
Can an AI Partner Empower Learners to Ask Critical Qestions? 
Pratyusha Maiti∗ Ashok K. Goel 

pratyusha.maiti@gmail.com ashok.goel@cc.gatech.edu 
Georgia Institute of Technology Georgia Institute of Technology 

Atlanta, Georgia, USA Atlanta, Georgia, USA 

Abstract 
Jill Watson is an LLM-powered conversational AI partner integrated 
with instructor-provided courseware, ofering learners contextually 
relevant and immediately applicable support. This study examines 
learner-generated questions as part of organic interactions with 
Jill embedded within classroom Learning Management System and 
investigates whether Jill empowers learners to ask higher-order 
questions. Leveraging Bloom’s Taxonomy to assess question com-
plexity, we collected over 5500 student questions from classroom 
deployments across three academic semesters and two educational 
settings. Student questions were classifed using a fne-tuned BERT 
model and regression models were used to analyze the trends of 
complexity of the questions over time. Our results reveal a sig-
nifcant proportion of higher-order questions being asked in our 
classrooms, exceeding typical educational distributions. We also 
found a statistically signifcant increase in higher-order questioning 
with sustained interaction with Jill. These fndings demonstrate that 
Jill empowers learners to engage in critical questioning, thereby 
enhancing their educational experience by promoting depth, rel-
evance, and application of course concepts. Further research is 
recommended with larger and more diverse samples to generalize 
these fndings. 

CCS Concepts 
• Applied computing → Interactive learning environments; • 
Human-centered computing → Empirical studies in HCI . 
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1 Introduction 
Conversational agents powered by Large Language Models (LLMs) 
are increasingly being integrated into educational settings to sup-
port student learning, shifting the focus toward more interactive 
and personalized experiences. An extensive part of current research 
focuses on analyzing the quality and efectiveness of LLM-generated 
responses, examining how well these tools provide accurate, con-
textually relevant, and pedagogically sound answers to specifc 
learning questions and objectives [30]. However, there is a paucity 
of studies that examine the actual nature of the questions that stu-
dents pose to these tools in a classroom setting. Studies have shown 
that student-initiated question-asking is a critical part of classroom 
learning, as it promotes active engagement, cognitive development, 
and deeper understanding of material through higher-order think-
ing skills. In fact, classrooms that promote higher-order thinking 
enable students to develop transferable skills, which are necessary 
for success in complex, real-world situations [42]. As AI technolo-
gies become increasingly prevalent in classrooms, understanding 
the dynamics of real interactions between students and an AI tool 
becomes crucial. This exploratory study aims to bridge this gap by 
investigating the complexity of questions initiated by students in 
an AI-assisted learning environment without any guided instruc-
tion or specially designed learning activities to promote the use 
of the tool. Specifcally, we focus on whether the simple integra-
tion of an AI instructional partner called Jill Watson can foster an 
environment where learners feel empowered to ask more critical 
and higher-order questions, thus enhancing their engagement and 
promoting a deeper understanding of course concepts. 

Jill Watson is an AI conversational instructional partner that 
answers students questions and engages them in extended con-
versations based on teacher-prescribed courseware using retrieval 
augmented generation for prompting of-the-shelf LLMs in the back-
end. Jill has been equipped with OpenAI’s GPT3.5 Turbo model, 
accessed via the OpenAI API1, and coupled with several other 
technologies to facilitate more nuanced, context-aware, and safe 
interactions with students [37]. Jill has been deployed in both on-
line and hybrid classrooms across diferent educational institutes 
and courses [27]. We collect on over 5500 student interactions from 
these deployments to investigate the higher-order questions asked 
by students to Jill Watson and whether increased engagement with 
Jill infuences the complexity of these questions asked. 

Specifcally, we focus on the following two research questions 
to explore the nature and trends of students’ questions to Jill under 
organic classroom settings without any guided instructions: 

• RQ1: Do students ask a higher proportion of higher-order 
questions to Jill Watson as compared with traditional class-
room settings? 

1https://openai.com/blog/ChatGPT/ 
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• RQ2: Does the complexity of questions posed by learners to 
Jill Watson increase over time? 

In subsequent sections, we provide theoretical motivation for our 
evaluation and describe the datasets, tools and analysis employed 
to study the complexity of student questions. Section 2 explores 
previous work on exploring student questions in classrooms and 
discusses our work in this context. Section 3 details the various 
sources of data and tools for analyzing student interaction with 
the tool as well as the evaluation metrics focusing on the cognitive 
dimensions of student queries. In section 4, we present our fnd-
ings in the context of our two main research questions based on 
observations from diferent educational settings. We conclude with 
a summary of key takeaways, limitations and future work on study-
ing student interactions with AI tools embedded in classrooms. 

2 Related Work 

2.1 Student Interaction with AI Tools 
Previous research has explored the integration of AI tools into 
classroom environments, focusing on their potential to serve as 
virtual teaching assistants or personalized tutors. These tools have 
been designed to support learning in various ways, including an-
swering student questions, facilitating discussions, and providing 
feedback, ofering scalable, real-time assistance to educators and 
learners alike. In 2018, Goel and Polepeddi introduced a virtual 
teaching assistant, Jill Watson[22] built on top of IBM’s Watson 
platform[17, 21]. Jill answered students’ questions on course logis-
tics in online discussion forums and was trained on historic human 
TA-student interactions. Since then Jill Watson has evolved from a 
virtual teaching assistant into an AI instructional partner, specif-
cally created to deliver real-time, context-sensitive responses based 
on the course materials. 

Research in this area has highlighted both the benefts and chal-
lenges of integrating AI tools into education. For instance, Gilson 
et al. [20] observed that responses generated by ChatGPT-based 
tool are structured in a manner that could lead to more in-depth 
questioning, stimulating students to leverage their knowledge and 
reasoning abilities. Conversely, Rudolph et al. [36] warned against 
over-reliance on these tools, cautioning that it should not be used as 
a substitute for critical thinking and originality. While AI tools can 
provide quick and reliable answers to factual questions, educators 
must carefully manage how these tools are used to support and 
foster, rather than diminish or replace, higher-order thinking. 

In most of the work exploring role of AI tools in classrooms, the 
focus has been on evaluating AI responses to predefned question 
types and very little research has examined the nature of questions 
students ask AI tools in organic classroom settings. Understanding 
the types of questions students ask without guided interventions 
can provide insights into how they engage with AI, whether they 
leverage these tools for higher-order thinking or primarily for recall-
based tasks. Our goal is to study, using data collected across multiple 
semesters, how students interact with an AI tool under no specifc 
guidance and whether learners ask higher-order questions under 
such conditions. 

Finally, existing literature predominantly relies on surveys and 
self-reports to gauge student usage of AI tools, which, while useful, 
may fail to capture the intricacies of real-time interactions between 

students and AI assistants [11]. In contrast, this study focuses on 
analyzing organic student-AI interactions to explore how students 
naturally engage with the AI tool in the classroom setting. By study-
ing these interactions, we aim to provide a clearer understanding 
of how AI tools are used in live educational environments and their 
potential to foster critical thinking and deeper learning. 

2.2 Classroom Questioning and Impact on 
Learning 

A signifcant amount of literature on classroom questioning fo-
cuses on teacher-initiated questions and their impact on student 
learning[35][38][6][7][31][13]. In comparison, there has been rela-
tively little research on an equally important component of class-
room learning: student-initiated questions in classrooms. This could 
be because ‘investigators can scarcely fnd any student questions’ 
(Dillon (1988)[16]), potentially due to systemic conditioning or stu-
dents fnding alternate channels for question-asking, like among 
peers, or simply in their mind. However, student-generated ques-
tions hold a signifcant value in the learning process as it encour-
ages independent thinking[8]. The early works by King (1994)[28], 
Rosenshine (1996)[34], Zoller(1987)[43] and Pizzini(1991)[32] show 
that students who engage in higher-order questioning demonstrate 
signifcantly improved problem-solving abilities. Later studies ex-
panded this, fnding that the quality and depth of student inquiries 
are strong predictors of cognitive growth[12]. Zohar and Dori (2003) 
[42] further demonstrated that encouraging higher-order thinking 
through questioning strategies leads to long-term improvements 
in critical thinking and science literacy. Several other works have 
rigorously studied the efects of higher-order questioning and con-
cluded that it promotes deeper engagement and understanding of 
complex concepts [18][33][10][9]. 

In our study, we aim to investigate how students interact with 
an AI teaching assistant, Jill Watson by initiating questions. Specif-
cally, we are interested in whether students pose higher-order ques-
tions to Jill Watson, which could indicate deeper engagement and 
critical thinking. This approach allows us to explore the role of Jill 
Watson in facilitating organic classroom interactions, particularly 
in promoting enhanced learning outcomes through student-driven 
inquiry. By examining these interactions, we aim to understand 
whether Jill Watson encourages students to engage with complex 
concepts, thereby extending the benefts of higher-order question-
ing previously highlighted by studies in human-led classrooms. 

2.3 Frameworks to Examine Question 
Complexity 

Previous research explores several diferent frameworks for assess-
ing the type and needs of student questions, but most of these frame-
works are heavily context-dependent and assess student questions 
for specifc educational settings and outcomes. Pizzini and Shepard-
son (1991)[32] proposed a schema for classifying student questions 
into input (recall), processing (forming relationships), and output 
(evaluate, hypothesize, create) types based on cognitive levels, but 
this framework lacks detailed descriptions of cognitive processes 
and does not capture the full range of cognitive complexity. Other 
frameworks, like Pedrosa de Jesus et al. (2003)[14], analyze ques-
tions based on inquiry phases (e.g., confrmation or exploration), 
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and Watts, Gould, & Alsop (1997)[39] focus on conceptual change 
in student questions by classifying them into consolidation, explo-
ration and elaboration phases. In our study, we will use Bloom’s 
Taxonomy[5] to defne the complexity of student questions. 

The application of Bloom’s Taxonomy[5] in educational settings 
has been extensively explored, mainly for designing educational 
objectives and assessment tasks. The original taxonomy consists 
of six levels — Knowledge, Comprehension, Application, Analysis, 
Evaluation, and Synthesis. Each level represents a step in the cogni-
tive process, from basic recall of facts to higher-order thinking skills 
such as critical analysis and creative problem-solving. Krathwohl 
(2002)[29] provided a foundational revision of Bloom’s original cog-
nitive taxonomy by emphasizing the dynamic nature of learning 
objectives and categorized them into cognitive processes that are 
crucial for structuring educational content and assessments. Since 
diferent types of student-initiated questions engage and challenge 
the mind to varying degrees, they can be categorized based on the 
level of cognitive efort required to formulate an answer. Previ-
ous studies[12] on exploring student questions also support the 
intuition behind using Bloom’s taxonomy for identifying types of 
student questions. It provides an established and descriptive frame-
work for analyzing cognitive complexity of questions without us 
having to defne coding schemes across the diferent educational 
settings we have deployed Jill Watson in. Questions that demand 
higher-order thinking skills (i.e, fall under Application, Analysis, 
Evaluation, and Synthesis levels) reveal a deeper level of under-
standing and engagement with the educational content. 

3 Methodology 
To study whether Jill Watson empowers learners to ask critical 
questions, we deployed Jill across multiple classrooms and collected 
comprehensive data on organic student interactions with the tool. 
We analyze these interactions based on the framework provided by 
Bloom’s Taxonomy and report the trends in cognitive complexity 
of questions asked. 

3.1 Agent Design 
Jill Watson, described by Taneja et al. [37], features a modular, Re-
trieval Augmented Generation (RAG)-based pipeline for question-
answering. Figure 1 shows the question-answering pipeline em-
ployed by Jill. A new Jill Watson partner is created per course: each 
partner is pre-confgured with a knowledge base by processing veri-
fed and relevant courseware from instructors. When a student asks 
Jill a question, Jill retrieves conversation history for that student 
from memory, and relevant information from the knowledge base, 
and constructs a prompt for OpenAI API to generate a response 
strictly restricted to the given context. The response is validated be-
fore being made available to the student: if a student asks a question 
that is not relevant to the course or contains toxic comments, Jill re-
fuses to answer the question, encouraging students to stay on-topic. 
Our previous study has shown that by adding these guardrails and 
strictly restricting Jill’s responses to instructor-vetted courseware, 
Jill outperforms ChatGPT in accuracy, relevance and safety[37]. Fur-
ther design modifcations are discussed in Kakar et al.[27] to tailor 
Jill for classroom integration. These adjustments helped scale Jill’s 

Figure 1: Architecture of Jill Watson. Adapted from Taneja 
et al.[37] 

deployment across diverse educational environments, providing 
rich insights into student interactions. 

3.1.1 Deployments. Table 1 shows the courses and institutes where 
Jill Watson was deployed during Fall 2023, Spring 2024 and Sum-
mer 2024. The table also lists the courseware used to generate the 
knowledge base for a Jill Watson partner for each course on which 
all responses are grounded. The Knowledge-Based Artifcial In-
telligence (KBAI), Introduction to Cognitive Science (CogSci) and 
Human-Computer Interaction (HCI) courses are part of Georgia 
Institute of Technology (Georgia Tech) Online Master of Science 
in Computer Science program, designed primarily for part-time 
graduate students who typically maintain full-time employment. 
These courses aim to provide advanced knowledge and skills in 
Computer Science through a fexible online format. In contrast, 
Wiregrass Georgia Technical College (Wiregrass Tech) and South-
ern Regional Technical College (SRTC) are two-year community 
colleges within the Technical College System of Georgia (TCSG) 
recognized for their workforce development programs, and have 
integrated Jill into their undergraduate English: Composition and 
Rhetoric (English) courses. This course teaches various modes of 
writing and includes a review of standard grammatical and stylistic 
usage in proofreading and editing. 

In each of these courses, Jill is deployed as a private chat inter-
face within the Learning Management System (LMS) using Learn-
ing Tools Interoperability (LTI)2. Jill can be accessed through the 
course’s Canvas3 or Blackboard4 page. This integration ensures that 
students receive assistance within their familiar course platform, 
promoting a seamless and supportive learning experience. Once 
a question is asked on the platform, a student typically receives a 
structured response within a few seconds. Instructors introduce Jill 
to students during the frst week of classes and encourage them to 
interact freely with the tool anytime and anywhere. To set expecta-
tions for tool usage, students are provided with sample questions 
they could ask Jill, such as factual inquiries, comparison and con-
trast questions, or requests for relevant examples of concepts. No 
additional prompts or guided activities are provided. This deploy-
ment strategy aimed to observe natural, spontaneous interactions 
between students and the AI tool, minimizing external infuences 
on question-asking behavior. 

2https://www.1edtech.org/standards/lti 
3https://www.instructure.com/canvas/ 
4https://www.blackboard.com/ 
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Semester Course/ 
Institute 

Enrolled 
Students Course Structure Supported Courseware 

Fall 23 
KBAI/Georgia Tech 198 

Coding assignments, 
journal writing, exams Syllabus, Textbook 

Eng/Wiregrass Tech 100 Writing assignments Syllabus, Textbook, MLA Guide, 
Instructor Handouts 

Spring 24 
KBAI/Georgia Tech 201 

Coding assignments, 
journal writing, exams Syllabus, Textbook 

CogSci/Georgia Tech 58 
Weekly quizzes, writing 
assignments, fnal project Syllabus, Textbook, Video Transcripts 

Eng/Wiregrass Tech 60 Writing assignments Syllabus, Textbook, MLA Guide, 
Instructor Handouts 

Summer 24 
HCI/Georgia Tech 256 

Coding assignments, 
quizzes, exams 

Syllabus, Textbook, Weekly readings, 
Research papers 

Eng/Wiregrass Tech 25 Writing assignments Syllabus, Textbook, MLA Guide, 
Instructor Handouts 

Eng/SRTC 30 
Writing assignments, 
topic research 

Syllabus, Schedule, Textbook, MLA Guide, 
Instructor Handouts 

Table 1: Jill Watson deployments across two major settings: Georgia Tech and Community Colleges (Wiregrass Tech and SRTC) 
under the Technical College System of Georgia (TCSG) 

3.1.2 Participants. This study included students from two distinct 
educational institutions: Georgia Tech (Georgia Tech) and Com-
munity Colleges (Wiregrass Tech and SRTC), ofering a diverse 
cross-section of student demographics. To show a representative 
sample, Tables 2 and 3 show the demography of students enrolled 
in the KBAI course at Georgia Tech and the English course at Wire-
grass Tech. At Georgia Tech, the majority of participants were Asian 
(51.25%) and White (33.54%), with a predominantly male (71.46%) 
cohort. Most students fell within the 25-34 age group (64.79%), 
indicating a mature student base balancing education with pro-
fessional responsibilities. In contrast, Wiregrass Tech featured a 
larger proportion of female participants (78.00%) and a more eth-
nically diverse group, with Black/African American (40.00%) and 
White (42.00%) students forming the majority. The 17-24 age group 
(67.50%) dominated, highlighting a younger, more traditional col-
lege demographic. 

3.2 Data Collection 
We collected and stored exhaustive student interaction data for 
each deployment of Jill Watson in a persistent memory on the 
hosting server. This dataset includes de-anonymized student IDs, 
timestamps, questions, responses, along with inputs and outputs 
for each component of the question-and-answer (QA) pipeline. The 
tool also provides student with the option of marking a response as 
helpful or not helpful, and we collect this student feedback as well. 
Data collection adhered to strict privacy protocols, ensuring that all 
student information was anonymized and securely stored. Ethical 
approval was obtained from the institutional review board (IRB), 
and informed consent was secured from all participants prior to the 
study. This structured data collection allows for a robust analysis 
of usage patterns. 

3.3 Fine-tuning BERT for Question Complexity 
Classifcation 

To address our frst research question on understanding the type 
and complexity of questions asked in classrooms, we use cognitive 
levels defned by Bloom’s Revised Taxonomy[29]. We compiled a 
dataset of 3,600 labeled questions derived from various publicly 
accessible sources[19, 40]. This dataset contains questions across 
various disciplines and labels them into one of the six cognitive 
levels defned in the taxonomy- Knowledge, Comprehension, Appli-
cation, Analysis, Synthesis, and Evaluation, which range from basic 
recall of facts to generating new ideas. First, we investigated zero-
shot classifcation techniques using GPT-3.5, GPT-4, and BERT[15] 
for categorizing student queries. Given the nuanced nature of this 
classifcation, zero-shot methods proved inefective, with accuracies 
lower than 50%, prompting us to explore fne-tuning strategies on 
a curated dataset to improve performance. 

For fne-tuning, we divided the dataset with 3600 questions 
into training and testing subsets with a 75:25 split. Standard pre-
processing methods were applied to each question to ensure con-
sistency across the data. These methods included tokenization, 
stopword removal, and text normalization, which were essential for 
minimizing variability and enhancing the efciency of model train-
ing. We opted for a fne-tuning strategy on the bert-base-uncased 
BERT model to classify questions based on cognitive complexity. 
The model underwent fne-tuning over fve epochs, using a batch 
size of 32 and a learning rate of 2e-5, parameters selected from 
initial tests that indicated optimal results. We settled on using the 
fne-tuned model that achieved an accuracy of 91.9%. We employ 
this model to classify all student questions collected from Jill Wat-
son deployments across Fall 2023 to Summer 2024, and will use this 
classifed result for our subsequent analysis. 
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Institute 
Race/Ethnicity (%) Gender (%) 

American Indian 
/Alaskan Native Asian 

Black/ African 
American 

Hispanic 
/Latino 

Two 
or 

more 
Unk White Female Male 

Georgia Tech 0 51.25 3.54 6.45 2.71 2.50 33.54 28.54 71.46 
Wiregrass Tech 1.00 1.00 40.00 11.50 4.5 0 42.00 78.00 22.00 

Table 2: Student ethnicity and gender across educational settings: Georgia Tech and Wiregrass Tech 

Institute 
Age Groups (%) 

17-24 25-34 35-44 45-54 55-64 
Georgia Tech 12.50 64.79 17.08 4.16 1.45 
Wiregrass Tech 67.50 23.50 6.00 2.00 1.00 

Table 3: Student age across educational settings: Georgia Tech 
and Wiregrass Tech 

3.4 Analysis of Increasing Question Complexity 
To answer our second research question, we want to investigate 
whether the complexity of question increases over the course of 
learners’ interaction with Jill Watson throughout the semester. First, 
to simplify regression analysis, we categorize student questions 
into lower-order (comprising ’Knowledge’ and ’Comprehension’) 
and higher-order (comprising ’Application’, ’Analysis’, ’Evaluation’ 
and ’Synthesis’) types. Rather than analyzing the overall class out-
put—where students might randomly ask a single recall-type ques-
tion at any point during the semester—it is more meaningful to 
examine the usage patterns among students who have interacted 
with Jill Watson multiple times. When determining a threshold to 
classify users as "frequent," selecting an appropriate statistical mea-
sure—mean or median—is crucial. In our case, some students have 
very high usage while others have very low, resulting in a skewed 
distribution. Therefore, the median is a preferable threshold, as it is 
robust against skewness and provides a better measure of central 
tendency. 

To assess the statistical signifcance of any increase in question 
complexity, we employ two statistical models: 

• Fixed-Efects Logistic Regression (LR)[1]: This model as-
sesses whether each additional interaction increases the 
likelihood of a student asking a higher-order question, con-
trolling for individual-specifc characteristics. By focusing 
on each student individually, the model accounts for char-
acteristics that are unique to each person and don’t change 
over time (like their baseline knowledge or learning style). 
This means we’re comparing each student’s progress against 
themselves, rather than against other students. Since we 
have a small number of frequent users, this model is suit-
able because it doesn’t rely on large sample sizes to provide 
meaningful results. 

• Generalized Estimating Equations (GEE)[24]: This model 
evaluates the population-averaged efect of additional inter-
actions on question complexity. It looks at the overall trend 
across all students to see if, on average, additional interac-
tions with Jill lead to asking more complex, higher-order 
questions. 

3.4.1 Justification of Model Use. Since LR method only compares 
students against themselves, it eliminates the potential biases intro-
duced by between-student diferences, making it a powerful tool 
for identifying individual trends in question complexity as students 
engage more with the Jill. However, it assumes that individual char-
acteristics remain static over time, which might introduce bias if 
student learning strategies evolve during the semester. Despite this 
limitation, LR is particularly valuable in our context where the 
sample size is small or highly unbalanced, as it does not rely on a 
large number of frequent users to generate meaningful insights. 

GEE has been widely used for longitudinal data analysis [26] 
[41] [2] [23]. In educational data, where student engagement can 
be inconsistent, GEE is especially useful because it handles missing 
or unbalanced data efectively. This robustness is crucial in our 
setting where some students engaged with Jill more frequently 
than others. However, the efciency of the GEE model depends on 
correctly specifying the correlation structure of the data, which 
can impact the precision of the estimates. Thus, we conclude that 
GEE is particularly well-suited for this type of repeated-measures 
data, where interactions by students in the same classroom are not 
independent but are correlated across time. 

3.4.2 Efect Size. The efect size for both LR and GEE models is 
typically reported as odds ratios (ORs) as they directly quantify 
the likelihood of a particular outcome (e.g., asking a higher-order 
question) occurring with each additional interaction. Unlike other 
standardized efect sizes, ORs align with the logit link function used 
under the hood in these models, providing a consistent measure of 
association across contexts. ORs are calculated by exponentiating 
the model coefcients for each course. 

3.4.3 Correcting for Multiple Tests. To address the heightened risk 
of Type I errors associated with multiple testing, we employed the 
Bonferroni correction[4]. This method adjusts the original signif-
icance level by dividing it by the number of hypotheses tested, 
thereby establishing a more stringent threshold for statistical sig-
nifcance. This approach is consistent with established literature 
that underscores the necessity of controlling for false positives in 
multiple comparisons[3]. 

By combining the aforementioned methods, we are able to ex-
amine both individual trajectories and overall classroom trends in 
question complexity. We report p-values for both models and along 
with the corrected p-values from Bonferroni test for each course 
to determine whether there is a statistically signifcant increase in 
question complexity over time. This dual approach allows us to 
rigorously assess whether the AI tool encourages deeper cognitive 
engagement and promotes higher-order thinking skills, which are 
critical to achieving improved learning outcomes. 
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Figure 2: Proportion of Question by Complexity Per Semester 
Per Course 

4 Results 
We classify all relevant student questions across three semesters 
into complexity levels using the fne-tuned BERT. Next, we use the 
statistical models discussed to study the trends in complexity of 
questions over extended student interactions with Jill Watson. 

4.1 What proportion of learner questions are of 
a higher order? 

Table 5 shows the total number of enrolled students, total questions 
asked and the distribution of questions by complexity for each de-
ployment under study. To address our frst research question, our 
hypothesis is that if the proportion of higher-order questions (Ap-
plication, Analysis, Evaluation, and Synthesis) posed to Jill Watson 
is signifcantly higher than what would be expected in a typical 
learning environment without such an AI assistant, it suggests that 
the presence of Jill could empower learners to ask more critical 
questions. 

Previous studies [12][42][25] have established that in traditional 
classroom settings, the majority of student questions are of lower or-
der, primarily seeking clarifcations or recalling factual information. 
Only approximately 10–20% of questions in these environments 
are categorized as higher-order. In contrast, as seen in Figure 2 our 
study consistently observed a higher percentage of higher-order 
questions across various classes. Note that in the English course 
at Wiregrass Tech, the total number of questions was too limited 
to draw signifcant conclusions. However, in all other classes ex-
amined, higher-order questions constituted between 30–40% of the 
total inquiries posed to Jill. 

Table 4 lists some of the real student questions observed as 
part of this study to show examples for questions at each level 
of cognitive complexity. These fndings indicate that the presence 
of the Jill may create an environment where students feel more 
comfortable and empowered to ask more sophisticated questions. It 
is important to acknowledge that while we report numbers higher 
than related studies have shown, the contexts of previous studies 
difer, as they analyzed student questions in traditional classroom 
settings without AI tools and the defnition of “higher-order” varies 
across studies, with varied coding systems being used based on the 
specifc learning outcomes of each educational setting. Although 

a direct comparison could be made with a traditional setting at 
the same university, such a comparison would not be practical 
or equitable. In conventional environments, questions are usually 
posed in discussion forums, during ofce hours, or in class, which 
does not provide a valid basis for comparison with the continuous 
1:1 interactions facilitated by a 24/7 non-human agent. 

In this regard, our study contributes a baseline measure of ques-
tion complexity within an organic classroom environment aug-
mented by an AI tool, without any guided interventions. This 
baseline serves as a reference point for understanding how the 
introduction of AI agents in a classroom can infuence the nature 
of student inquiries in real-world educational contexts. 

4.2 Does the complexity of questions increase 
over sustained interaction? 

To investigate whether the complexity of questions posed by learn-
ers to Jill Watson increases over time—refecting growing conf-
dence and initiative in self-directed learning—we conducted Fixed-
Efects Logistic Regression and Generalized Estimating Equations 
(GEE) analyses for multiple courses across three semesters. In case 
of English courses at Wiregrass Tech, there were signs of quasi-
separation, meaning that some variables could perfectly predict 
outcomes. Quasi-separation typically occurs when there is a very 
small number of observations, as seen in case of English at Wire-
grass Tech, which may lead to infated coefcients and inaccurate 
inferences. Hence, we have dropped that course from our analysis. 
Table 6 summarizes the coefcient estimates, standard errors, z-
values, and p-values for the interaction predictor from both models 
for the rest of the courses. To account for possible over-infation 
in signifcance reporting due to multiple testing, we performed a 
Bonferroni correction and reported the corrected p-values in Table 
7. 

4.2.1 Knowledge-Based Artificial Intelligence (KBAI) at Georgia 
Tech. In Fall 2023, the KBAI course exhibited a signifcant positive 
relationship between subsequent interactions and question com-
plexity. The logistic regression yielded a coefcient of 0.0099 (std. 
err. = 0.002), with a z-value of 3.970 and a highly signifcant p-value 
(P>|z| = 0.000). Similarly, the GEE model confrmed this fnding with 
a coefcient of 0.0111 (std. err. = 0.004), z-value of 3.131, and P>|z| 
= 0.002. The p-values adjusted for multiple testing also indicate 
a signifcant correlation. This suggests that as students interact 
with Jill more frequently, they ask increasingly complex questions, 
refecting greater confdence and initiative in learning. In Spring 
2024, the KBAI course again showed a signifcant positive efect in 
the logistic regression model, with a coefcient of 0.0103 (std. err. = 
0.003), z-value of 3.226, and P>|z| = 0.001. However, the GEE model 
did not fnd this relationship to be signifcant (coef. = 0.0020, std. 
err. = 0.004, z = 0.523, P>|z| = 0.601), suggesting that while some in-
dividual students show a pattern of increasing question complexity, 
this trend does not hold across the overall population. 

4.2.2 Introduction to Cognitive Science (CogSci) at Georgia Tech. 
For the CogSci course in Spring 24, the logistic regression indicated 
a signifcant positive association between session number and ques-
tion complexity (coef. = 0.0222, std. err. = 0.010, z = 2.326, P>|z| = 
0.020, corrected P>|z| = 0.0399 after Bonferroni correction). The 
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Dimension Real Student Question 
Knowledge Can you help me defne heuristics and give me an example? 
Comprehension Can you summarize the second chapter for me? 
Application Would rotating an image or fnding symmetry in an image be considered conceptual or imagistic represention? 
Analysis What is the diference between control knowledge and heuristics? 

Evaluation 
Fear can be interpreted as a shifting of the allocation of computational resources to expand CRUM. Computational 
resources, such as memory, attention, etc., are limited and fear can allocate those precious resources to the urgent 
situation that is relevant to surviving goal. Is there anything wrong in my proposition? 

Synthesis 
Consider an extended version of the scientifc method that incorporates conceptual and simulation models. How 
might scientists pairing conceptual models with simulation models of the same concepts be used as part of the 
scientifc method? 

Table 4: Examples of real student questions per cognitive dimension, showing the evolving complexity of questions asked by 
students. 

Semester Course/ 
Institute 

Total 
Qs 

Know 
(%) 

Comp 
(%) 

App 
(%) 

Anlys 
(%) 

Eval 
(%) 

Synth 
(%) 

LO 
(%) 

HO 
(%) 

Fall23 
KBAI/Georgia Tech 2311 35.91 13.80 14.76 24.02 6.66 4.85 49.71 50.29 
Eng/Wiregrass Tech 163 64.42 5.52 3.07 3.68 16.56 6.75 69.94 30.06 

Spring24 
KBAI/Georgia Tech 1920 35.89 15.94 7.24 24.84 7.86 8.23 51.83 48.17 
CogSci/Georgia Tech 332 61.45 15.96 5.12 10.54 3.31 3.61 77.41 22.59 
Eng/Wiregrass Tech 32 50.00 12.50 3.12 3.12 18.75 12.50 62.50 37.50 

Summer24 
HCI/Georgia Tech 561 49.38 14.97 4.81 9.81 13.90 7.13 64.35 35.65 
Eng/Wiregrass Tech 11 72.73 18.18 0.00 0.00 9.09 0.00 90.91 9.09 
Eng/SRTC 235 55.74 17.87 4.68 5.53 8.51 7.66 73.62 26.38 

Table 5: Distribution of type of student questions across courses and semesters grouped by question complexity. Last two 
columns show questions grouped into lower order (’Knowledge’ and ’Comprehension’) and higher order (’Application’, ’Analysis’, 
’Evaluation’ and ’Synthesis’). 

Semester Course / Institute Median 
Logistic Regression GEE Regression 
coef std err z P>|z| OR coef std err z P>|z| OR 

Fall 23 KBAI/Georgia Tech 10.50 0.0099 0.002 3.970 0.000 1.0099 0.0111 0.004 3.131 0.002 1.0111 

Spring 24 
KBAI/Georgia Tech 2.50 0.0103 0.003 3.226 0.001 1.0103 0.0020 0.004 0.523 0.006 1.0020 
CogSci/Georgia Tech 4.00 0.0222 0.010 2.326 0.020 1.0224 0.0182 0.010 1.740 0.082 1.0183 

Summer 24 
HCI/Georgia Tech 2.00 0.0060 0.007 0.795 0.427 1.0060 0.0057 0.008 0.727 0.467 1.0057 
Eng/SRTC 4.00 0.0077 0.010 0.754 0.451 1.0077 0.0100 0.006 1.564 0.118 1.0100 

Table 6: Fixed-Efects Logistic Regression and Generalized Estimating Equations Analyses: This table presents the coefcient 
estimates, standard errors, z-values, p-values and odds ratio (OR) for the session number predictor from both models. 

GEE model showed a positive coefcient (coef. = 0.0182), but the 
efect was not statistically signifcant (std. err. = 0.010, z = 1.740, 
P>|z| = 0.082). This result indicates that individual students, on 
average, tend to ask more complex questions over time, but the 
population-wide efect is not as strong. 

4.2.3 Human Computer Interaction (HCI) at Georgia Tech. In Sum-
mer 24, the HCI course did not exhibit a signifcant relationship 
between session number and question complexity in either model. 
The logistic regression yielded a coefcient of 0.0060 (std. err. = 
0.007, z = 0.795, P>|z| = 0.427), and the GEE model produced similar 
non-signifcant results (coef. = 0.0057, std. err. = 0.008, z = 0.727, 
P>|z| = 0.467). This suggests that in this course, there is no clear 

evidence of increasing question complexity as students interact 
more frequently with Jill. 

4.2.4 English: Composition and Rhetoric (English) at SRTC. The 
English course at SRTC during Summer 24 also showed no sig-
nifcant increase in question complexity over time. The logistic 
regression coefcient was 0.0077 (std. err. = 0.010, z = 0.754, P>|z| = 
0.451), and the GEE model coefcient was 0.0100 (std. err. = 0.006, z 
= 1.564, P>|z| = 0.118). Both models suggest that session number did 
not signifcantly predict the complexity of questions in this setting. 

4.2.5 Interpretation of Findings. The fndings partially support the 
hypothesis that the complexity of questions posed by learners to 
Jill Watson increases over time, refecting growing confdence and 
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Semester/ 
Course/ 
Institution 

Logistic Regression GEE Regression 

p-value 
corrected 
p-value 

p-value 
corrected 
p-value 

Fall 2023/ 
KBAI/ 
Georgia Tech 

0.000 0.0028 0.002 0.0035 

Spring 2024/ 
KBAI/ 
Georgia Tech 

0.001 0.0025 0.006 0.0130 

Spring 2024/ 
Cogsci/ 
Georgia Tech 

0.020 0.0399 0.082 0.1636 

Summer24/ 
HCI/ 
Georgia Tech 

0.427 15.7887 0.467 0.9346 

Summer24/ 
English/ 
SRTC 

0.451 4.5095 0.118 0.2358 

Table 7: Corrected p-value from Bonferroni correction on LR 
and GEE models. 

initiative in self-directed learning. A small positive odds ratio sup-
ports positive association in each case. The signifcant positive 
associations observed in the KBAI course suggest that sustained 
interactions with the AI assistant can enhance learners’ propen-
sity to engage in higher-order questioning. However, the lack of 
consistent signifcant results across all courses indicates that this 
efect may be context-dependent. Factors such as course content, 
instructional design, and initial student engagement levels might 
infuence how learners interact with Jill Watson over time. 

5 Discussion 

5.1 Interaction Between Students and Jill 
Watson 

Tables 8 and 9 show real conversations logged between a student 
in CogSci class at Georgia Tech and Jill Watson. 

In the frst example, in a 4-turn conversation, a student asks for 
the basic components of CRUM, and Jill provides a detailed explana-
tion of representational structures and computational procedures. 
The questions get progressively complex, as the student explores 
interpretations of a human emotion within CRUM and comparing 
with other emotions. Finally, Jill evaluates the student’s interpre-
tation, afrming its correctness while ofering additional nuances. 
Each turn demonstrates progressively higher levels of cognitive 
engagement, from recalling basic facts to analyzing complex ideas 
and evaluating a hypothesis. Similarly, in the second example, the 
student starts with a simple question asking for a defnition, and 
gradually moves towards more complex, synthesis-level queries. 

6 Limitations 
While we have identifed a trend towards higher-order question-
asking in certain course structures, the study does not explore the 
underlying factors driving these behaviors. More granular investi-
gations into how specifc pedagogical approaches, course designs, 

and external factors like digital literacy infuence student interac-
tion with AI tools are necessary to draw more precise conclusions. 
Second, while our analysis covers a range of question types and cog-
nitive levels, it does not fully address the quality of the responses 
provided by Jill. Future studies should include a more detailed as-
sessment of response accuracy and pedagogical soundness to ensure 
that the tool not only engages students but also supports efective 
learning. Third, to study the impact of sustained conversations on 
learning outcomes, we need a larger sample size for more robust 
fndings. While the fndings are promising, the study’s exploratory 
design and limited sample size may limit the generalizability of the 
results. Future research with larger and more diverse populations 
is necessary to validate these initial observations. Future studies 
could investigate the impact of structured prompts on the types of 
questions asked, or explore how diferent AI tool features infuence 
student engagement and cognitive processes. Finally, we are unable 
to share the the classroom data used in our analysis due to strict 
confdentiality protocols. 

7 Ethical Considerations 
Before each deployment, we take into consideration an instructor’s 
need for the tool. We engage with instructors to discuss the for-
mat and content of the relevant course material that can be used 
to develop Jill Watson, ensuring that responses are grounded in 
instructor-vetted material. We also provide instructors with a de-
tailed demonstration of the tool that allows them to understand 
how it works and provide relevant guidance to students. We en-
sure complete clarity and transparency regarding the technology 
and capabilities of the tool when communicating with instructors. 
Regarding data handling, we strictly adhere to ethical standards 
and IRB protocols. All student data is collected with informed con-
sent, and access is restricted to authorized personnel. To protect 
privacy, the data is anonymized prior to analysis, ensuring that 
individual student identities remain confdential throughout the 
research process. 

8 Conclusion 
Through this exploratory study, we examined the cognitive com-
plexity of student questions posed to an AI instructional partner 
(Jill Watson) embedded in the classroom LMS. Without guided in-
struction or specifc learning activities, over 30-50% of classroom 
questions were higher-order, signifcantly surpassing traditional 
classroom benchmarks of around 20%. This indicates that conver-
sational AI partners like Jill have the potential to foster critical 
thinking by encouraging students to engage with more complex 
concepts through active, self-driven knowledge construction. We 
also found that students who interacted with the AI tool more 
frequently exhibited a trend of increasing higher-order questions 
over time. This trend was more pronounced among individual stu-
dents than at the overall classroom level. While we did not directly 
measure learning outcomes, prior work has consistently shown 
that classrooms that foster higher-order questioning see improve-
ments in student problem-solving abilities and critical thinking 
[12]. This suggests that conversational AI partners like Jill could be 
valuable assets in supporting not only student engagement but also 
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# Student Question and Jill Watson Response Level 

1 

Student: 
Basic components of CRUM? 
Jill Watson: 
The basic components of the Computational-Representational Understanding of Mind (CRUM) include: 
1. Representational Structures: CRUM posits that the mind uses representational structures to encode and manipulate 
information. These structures can take various forms, such as symbolic representations or neural networks, and they 
capture the content and organization of mental states. 
2. Computational Procedures: CRUM suggests that the mind operates through computational procedures that 
manipulate the representational structures. These procedures involve the transformation, combination, and 
manipulation of mental representations to produce cognitive behaviors. [...] 
It is important to note that CRUM is a broad framework that encompasses various theories and models within cognitive 
science. The specifc details and interpretations of these components may vary among diferent researchers and theories 
within the CRUM framework. 

Know 

2 

Student: 
Can we interpret Fear as a shifting of the allocation of computational resources to expand CRUM? 
Jill Watson: 
Yes, fear can be interpreted as a shifting of the allocation of computational resources within the framework of CRUM. 
When experiencing fear, our attention and cognitive resources become focused on the fear-inducing stimulus, such as a 
threatening situation or object. This allocation of resources is a response to the perceived danger and is aimed at 
enhancing our ability to respond efectively. [...] 
By interpreting fear as a shifting of computational resources, CRUM can provide insights into how emotions infuence 
cognitive processes. It highlights the dynamic nature of cognitive functioning and how emotions can modulate the 
allocation of resources to adaptively respond to diferent situations.It is worth noting that this interpretation is one way 
to incorporate emotions, such as fear, into the CRUM framework. Diferent researchers and theories within CRUM 
may have their own specifc interpretations and models of how emotions interact with computational processes. 

Comp 

3 

Student: 
Common patterns between fear and anger in CRUM is that they’re both related to computational resources? 
Jill Watson: 
Yes, within the CRUM framework, fear and anger share a common pattern in that they both involve the allocation and 
redirection of computational resources. In the case of fear, the allocation of computational resources is focused on the 
fear-inducing stimulus. This allocation allows for heightened attention, memory retrieval, and problem-solving related 
to the perceived threat. The goal is to efectively respond to the threat and ensure survival or safety. Similarly, anger 
involves the reallocation of computational resources towards addressing the interference or obstruction that is 
preventing the achievement of a goal. This reallocation directs attention, memory, and problem-solving towards 
resolving the confict and removing the obstacle. The goal is to restore goal-directed behavior and overcome the 
hindrance. Both fear and anger can be seen as adaptive responses within the CRUM framework, as they involve the 
mobilization of cognitive resources to deal with specifc challenges or threats. They highlight the dynamic nature of 
cognitive processes and the role of emotions in modulating the allocation of computational resources to achieve 
desired outcomes. 

Anlys 

4 

Student: 
Fear can be interpreted as a shifting of the allocation of computational resources to expand CRUM. Computational 
resources, such as memory, attention, etc., are limited and fear can allocate those precious resources to the urgent 
situation that is relevant to surviving goal. Is there anything wrong in my proposition? 
Jill Watson: 
Fear can indeed be interpreted as a shifting of the allocation of computational resources within the CRUM framework, 
but it is important to clarify that this interpretation does not necessarily expand CRUM itself. Instead, it highlights 
how fear infuences the allocation of computational resources in cognitive processes. By interpreting fear as a shifting 
of computational resources, CRUM can provide insights into how emotions impact cognitive processes. It emphasizes 
the dynamic nature of cognitive functioning and how emotions can modulate the allocation of resources to adaptively 
respond to diferent situations. However, it is important to note that this interpretation of fear as a shifting of 
computational resources is just one perspective within the CRUM framework. Diferent researchers and theories within 
CRUM may have their own specifc interpretations and models of how fear interacts with computational processes. 

Eval 

Table 8: Conversation between a student and Jill Watson in CogSci in Georgia Tech in Spring 2024. 
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# Student Question and Jill Watson Response Level 

1 

Student: 
What does model mean in cognitive science? 
Jill Watson: 
In cognitive science, a model refers to an abstract representation or simulation of a cognitive process, system, or 
phenomenon. It is a simplifed and formalized version of the cognitive processes being studied, designed to capture 
the essential features and mechanisms involved. A cognitive model can take various forms, depending on the specifc 
research question and the theoretical framework being used. It can be a computational model,which uses algorithms 
and data structures to simulate cognitive processes. Alternatively, it can be a conceptual model, which describes the 
underlying principles and relationships between diferent components of the cognitive system.[...] 

Know 

2 

Student: 
A simulation model uses simplifying assumptions to generate a prediction of the dynamics and outcome of a modeled 
scenario. Based on your current knowledge, how might simulation models be incorporated into the scientifc method? 
Jill Watson: 
Simulation models can be incorporated into the scientifc method in several ways: 
1. Hypothesis generation: By specifying the assumptions and parameters of the model, researchers can simulate diferent 
scenarios and observe the predicted dynamics. These predictions can then be used to formulate hypotheses about the 
underlying mechanisms or relationships in the system. 
2. Experiment design: Researchers can use simulation models to explore diferent experimental conditions, identify 
critical factors, and optimize the experimental design to maximize the information gained. [...] 
Overall, simulation models can be a valuable tool within the scientifc method, aiding in hypothesis generation, experiment 
design, data generation, parameter estimation, hypothesis testing, and theory development. They provide a means to 
explore complex systems, make predictions, and test hypotheses in a controlled and iterative manner. 

App 

3 

Student: 
Consider an extended version of the scientifc method that incorporates conceptual and simulation models. How might 
scientists pairing conceptual models with simulation models of the same concepts be used as part of the scientifc method? 
Jill Watson: 
Pairing conceptual models with simulation models of the same concepts can be a powerful approach within an extended 
version of the scientifc method. Here are some ways in which scientists can use this pairing as part of the scientifc 
method: 1. Conceptual model development: [...] 
2. Simulation model construction: Based on the conceptual model, scientists can then construct a simulation model that 
translates the abstract concepts and relationships into a computational framework. The simulation model incorporates 
simplifying assumptions and mathematical or computational algorithms to simulate the dynamics and behavior 
of the system. 
3. Hypothesis formulation: The conceptual model can be used to generate hypotheses about the behavior or outcomes of 
the system. Scientists can formulate specifc hypotheses based on the conceptual model, which can then be tested using 
the simulation model. The simulation model allows for the generation of predictions and the exploration of 
diferent scenarios to evaluate the validity of the hypotheses. [...] 
By pairing conceptual models with simulation models, scientists can integrate theoretical understanding with computation 
simulations, allowing for a more comprehensive and iterative approach to scientifc inquiry. This pairing enables scientists 
to generate hypotheses, design experiments, generate data, estimate parameters, test hypotheses, and refne theories in a 
systematic and rigorous manner. 

Synth 

Table 9: Conversation between a student and Jill Watson in CogSci in Georgia Tech in Spring 2024. 

advanced cognitive development. However, the pattern of increas-
ing question complexity varied across diferent contexts, indicating 
that the efectiveness of such tools may depend on specifc course 
designs or student populations. Additionally, we acknowledge a 
limitation of our study: we did not evaluate the quality of the AI 
partners’s responses to student questions. Understanding how the 
quality of AI-generated responses impacts student learning is es-
sential and should be explored in future research. These fndings 
demonstrate the potential of AI partners like Jill to promote ad-
vanced learning outcomes by ofering students opportunities for 
complex, on-demand interactions. Future research should explore 

the long-term impacts of integrating AI instructional partners in ed-
ucation, consider studies that address diferent educational contexts 
for more generalizable outcomes, and optimize AI functionalities 
to support a wider range of educational objectives. 
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