two datasets
(training and test data sets), we first cloned each model and
then ran simulations to re-create the simulated data. This
was necessary because simulation output is currently not
stored in the VERA database. The time series generated by
the simulation was then downloaded as CSV files.

The training dataset was comprised of self-directed learn-
ers, who are learners with no known ties to any institutional
partnerships, from January 1st of 2019 to December 31st of
2021. It was made up of 197 VERA projects, which com-
prised 724 species (curves). For every curve in the train-
ing dataset, we used manual expert labeling accounting for
around 20 hours worth of effort. We then ran the two meth-
ods on this dataset and used it to set the hyperparameters for
the system, such that both curve fitting and clustering both
individually returned the highest accuracy when compared
to the expert labels. For the clustering method, we deter-
mined that the optimal distance measure was 30 and the out-
lier classification threshold was 55%, as detailed later in the
paper. For the curve fitting method, we set the error threshold
hyperparameter to 5.7, based on the residual sum of squares.
Any curve with an error above this threshold was classified
as an outlier.

The test dataset is comprised of a random sample of all
models developed by learners using the VERA application
from January Ist of 2022 to September 1, 2023. In total,
the sample consisted of 263 VERA projects and 971 total
species (read curves). Further description of the character of
the datasets in given in the Results Section.

To account for variations in the population scales in simu-
lation, ranging from 0-25,000 units, we normalized the data
to range of zero to one based on the maximum population
value in each graph. We standardized all data lengths to
400 values (representing 400 months in simulation) to en-
sure uniformity across samples. This is the default simula-
tion length in VERA, though users have the flexibility to
lengthen or shorten the simulation length. Graphs with fewer
than 400 data points were excluded from the sample, as they
do not provide sufficient space for complex data patterns to
fully develop.

Ethics Review

When users create a VERA account, whether they are stu-
dents enrolled in academic courses or public users, they
are required to provide informed consent that their data,
while anonymized, will be used for research and analysis by
VERA developers. Since VERA is accessible to the public,
learner models stored in its database include contributions
from both academic and public users.

We have access to demographic information such as age,
gender, and race for student users, which can be acquired
through course registers. However, VERA’s login infrastruc-
ture does not collect or store this demographic data for pub-
lic users. For this study, we manually collected a random
sample of learner models from the VERA database, span-
ning the years 2019-2023, in a fully anonymized fashion.
This sample was used to analyze the educational impact and



theoretical validity of VERA, ensuring that the data remains
anonymized and compliant with our standing Institutional
Review Board (IRB) protocol. This protocol governs all sys-
tem log-level actions within VERA, permitting the analysis
of user data while ensuring that no Personally Identifiable
Information (PII) from external sources is used.

Curve Fitting

Curve fitting was performed by inputting the expected fun-
damental curves, their corresponding mathematical equa-
tions, and the time series data into SciPy’s curve_fit function.
The curve_fit function returned parameters for the mathe-
matical equation that minimized the residual sum of squares,
ensuring the best fit to the given time series. Each time se-
ries was then tested against all curve types to identify the one
that minimized error. Figure 2 shows a plot where SciPy at-
tempts to fit different curves to the data function. Here Gaus-
sian would be chosen as the label for the data.

Given the variability in population graph scales and the
multidimensionality of the parameter space, four methods
were taken to ensure successful curve matching: (1) normal-
izing the time series, (2) dividing the parameter space and
running search for each subsection, (3) providing the curve
fitting function with a set of prototypical parameters, and (4)
using simple rule-based methods for the simplest curves.

The first three methods constrained the search space, in-
creasing the likelihood of identifying the correct curve label.
The final method was applied to each curve as a check to
determine if it could be identified before using more data in-
tensive methods. In practice, this meant that the constant and
exponential dying curves were evaluated using rules-based
methods. These specific curves are simple to evaluate using
rules because they are the most likely to be represented as
a constant series of values within the time-series. For ex-
ample, dying out would indicate that the population goes to
and remains at zero. Similarly, for constant, the population
does not change. Identifying these curves with simple rules
instead of machine learning methods allows us to cut down
on computation time.

To detect outliers, error was evaluated by measuring the
residual sum of square between the fitted curve and the given
population graph. The error threshold hyperparameter was
manually tuned on the training set in order return best re-
sults when compared to expert labels, which gave a value of
5.7. Any curve above that threshold was then classified as an
outlier.

Hierarchical Clustering

To cluster the data, we used Agglomerative Hierarchi-
cal Clustering with complete linkage, where clusters were
merged based on the farthest distance between points in the
different clusters. We removed constant curves types from
the training dataset to focus the clustering on curves that
have varying features, which are more likely to reveal mean-
ingful patterns and groupings in the data. This is done by
creating a set of all values from each curve in Python. If the
set length was one, the curve was identified as constant and
removed from clustering.
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Figure 2: Visualization of Curve Fitting. Solid line is data.
Dashed lines are attempts to fit mathematical models.

A dendrogram is created using SciPy and then it is
flattened using the SciPy fcluster function. This sepa-
rates the dendorgram into clusters based on euclidean dis-
tance. Within each cluster a prototypical representative, the
mediod, was found by determining which curve has the least
distance between itself and all of the other members. For
cluster classification, clusters were categorized based on the
label attached to the representative curve. This label was at
first determined using the expert labeling during the tuning
of the methods during the training set, and then by the curve
fitting for the evaluation of the training and test sets. The la-
bel for each member of the cluster is then also evaluated in
order to see if it matched the representatives’ label in more
than 55% of cases. If the 55% threshold was not met, the
entire cluster was classified as outlier. This is to avoid cases
where the representative does not match the labels of the ma-
jority of curves in the cluster. We refer to this last step as the
’voting step’.

In summation, hierarchical cluster consists of three steps,
(1) clustering based on a set distance function, (2) labeling
of the cluster based on the mediod curve, and (3) a voting
step where greater than 55% of curve labels in a cluster must
match the representative label or else the cluster is classified
as an outlier.

Results

The results section will consist of the following. First, we
will give a breakdown of the number of samples per curve
category of the datasets used. Next, we will then compare
the training data success rates of each method—curve fit-
ting and clustering—against the expert-labeled data. Last,
we will demonstrate the agreement between the methods
for both the training set and the test set, illustrating that the
method (1) finds agreement between curve fittings and clus-
tering and (2) generalizes to new datasets. As we will see,
the agreement between the methods confirms our second re-
search question, and the generalization to new datasets con-
firms our first research question.



Description of the datasets

Table 1 contains a description of the curves found in the
datasets separated by curve type, as labeled by the curve fit-
ting methodology. The training dataset was made up of self-
directed learners who were working with VERA for their
unknown own goals. For this reason, we see a smaller dis-
tribution of the curve types that are more complex to create
within VERA, exponential, oscillation, and Gaussian. This
is likely because these learners lacked any instruction on
how to use VERA. Conversely, we see a larger percentage of
these types of curves in our test dataset. This is because our
test dataset was a random sample of all users on the VERA
platform, including students within higher education institu-
tions. These students likely got instruction of some sort and
for that reason were more capable of creating more complex
curves.

Curve Categories
Dataset Exp | Cap | Die | Osc | Gau | Con | Out Total

Training Set 6 106 | 291 14 21 155 | 131 724
Test Set 29 75 | 420 | 69 | 169 | 162 | 47 971

Table 1: Distribution of curves across seven different cate-
gories for Training Set and Test Set. The curve categories
are Exponential Growth (Exp), etc.

Training compared to expert labels

As part of developing both of these methods, we tuned the
hyperparameters such that both methods returned the highest
success rate as compared to expert labels. This returned a
success rate of around 91% for both methods as shown in
Table 2. Given the size of the manually collected sample,
and the similar rates of accuracy, we took this as indication
that comparison between the methods would be successful.

Compared to
Expert Labels
Curve Fitting
Hierarchical Clustering

Success Rate

91.57%
91.44%

Table 2: Accuracy of two machine learning methods com-
pared to expert labels.

Findings from automated labeling

Table 3 describes the success rate of both methods before
and after the voting step. The difference between the success
rate after voting indicates the proportion of clusters where
more than 55% of the curve labels did not match the repre-
sentative label. Most often, this is a function of cluster size.
For example, a cluster of size two where one curve is capped
growth and the other is outlier would then be reclassified as
outlier, lowering the success percentage based on the mis-
classification of the capped growth curve.

The decrease in success rate after the voting step for the
test set was smaller than the decrease seen for the train-
ing set. The accuracy difference for training set was 5.54%,
while the difference for the test set was 1.46% This final rate

Success Rate Primary After Voting
% Classification Step
Training Set 92.69 87.15
Test Set 94.25 92.79

Table 3: Comparing the success rates of both machine learn-
ing methods before and after voting step.

of the test set, 92.79% was higher than either of the success
rates (see Table 2) for the methodologies individually when
compared to the expert labeling.

Discussion

Our research questions were as follows: (1) Can we develop
a method that can demonstrate theory validity in an auto-
mated fashion? and (2) Can this method avoid the drawbacks
of face validation (being slow and subjective)?

When individually compared to expert labeling, we see
the methods reach a success rate of around 91%. The similar
rates of success between the method suggest that both meth-
ods might be identifying similar underlying patterns in the
simulation outputs of VERA, that were not visible to the do-
main expert. On the test set, we see a success rate of 92.69%
- a rate higher than that found in the comparison to expert
labeling - which proves this fact. The higher rate of success
demonstrates (1) curve fitting is faster than expert labeling
without any decrease in accuracy, and (2) the combination
of the two methods ensures a level of objectivity that even
an expert is not capable of achieving. This is confirmation of
our second research question, as our methodology performs
similarly to face validation. The two methods generalizabil-
ity to the test dataset, demonstrates that this is a reliable and
automated method to demonstrate theory validity, confirm-
ing our first research question.

In this research, we developed a methodology that could
theory validate (Liu et al. 2011) certain classes of complex
ILEs where face validation proves to be insufficient due
to its slow and subjective nature (Niazi, Hussain, and Kol-
berg 2017; Jia et al. 2022). Additionally, this research ex-
ists to fill the gap in validation of agent-based modeling and
simulation literature in an educational context as described
by Cook et al. (Cook and Hatala 2016). More specifically,
taking inspiration from model docking, (Arifin and Madey
2015), we demonstrate that the agent-based ecological mod-
eling done in VERA has content overlap (Jia et al. 2022)
with the mathematical models foundational to the study of
ecology. To the best knowledge of the authors, this research
is the first of its kind to bridge the gap between pedagogical
agent-based modeling (Janssen, Lee, and Waring 2014) and
validation methods from empirically focused agent-based
modeling (Gu and Novak 2009).

Size of Dataset

We believe that our results would improve with a larger
dataset. The method’s accuracy improved from the training
set to the test set, surpassing the accuracy of expert labeling.
The test set is around 25% larger than the training set. The



increase in success rate over expert labeling from the train-
ing set to the test set supports this observation. This is further
illustrated by the training set’s difficulty in clustering expo-
nential curves, whereas the test set contained five smaller
clusters. This suggests that the training set lacked sufficient
curves, both in total and by type, to form meaningful clus-
ters for every curve type, as evidenced by the distribution of
curves between the training and test sets (see Table 1). De-
spite this, the methodology remained robust and performed
well on the test set.

Limitations

The main thrust of this paper is to focus on developing an
automated methodology to demonstrate a content overlap,
and therefore theory validity, between VERA’s simulation
outputs and mathematical models in ecology.

This research only considered assessing the utility of the
ML methods based on a single set of expert labels. Inter-
expert agreement was not considered and could be a pos-
sible avenue for improvement. This would allow us to not
only evaluate whether curve fitting rates as highly as expert
labeling, but also would allow us to quantify the degree of
subjectivity in the labeling task for VERA specifically.

Lastly, this research is only focused on ILEs with complex
representations founded in mathematical models. It does not
apply to ILEs with simple relationships to mathematical
models with only one or two parameters (Moore et al. 2014),
coding, writing, creative acts, etc.

Future work

The clearest direction for future work is the application of
this research to a larger dataset. This dataset would likely be
the entirety of the VERA database, made of up over 7000
models. Additionally, a sensitivity analysis of VERA would
allow for this analysis to be done across all possible models
that can be created in VERA. The sensitivity analysis offers
a guarantee of the value of the methodology that a sample
of, or even the entire population of, user models does not.

More analysis is needed to further determine the nature
of the outlier curves, but as described above there is some
indication that a larger dataset would decrease the num-
ber of clusters classified as outlier during the voting step.
This would happen through two processes. A larger dataset
should converge on specific clusters for outlier curves of
similar types, while simultaneously classifying less clusters
as outlier due to a lack of confluence in cluster labels.

Additionally, patterns in these curves may reveal either
more complex known ecological patterns currently unknown
to VERA developers or it may reveal something correspond-
ing to the software of VERA itself. Further research into
outlier patterns is the best way to differentiate between these
two possible causes, and both lead to a greater understanding
of the VERA system as a whole.

Conclusion

This work investigates two research questions: (1) Can we
develop a method that can demonstrate theory validity in an

automated fashion? (2) Can we build this method to circum-
vent the slow and subjective nature of face validation?

To answer these research question, we developed a
methodology that enables automatic validation of theory va-
lidity for complex interactive learning environments (ILEs)
based on mathematical models, which would be impractical
to exhaustively validate manually. The high rate of agree-
ment between clustering and curve fitting, especially when
compared to the success rate of the individual methods to ex-
pert labeling, gives us confirmation of our second research
question. That is, our two methods, when paired together,
help circumvent the slow and subjective nature of face val-
idation while still labeling time-series with high accuracy.
The overarching methodology’s generalizability and success
rate of 92.79% on a test set is confirmation of our first re-
search question. This methodology can serve as a useful
tool to validate complex ILEs, that are based on mathemat-
ical models, in an automated fashion. Further, this method-
ology validates VERA’s conceptual models and simulation,
and justifies its continued use in higher education.
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