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Abstract

Supporting learners’ understanding of taught skills in on-
line settings is a longstanding challenge. While exercises
and chat-based agents can evaluate understanding in lim-
ited contexts, this challenge is magnified when learners
seek explanations that delve into procedural knowledge (how
things are done) and reasoning (why things happen). We
hypothesize that an intelligent agent’s ability to understand
and explain learners’ questions about skills can be signifi-
cantly enhanced using the TMK (Task-Method-Knowledge)
model, a Knowledge-based AI framework. By leveraging
an LLM-based model and iterative refinement techniques,
the agent generates explanations that embody teleological,
causal, and compositional principles. Our initial evaluation
demonstrates that this approach goes beyond the typical shal-
low responses produced by an agent with access to unstruc-
tured text, thereby substantially improving the depth and rel-
evance of feedback. This can potentially ensure learners de-
velop a comprehensive understanding of skills crucial for ef-
fective problem-solving in online environments.

1 Introduction
Online education platforms such as MOOCs and profes-
sional certification programs have significantly expanded ac-
cess to education. Despite extensive literature on effective
online course design (Kay 2012; Hansch et al. 2015), these
platforms often inadequately support skill-based learning
(Squire 1992; Doyon 1997), particularly when learners re-
quire in-depth explanations on procedural knowledge and
reasoning. Addressing this gap is crucial as the demand for
reskilling and upskilling grows in today’s rapidly evolving
job market (Leurent et al. 2019; Goel et al. 2024).

Traditional online tools like instructional videos and ex-
ercises typically promote passive learning (Chi and Wylie
2014; Chi et al. 2018). Our research extends recent work
(Goel and Joyner 2015, 2017; Ou et al. 2016; Ou, Joyner,
and Goel 2019) that have demonstrated how to effectively
incorporate pedagogical and instructional strategies to fos-
ter active forms of learning, thereby enhancing the under-
standing of taught skills and cognitive engagement (Chi and
Wylie 2014; Chi et al. 2018).
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Recent technological advances, including Intelligent
Agents (IAs)1 developed using Large Language Models
(LLMs), have been integrated into online platforms (Jurenka
et al. 2024; Taneja et al. 2024; Chevalier et al. 2024). Yet,
LLM-based agents tend to deliver general or “shallow” un-
derstanding and struggle with the deep, procedural under-
standing required for effective skill-based learning (Kamb-
hampati 2021; Valmeekam et al. 2022; Ruis et al. 2024). We
argue that such agents, relying on unstructured text, fail to
address learners’ deeper questions about “how” and “why”
skill-based tasks or mechanisms are performed.

To address these limitations, we propose a hybrid
approach that integrates Knowledge-based AI (KBAI)–
representing skills using a structured framework called
TMK (Task-Method-Knowledge) (Murdock and Goel 2008;
Rugaber, Goel, and Martie 2013)–with Generative AI to
enhance an IA’s explanations to learners’ questions about
skills taught in a graduate-level online AI course. This builds
on previous research that combined similar integrations for
generating self-explanations by AI agents across various ed-
ucational settings (Basappa et al. 2024; Sushri et al. 2024).

In particular, our research explores the following key re-
search questions (RQs) and research hypotheses (RHs):

RQ1: How can an IA explain how a skill functions?
RH1: An IA can explain a skill’s functionality by utiliz-

ing a structured framework, like a TMK model, to rep-
resent the skill’s design and leverages Generative AI
to provide introspective responses to learners’ queries.

RQ2: How can an IA inspect the design of a skill?
RH2.1 A TMK model organizes a skill’s components

and procedures into Task, Method and Knowledge
modules.

RH2.2 A TMK model embodies teleological principles
through explicit Task-Method linkages and captures
causality via state sequences and transitions within
Methods.

In this paper, we make four contributions. (1) We detail
how we represent skills as TMK models from an online AI
course. (2) We outline the architecture of a GPT-4-based

1While the development of intelligent agents predates the rise
of Generative AI, in this paper, we specifically refer to those that
are developed using Large Language Models



IA2 that dynamically generates explanations for skill-based
learning questions. (3) We implement a comprehensive eval-
uation strategy using human-centric Question-Answering
(QA) and automated metrics to validate the IA’s explanatory
capabilities. (4) By comparing responses from TMK mod-
els with those generated from the AI course’s textbook3, we
show our approach significantly improves the agent’s ability
to deliver meaningful explanations, enhancing skill-based
learning in online education.

2 Related Work
2.1 Skill-Based Learning and its Representation

in Intelligent Agents
Skill-based learning focuses on developing cognitive abili-
ties crucial for problem-solving within educational contexts.
It involves transitioning from declarative knowledge (un-
derstanding facts and principles) to procedural knowledge
(applying skills). The ACT-R Theory (Anderson 1983) de-
scribes this transition, emphasizing the shift from concept-
based learning (“what knowledge”) to skill-based learning
(“how to” and “why” knowledge) (Bransford et al. 2000;
Ryle and Tanney 2009). Effective skill acquisition requires
an understanding of the theoretical principles and applying
them in varied situations.

The representation of skills in IAs plays a critical role
in adaptive learning systems. Traditional systems like Cog-
nitive Tutors (Anderson et al. 1995; Koedinger, Corbett
et al. 2006; Rau, Aleven, and Rummel 2009) model skills
using rule-based formulations based on the ACT* theory
of learning and problem solving (Anderson 1983, 1993).
These tutors have facilitated skill-based learning in domains
like programming skills in LISP (Anderson, Farrell, and
Sauers 1984), geometry (Anderson et al. 1981), and frac-
tions (Rau, Aleven, and Rummel 2009). Despite their suc-
cess, such systems often struggle with providing deep expla-
nations queries and scalability. Alternative approaches, such
as ontology-based frameworks, offer structured representa-
tions of cognitive skills, particularly in K-12 settings (Askar
and Altun 2009).

2.2 Question-Answering using AI
Recent advancements in AI-driven question-answering
(QA) using AI have leveraged deep learning and
transformer-based architectures like BERT (Devlin 2018)
and GPT, enhancing retrieval-augmented systems for
knowledge-based QA (KBQA). These developments inte-
grate structured knowledge bases and natural language pro-
cessing techniques to improve query handling and answer
generation (Balduccini, Baral, and Lierler 2008a; Moldovan
et al. 2002; Chu-Carroll et al. 2003; Tari and Baral 2005).

For instance, Braz et al. (2005) employed a hierarchi-
cal knowledge representation called EFDL (Extended Fea-
ture Description Logic) and used Integer Linear Program-
ming and phrase-level subsumption algorithms to gener-
ate answers to existing QA databases (de Salvo Braz et al.

2Developed using GPT-4o-mini and LangChain (Chase 2023)
3Video transcripts of the online AI course.

Figure 1: High-level TMK model of the ‘Partial Order Plan-
ning’ skill, showing hierarchical problem decomposition.

2005). Balduccini et al. (2008) converted English text to log-
ical representation and then used automated logical theorem
provers to extract facts and answer questions (Balduccini,
Baral, and Lierler 2008b).

The incorporation of LLMs has further advanced KBQA,
introducing few-shot learning capabilities and complex
question handling and refined answer retrieval (Chen et al.
2021; Tan et al. 2023). Despite these innovations, there is
still a need to harness these technologies more effectively
for modeling dynamic problem-solving skills within online
learning environments, potentially transforming explanation
generation in educational settings.

2.3 Generating Reasoned Responses using LLMs
While LLMs excel at retrieval tasks and text completion
using methods like retrieval augmented generation (RAG)
(Lewis et al. 2020), their capability for structured reason-
ing, such as planning or tasks requiring logical consistency,
remains limited. Critics suggest that LLMs, often acting as
enhanced n-gram models, rely too much on pattern recog-
nition, leading to responses that appear reasoned but lack
depth (Valmeekam et al. 2023; Kambhampati 2024).

To enhance LLM reasoning, methods like Chain-of-
Thought (CoT) prompting have been introduced to bolster
LLM reasoning (Wei et al. 2023). However, the effectiveness
of CoT prompting can vary greatly depending on the task
complexity and model scale, occasionally leading to model
overfitting (Stechly, Valmeekam, and Kambhampati 2024).

Building on these insights, our approach employs a TMK
decomposition to create a structured knowledge base for
problem-solving. By integrating this framework with a GPT-
4 based IA enhanced by LangChain and prompt engineering,
we aim to enable the IA to generate responses that demon-
strate both procedural accuracy and a deep understanding of
teleological and causal dimensions.

3 Methodology
3.1 Modeling Skills using TMK
As stated in RQ1 and RH1, we posit that, for an IA to
effectively explain how a skill functions, skills must be
modeled using the TMK (Task-Method-Knowledge) frame-
work (Murdock and Goel 2008; Rugaber, Goel, and Martie



2013). While other frameworks such as BDI (Belief-Desire-
Intention) (Rao and Georgeff 1997) and HTN (Hierarchical
Task Network) (Ghallab, Nau, and Traverso 2004) focus on
modeling an agent’s goals and actions, they have not been
specifically applied to represent skills in online courses or
for an IA to introspectively generate detailed explanations.

In this paper, we modeled six skills4 from an online AI
course offered in a master’s program in computer science
at Georgia Institute of Technology which has been offered
since Fall 2014. The skills were manually modeled using
the TMK framework by four graduate research assistants
and underwent a meticulous peer review process to ensure
accuracy and consistency.

TMK Model Development Steps To create a TMK
model, a sequence of steps were followed:

• Task Definition: Identify the goal of a skill, allow-
able inputs, givens (pre-conditions), makes (post-
conditions), and outputs.

• Method Specification: Outline the sequence of states
and state transitions to accomplish the task, using an
Organizer (deterministic finite state machine). For ex-
ample, in a sorting algorithm, a method might involve fix-
ing the order of two indices in a list by performing steps
such as comparing the pairs of numbers and swapping
them if they are out of order.

• Knowledge Representation: Define objects, concepts,
and their relationships within the environment, including
the properties of the objects and the logical expressions
that connect with user-supplied values. Going back to the
sorting algorithm example, the knowledge representation
may include the concepts of numbers, lists, and the rela-
tionships between them.

• Hierarchical Aspect of TMKs: Tasks can be decom-
posed into hierarchical sub-goals through their Method
specification. In the Method specification, each state can
have a sub-goal, allowing a TMK structure to model an
arbitrarily complex skill.

Fig. 1 shows a high-level TMK model for the ‘Partial
Order Planning skill’, used in a ‘robot painting a ladder
and ceiling’ problem, demonstrating the application of skills
taught in the AI course. The Task component aligns with
the problem (“paint ladder and ceiling”) and is connected to
the Method component (“partial order planning”). As stated
in RH2, this part of the model illustrates two characteris-
tics critical for generating procedural explanations: (1) the
linkage between Tasks and Methods showcases teleological
principles, where goals (tasks) systematically determine the
methods used; and (2) the sequence of states and state tran-
sitions within Methods capture causality. The Knowledge
component includes concepts with properties and ground
truths, which are essential for executing the Method and
completing the Task.

4A total of 22 lessons or skills are taught in the AI course.

3.2 Generating Reasoned Responses using TMK
Models

In skill-based learning, the IA utilizes the TMK model to
facilitate teleological, causal, and compositional reasoning.
This allows the IA to generate responses that comprehen-
sively map procedural steps to their underlying skill objec-
tives and ultimately, its overarching goal. For instance, in
the context of the “Classification” skill, the IA follows a se-
quence of state transitions to classify an object, such as a
bird. These steps include: (1) Processing percepts: Identify-
ing observable features (e.g., wings, beak). (2) Mapping per-
cepts to equivalence classes: Grouping features into prede-
fined categories (e.g., “avian features”). (3) Classifying ob-
jects: Assigning the object to a specific class (e.g., “bird”).
(4) Validating the classification: Confirming the assignment
aligns with the criteria.

This sequence enables the IA to explicitly represent
causal relationships between each step. Furthermore, by
aligning these steps to the “Classification” method, the IA
showcases a teleological connection, demonstrating how the
procedural sequence serves the broader goal of classifica-
tion. Additionally, the hierarchical structure of TMK models
equips the IA to break down complex tasks into simpler, ac-
tionable subtasks. This compositional aspect ensures that the
IA not only explains “what” needs to be done, but also pro-
vides insight into “why” each step is necessary and “how” it
contributes to the overall skill.

Therefore, by integrating the TMK model with Genera-
tive AI, the IA can go beyond procedural steps to explain
the underlying reasoning and organizational logic of a skill,
fostering deeper learner comprehension.

3.3 End-to-End Architecture of the IA
The end-to-end architecture of the IA—from classifying a
learner’s question to accessing relevant TMK components,
generating a knowledge trace and sending the learner an out-
put—is outlined in Fig. 2. Initially, the IA assesses whether
a learner’s question is relevant by checking for semantic
similarities between the question’s keywords and the top-
level names of Tasks, Methods, and Knowledge components
within the skill’s TMK model for the lesson that the learner
is currently undertaking. This is achieved through zero-shot
classification using an LLM.

Knowledge Retrieval Module This stage of the IA fo-
cuses on retrieving information to generate responses that
clarify the relationships and operational mechanisms within
the skill framework. As shown in Fig. 2, the IA identifies the
most relevant Task, Method, and Knowledge components to
address the learner’s query, ensuring responses are both ac-
curate and contextually meaningful. This process involves
two key steps:

1. Question Complexity Assessment: We prompt the IA to
assess the complexity and level of detail expected by the
learner’s question, see Appendix A.1 for a detailed de-
scription of the prompt. A k-score ∈ [1, 4] is assigned
to determine the number of documents needed from the
skill’s TMK model for a suitable response. A k-score of



Figure 2: Overall schematic of the IA architecture.

1 calls for a brief response (3-5 words), while a score of
4 indicates a comprehensive response spanning multiple
paragraphs sourced from top-4 matched documents. This
scoring helps the IA tailor the depth and breadth of infor-
mation included in its responses.

2. Document Retrieval: Based on the k-score, the IA
uses the FAISS library (Douze et al. 2024) to retrieve the
top k relevant documents from the skill’s TMK model.
FAISS efficiently searches and clusters dense vector em-
beddings, capturing deeper semantic relationships be-
yond traditional text matching. For example, it recog-
nizes the similarity between terms like ‘ship’ and ‘boat’,
or the parallel between ‘man’ and ‘woman’ to ‘king’ and
‘queen’. This capability enables the IA to identify the
most relevant content, ensuring responses are both pre-
cise and educationally impactful.

Response Generation Module Once the relevant docu-
ments are retrieved, the IA constructs its response through
an iterative refinement process:

1. Initial Response Generation: The IA creates an initial re-

sponse using the top-most relevant document from the
retrieved set.

2. Response Refinement: It then sequentially refines this re-
sponse by incorporating information from the remaining
k − 1 documents.

This iterative process improves the response’s accuracy,
completeness, and relevance by adding context and details
that may not have been covered in the initial document.

Response Optimizer Module After generating a response
from the top k relevant documents, the IA refines and fi-
nalizes it before delivering it to the user. During testing,
we observed that LLMs often produce verbose or repeti-
tive content when explaining concepts, occasionally includ-
ing phrases like “based on the previous information...” that
reveal the iterative refinement process. To address this, the
IA uses a response optimizer to rephrase and adjust the re-
sponse’s verbosity based on the question’s intent, ensuring
clarity and conciseness. For questions requiring detailed ex-
planations, such as “how”-based procedural queries, the op-
timizer retains depth, using paragraphs or bullet points for
clarity. In contrast, simpler queries, like definitions, are dis-
tilled into concise responses no longer than two lines. While
this module’s logic aligns with the “Question Complexity
Assessment” stage, which determines the number of docu-
ments to retrieve based on the k-score, its role here is to
ensure that the final response is clear, actionable, and tai-
lored to the user’s needs. This step acts as a final safeguard,
balancing thoroughness with readability.

4 Experimental Design and Evaluation
Strategies

To evaluate our IA’s ability to generate responses to skill-
based learning questions, we conducted a comprehensive in-
ternal evaluation inspired by recent advancements in human-
centered QA and automated metrics (Jurenka et al. 2024).

First, we developed a diverse set of verification questions
to evaluate every component of the TMK model. Next, we
compared the IA’s responses to those generated by baseline
models using a preference voting system. This evaluation
was guided by “explanation quality properties” from the Ex-
planation AI (XAI) literature (Nauta et al. 2023). We refer
to this process as the “Developer Perception Evaluation”.
Secondly, for automated evaluation, we employed indepen-
dent LLM-based judges to inspect the IA’s knowledge trace
and verify the accuracy and relevance of responses based on
three distinct criteria (described in section 4.3). Lastly, we
used semantic similarity scores using embeddings (Reimers
and Gurevych 2019) to compare the IA’s generated response
with the “expected answers”.

4.1 Developer Perception Evaluation with
Baseline model

Verification Questions We designed five categories of
evaluation questions specific to aspects of skill-based learn-
ing and evaluated our IA using a total of 30 questions across
these categories, covering six skills. See Appendix A.1 for
the complete list.



1. Task Questions: focus on the goal or achievable objec-
tives using the skill. Example: “What is the goal of solv-
ing a block world problem with means-end analysis?”
(Skill: Means-End Analysis).

2. Method Questions: inquire about procedural steps
needed to complete a task. Example: “What is required
to map percepts to equivalence classes?” (Skill: Classifi-
cation).

3. Knowledge Questions: focus on foundational informa-
tion like terms or definitions related to the skill. Example:
“What is a literal in the context of logical sentences?”
(Skill: Logic).

4. Student Questions: are learner specific queries agnostic
of modeling design choices and expected to mimic a
real student’s questions while learning the skill. Exam-
ple: “What make a state ’productive’ in addition to being
‘legal’?” (Skill: Semantic Networks).

5. Cannot Answer Questions: are out-of-scope to the skill’s
domain to assess how IA balances precision with recall.
Example: “How do you make a quesadilla?”.

RAG Benchmark Model To validate our hypotheses RH1
and RH2, we compared our IA with a RAG-based model
built on GPT-45, referred to as the “RAG Benchmark” which
uses the AI course textbook.

Both systems were provided with identical base system
prompts to ensure a fair comparison based on their respec-
tive KBAI and Generative AI capabilities. The RAG Bench-
mark, although not integrated with LangChain, used a stan-
dard OpenAI Assistant augmented with a file search tool
that queried a vector store of the AI course textbook embed-
dings— an approach commonly seen in modern educational
AI applications. This comparative analysis aimed to evaluate
whether the TMK-based backend provides a significant ad-
vantage in generating more meaningful and contextually rel-
evant responses to skill-based learning questions, compared
to a model relying on RAG with unstructured course mate-
rials.

4.2 Semantic Similarity of the IA’s Responses
with Developer-Expected Responses

We utilized SBERT (Sentence-BERT) (Reimers and
Gurevych 2019), to compute sentence embeddings for ef-
fective semantic similarity assessment. For each verification
question, we created an expected response by manually trac-
ing through the TMK models they had developed. To eval-
uate the IA’s performance, we compared the embeddings of
the IA’s response with those of the expected response using
SBERT. The resulting scores ranged from 0 to 1, where 0
indicates no similarity and 1 indicates a high degree of se-
mantic similarity between the two responses.

4.3 Automated Evaluation of Knowledge Traces
using LLM Judges

To ensure our IA adheres to its design principles, we im-
plemented an automated knowledge trace evaluation system

5Similar to the IA, we used GPT-4o mini

using LLM as “judges” to assess how the IA uses TMK files
during response generation, inspired by recent work (Zheng
et al. 2023; Ke et al. 2024). The evaluation focused on three
criteria: (1) whether the IA accessed the most relevant TMK
documents for each question, (2) to what extent the inter-
mediate response (from Response Generation Module) re-
lied on these documents versus hallucinated content, and (3)
whether critical information was maintained in the final re-
sponses after optimization by the Response Optimizer Mod-
ule.

The IA was configured to log its knowledge trace as it
processed questions, storing all data necessary for analyz-
ing the three criteria. To counteract the inherent stochastic
nature of LLMs, we processed each of the 30 verification
questions five times, resulting in 150 responses and corre-
sponding knowledge traces.

Two automated LLM-based judges analyzed these re-
sponses. By providing the TMK model, learner’s question,
and the generated final response as context, the first judge
evaluated how much of the intermediate response content
was directly derived from the accessed TMK files, using
Chain-of-Thought reasoning (Wei et al. 2023) to document
its analysis process and identify any externally generated
content. The second judge assessed the retention of infor-
mation from the intermediate response to the final response,
noting any omissions or alterations and providing detailed
rationales for their findings. To ensure consistency and qual-
ity, we audited a random sample of these evaluations.

5 Results
5.1 Developer Perception Evaluation
Seven evaluators from the IA development team used a set of
30 verification questions to compare responses generated by
the IA and the RAG Benchmark, focusing on metrics such
as correctness, completeness, confidence, comprehensibil-
ity, and compactness (Jurenka et al. 2024)6. Despite using
internal developers as evaluators, this setup gave preliminary
insights into how the responses might be perceived by real-
world users–adult learners engaged in online courses.

While we captured ratings across all five metrics, devel-
opers were also asked to provide an overall preference as a
vote when reviewing a question alongside the two generated
responses. Although a detailed analysis of developers’ rat-
ings per metric is beyond the scope of this paper, we use the
developers’ overall votes as a proxy for these metrics and
focus on reporting these findings in our results.

To minimize bias, evaluators conducted blind voting,
where they did not know which system generated each re-
sponse. They could choose one response, both responses,
or neither as the preferred option. The voting outcomes in-
dicated a preference for the IA, which received 115 votes
compared to the RAG Benchmark’s 75 out of 140 total eval-
uations. This suggests that the IA’s responses, guided by
the TMK framework, were deemed more helpful by evalua-
tors. The average agreement indices (percentage of total re-

6See Appendix A.5 for descriptions regarding each metric and
desired outcomes for human-centered evaluations of generated AI-
based explanations.



sponses from a system marked as ideal by evaluators) for the
RAG Benchmark and IA were 53.57% and 82.14% respec-
tively, reflecting a stronger consensus among developers for
the IA’s responses. A detailed voting results and breakdowns
per question-category and skill are presented in Appendices
A.3 and A.4. A limitation of human-centered evaluations

Backend Total Votes Agreement Index
RAG Benchmark 75 53.57%
IA 115 82.14%

Table 1: Developer perception evaluation using 30 diverse
verification questions between RAG Benchmark and IA.

for LLM-generated responses is the potential variation in re-
sponses evaluators may encounter due to the stochastic na-
ture of LLMs, even when the temperature is set to 0. How-
ever, an analysis of stored responses showed minimal differ-
ences between the generated answers.

5.2 Semantic Similarity Results

The IA’s responses achieved an average SBERT score of
0.82, with scores ranging from 0.66 to 0.93. These re-
sults demonstrate a high level of semantic alignment. Lower
scores were primarily attributed to the IA’s inclusion of
explanatory examples, which, while enhancing learner un-
derstanding, differed from the concise phrasing of the ex-
pected answers, thereby lowering the measured similarity.
Pedagogically, the IA’s responses often surpassed the ex-
pected answers by offering relatable, learning-focused ex-
planations. This added significant educational value, partic-
ularly for supporting skill-based learning in online environ-
ments.

5.3 Automated Analysis by LLM judges

Our evaluation showed that our IA correctly identified 30
questions as irrelevant and successfully used the correct
TMK files for 90% of the relevant questions. On average,
83% of the content in the intermediate responses came di-
rectly from the TMK files, with a standard deviation of
8.8%. Most additions involved logical elaborations on TMK
content rather than factual errors. The second judge found
that 72% of the content from the intermediate responses was
preserved in the final responses, balancing clarity with con-
tent retention.

The results validate that our IA strongly aligns with its de-
sign principles, effectively using TMK files to generate and
refine responses. There were two misclassifications cases
which suggests the need for finer categorization of ques-
tions, especially those that span multiple TMK components.
Future work will aim to refine these classifications and ex-
pand evaluations to handle more diverse user queries, en-
hancing our IA’s reliability in practical settings.

6 Discussion
6.1 Comparative Analysis of RAG Benchmark

and IA Responses
To demonstrate how the IA generates responses that are
teleologically and causally informed compared to the RAG
benchmark, we compare the final responses generated by
both approaches for a ‘Method’ question and a ‘Task’ ques-
tion, shown in Table 2. The RAG Benchmark responses
demonstrate a baseline level of accuracy by correctly iden-
tifying the key steps and goals. However, they often lack
the depth and precision expected in the context of course-
specific skill terminology and associated examples. For ex-
ample, while the RAG response correctly outlines the goal
for the ‘painting’ task in partial order planning, it does
not include the logical representation of goal state that was
shown in lecture content.

Conversely, the IA’s explanations are notably comprehen-
sive and contextually relevant, going beyond correctness by
incorporating precise language and structured details that
align closely with course content. In the Means-End Anal-
ysis Method question, the IA’s response not only explains
the process of identifying the “delta” but also emphasizes
its role in determining valid block moves. Similarly, for the
painting task, the IA’s explanation uses logical representa-
tions like “Painted(Ladder) & Painted(Ceiling)” to explicitly
communicate the goal state.

Higher SBERT scores (e.g., 0.92 and 0.89) for the IA’s re-
sponses reflect their alignment with the developer-expected
answers, validating the pedagogical superiority of the TMK-
enhanced IA’s approach over the more generic RAG Bench-
mark responses. In Appendix A.6, we delve deeper into the
IA’s knowledge trace (intermediate steps) that resulted into
improved final responses for the two questions in Table 2.

6.2 Validation of Research Hypotheses
Our findings strongly support both research hypotheses
(RH1 and RH2), demonstrating that the IA, grounded in the
TMK framework, effectively facilitates skill-based learn-
ing by introspectively analyzing and clearly communicating
skill designs.

The IA’s ability to explain how a skill functions (RH1) is
validated through multiple evaluations, including developer
voting, semantic similarity analysis, and final response com-
parisons. These evaluations consistently show the IA’s su-
periority over the RAG benchmark. Developer preferences,
combined with an average SBERT score of 0.82, highlight
the IA’s ability to deliver detailed and accurate explanations
that align well with expectations. This is further demon-
strated by the IA’s detailed responses, such as its ability
to identify and explain the role of “deltas” in the Means-
End Analysis skill—an aspect notably missing from the
RAG benchmark responses. Therefore, these findings vali-
date RH1 by demonstrating the IA’s ability to provide com-
prehensive and pedagogically valuable explanations. It goes
beyond surface-level definitions, delivering deeper insights
into skills and enhancing the learning experience. The au-
tomated knowledge trace evaluation using LLM judges fur-
ther supports RH2, confirming that the IA proficiently in-



Question
(Cat. / Skill)

Expected Re-
sponse

RAG Benchmark IA SBERT
for IA

What is the
first step
in solving
a block
world prob-
lem using
means-end
analysis?
(Method /
Means-End
Analysis)

The first step in
solving a block
world problem
using means-end
analysis is to
compare current
arrangement to
goal arrangement
and determine the
delta or differences
in arrangements.

The first step in solving a block
world problem using means-end
analysis is to compare the current
state with the goal state and iden-
tify the differences between them.

The first step in solving a Block
World problem using Means-End
Analysis is to compare the initial
block arrangement with the goal ar-
rangement. This involves identifying
the differences, or “delta,” to deter-
mine what changes are needed to
achieve the goal state. This compar-
ison lays the groundwork for gener-
ating valid block moves to transform
the initial arrangement into the de-
sired one.

0.92

What is the
goal of the
painting task
in partial
order plan-
ning? (Task
/ Partial
Order Plan-
ning)

The goal of the
painting task in par-
tial order planning
is to achieve the
state where both
the ceiling and the
ladder are painted.
This requires the
agent to plan ac-
tions in an order
that ensures both
goals are met with-
out conflicts—i.e.,
to first paint the
ceiling and then
paint the ladder.

The goal of the painting task
in partial order planning is to
achieve two separate objectives:
painting the ceiling and painting
the ladder. The challenge lies in
the fact that these goals are in
conflict because painting the lad-
der first makes it wet, preventing
the robot from climbing it to paint
the ceiling. Therefore, the goal is
to determine the correct sequence
of actions to achieve both objec-
tives efficiently, which involves
painting the ceiling first, descend-
ing the ladder, and then painting
the ladder.

The goal of the painting task in
partial order planning is to achieve
the end state where both the lad-
der and the ceiling are painted,
represented as “Painted(Ladder) &
Painted(Ceiling).” In this scenario, a
conflict arises: if the robot paints the
ladder first, it becomes wet and cannot
be used to reach the ceiling. Partial
order planning helps resolve this by
organizing actions to avoid such con-
flicts. The optimal sequence is to first
paint the ceiling, then climb down,
and finally paint the ladder, ensuring
that the actions for each goal do not
interfere with one another.

0.89

Table 2: Comparison of final responses from RAG Benchmark and IA systems to the expected responses.

spects skill designs and effectively utilizes TMK files to con-
struct responses. The IA accessed the relevant files in 90%
of cases, with the majority of content in the initial responses
directly drawn from these files. This structured use of TMK
files strengthens the IA’s ability to effectively link tasks to
methods and capture causal relationships, validating RH2’s
assertion that the TMK framework enables detailed and ac-
curate skill inspection.

7 Ethics Statement

This research follows ethical AI principles, emphasizing
transparency, user-centered design, and responsible use of
AI. Six TMK models were manually developed from six
lessons as part of an online AI course taught at Georgia Insti-
tute of Technology, excluding sensitive information. The use
of Generative AI, particularly GPT-4-based models, was re-
stricted to educational settings with safeguards against out-
of-scope responses.

Evaluations were conducted internally using human-
centric and automated methods, with no external partici-
pants or sensitive data. Future evaluations involving learn-
ers will follow university IRB guidelines, ensuring informed
consent and data protection.

8 Conclusion
We proposed a hybrid approach to answering skill-based
learning questions by integrating structured KBAI represen-
tations using TMK models with Generative AI. This enabled
an IA to generate logical, structured, and contextually rele-
vant explanations that enhance skill-based learning. Across
multiple evaluations, the IA significantly outperformed a
RAG-based agent, aligning with educational goals to deepen
learner engagement and comprehension. Future work will
focus on deploying the IA in real-world settings to assess its
impact and scalability.

Limitations The manual creation of TMK models re-
quired approximately seven hours per model. This included
understanding the lesson (1–2 hours), drafting the initial
model (1–2 hours), revising based on peer feedback (1 hour),
and finalizing (1 hour). We aim to automate TMK model cre-
ation and establish metrics to improve skill representation
accuracy and reduce development time.

Currently, the IA addresses general procedural questions
but struggles with episodic queries about specific problem
instances. Adapting TMK models to handle these queries is
a focus for future research. Furthermore, as evaluations were
conducted internally, future focus group studies with actual
learners will validate the IA’s utility and identify areas for



improvement.
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A Appendix
A.1 Estimate Question Complexity via Prompting
The IA assesses the complexity and level of detail expected
by the learner’s question using the following prompt:

Prompt to the IA: “I will give you a question and
you must assign an integer value between 1 and 4 for
that question. To assign an integer value to the ques-
tion follow the rules given here. 1 →The question con-
tains 3 to 5 words. It is very direct with one word in



the question that the answer needs to address. The
question has statements like, ‘answer in a sentence’,
‘answer as briefly as possible’, ‘give the shortest an-
swer possible’ and so on. Example: What is ED?. 2
question might contain a request for a ‘short’ an-
swer, ‘brief’ answer or ‘few sentences’ and so on.
The question does not ask for any detail and seems
straight forward. Example: Explain very briefly how
you find matches?. 3 →The question will contain a
request for ‘short paragraph answer’ or ‘answer in
a paragraph’. It could also contain words like ‘ex-
plain’, ‘explain briefly’, ‘elaborate’ and so on. Ex-
ample: Explain how you find matches? or How do
you generate response? Give answer in a paragraph.
4 →The question will contain words like ‘in detail’,
‘completely’, ‘as much detail as possible’ and so on.
T he question will have a statement or part of the
question will be making a request for a very elabo-
rate and detailed answer. Example: Explain in great
detail your match making process. Return only the in-
teger value assigned to the question.”

User: <actual question asked by the learner>

A.2 Verification Questions
Below is the list of verification questions used in our evalu-
ation based on five question categories.

Task:
• What is the goal of the painting task in partial order plan-

ning?
• What are the inputs needed to prove a logical statement

using resolution theorem proving?
• What condition must be true before classifying objects?
• What input is required to develop a concept definition?
• What is the goal of solving a block world problem with

means-end analysis?
• What condition must be satisfied on both banks for the

task to be considered safe?

Knowledge:
• What is variabilization in the context of incremental con-

cept learning?
• What is a subclass in a concept hierarchy?
• What does “no goal clobbering” mean in the context of

partial order planning?
• What is the purpose of calculating the delta in means-end

analysis?
• What is a literal in the context of logical sentences?
• What is a “configuration” in the context of the Guards

and Prisoners problem?

Method:
• What is required to map percepts to equivalence classes?
• What happens after the boat crosses the river in the

Guards and Prisoners problem?

• What is the purpose of checking for a contradiction in
resolution theorem proving?

• What are the key steps in incremental concept learning?
• What is the first step in solving a block world problem

using means-end analysis?
• How does the method handle conflicts between subgoals

when creating the plan?

Student:
• How should I modify the concept diagram if a negative

example of “foo” is introduced? What about positive?
• What are the common features shared by eagles, blue-

birds, and penguins?
• Can you help me remember the terms modus ponens and

modus tollens?
• How do I represent a goal state that involves multiple

actions or conditions in propositional logic?
• What makes a state “productive” in addition to being le-

gal?
• How should I interpret Move (C, Table) and what does it

mean in terms of block position?

Cannot Answer:
• How do you make a quesadilla?
• In what galaxy is Earth located?
• Who is your favorite superhero?
• Why do colorless green ideas sleep furiously?
• Who is the president of the United States?
• Shall I compare thee to a summer’s day?

A.3 Results by Question Category
The evaluation covered five question categories: Task,
Method, Knowledge, Student, and Cannot Answer. The per-
formance of each backend by question category is shown
below in Table 3.

Question Category RAG Bench-
mark

IA

Task 12 21
Method 15 22
Knowledge 19 19
Student 16 20
Cannot Answer 13 33

Table 3: Evaluator votes by question category.

In the Task category, IA received 21 votes, outperforming
the RAG Benchmark which received 12 votes. This indicates
IA’s superior ability to provide clear and accurate explana-
tions regarding the goals of tasks. Similarly, IA led in the
Method category with 22 votes, reflecting its proficiency in
explaining the steps or procedures involved in completing
a task. The Knowledge category was closely contested, with
both IA and RAG Benchmark receiving 19 votes. This result



is logical as these questions simply target background infor-
mation and definitions. In the Student category, IA main-
tained its lead with 20 votes, indicating its better contex-
tual understanding of user-specific queries. Finally, IA dom-
inated the Cannot Answer category with 33 votes, highlight-
ing its ability to more gracefully handle out-of-scope or ir-
relevant questions.

Skill RAG
Bench-
mark

IA

Classification 13 19
Incremental Concept Learning 11 21
Means-End Analysis 10 20
Planning 14 14
Resolution Theorem Proving 15 23
Semantic Networks 12 18

Table 4: Evaluator votes by modeled skill.

A.4 Results by Skill
The evaluation also examined performance by skill/problem
across six different areas: Classification, Incremental Con-
cept Learning, Means-End Analysis, Planning, Resolution
Theorem Proving, and Semantic Networks. The results are
presented below in Table 4.

For Classification, IA received 19 votes, outperforming
both RAG Benchmark which received 13 votes. In Incre-
mental Concept Learning, IA was the clear leader with 21
votes, compared to 11 for RAG Benchmark. In Means-End
Analysis, IA scored 20 votes, while RAG Benchmark had
10 votes. Planning was the only category where IA and
RAG Benchmark tied with 14 votes each. IA also excelled in
Resolution Theorem Proving, receiving 23 votes, surpassing
RAG Benchmark’s 15 votes. Lastly, in the Semantic Net-
works category, IA led with 18 votes, while RAG Bench-
mark had 12 votes.

The results show that IA performed almost consistently
better across multiple skills, particularly in more complex
areas like Incremental Concept Learning and Resolution
Theorem Proving.

A.5 Human-centered Metrics
Table 5 outlines the five human-centric metrics employed
to evaluate IVY’s response quality. This provides a compre-
hensive framework for AI-generated responses from a user-
focused perspective.
The Completeness metric, analogous to “Recall” in infor-
mation retrieval, differs from the traditional quantitative ap-
proaches by adopting a user-focused and qualitative lens to
assess how thoroughly a response covers a question. Sim-
ilarly, the Confidence metric goes beyond probabilistic ex-
pression. It evaluates the response’s factual nature such as
directness of the answers and the absence of terms such as
“not sure” or “likely”.

A.6 IA Response Generation Steps and
Knowledge Trace

Task Response Steps: This is an example response
from the evaluation of the Partial Order Planning skill. IA
generates an initial response from what it deems are the top
3 most relevant TMK parts to the user’s question. Then it
then refines this response by reorganizing and removing
repeated or irrelevant text. This cuts down the word count
by roughly 50%.

User Question: What is the goal of the painting task
in partial order planning?

Knowledge Retrieval Module: Analysis showed a k-
score of 3 meaning 3 most relevant TMK parts which were
the ’paint ladder and ceiling’ task, and ’Robot Tasked with
Painting Problem’ knowledge, and ’partial order planning’
knowledge docs.

Response Generation Module: Output of this mod-
ule: “The goal of the painting task in partial order planning
is to achieve the desired end state where both the ladder
and the ceiling are painted. Specifically, the goal state
is represented as “Painted(Ladder) & Painted(Ceiling),”
meaning that both the ladder and the ceiling must be in
a painted condition.In this scenario, the two goals are in
conflict: if the robot paints the ladder first, it will become
wet, preventing the robot from climbing on it to paint the
ceiling. Therefore, the planning process must account for
this conflict by creating a sequence of actions that allows
for both goals to be achieved without interference. Partial
order planning, also known as nonlinear planning, is
particularly useful in this context as it helps avoid conflicts
in advance to achieve multiple goals. To reach the goal,
the robot must first paint the ceiling, then climb down,
and finally paint the ladder. This involves organizing the
plans in such a way that the actions taken to achieve one
subgoal do not interfere with the actions needed for the
other subgoal. By following this structured approach, the
robot can successfully complete the overall painting task
without clobbering the necessary actions for each goal.”

Response Optimizer Module: The generated response is
refined to enhance clarity and conciseness. In this example,
it retains the essential explanation of the goal state and its
representation as “Painted(Ladder) & Painted(Ceiling)” for
clarity. Redundant details, such as excessive elaboration on
partial order planning as nonlinear planning, are removed
to streamline the response. Additionally, the explanation
of conflict resolution is simplified to focus on the logical
sequence of actions, ensuring the final response remains
accurate and concise. This refinement reduces the response
length by approximately 50% while maintaining its rele-
vance to the user’s question.

Final Response: “The goal of the painting task in
partial order planning is to achieve the end state where
both the ladder and the ceiling are painted, represented as



Metric Description Desired Outcome Notes

Correctness
The accuracy and validity of the re-
sponse generated by the AI agent. High correctness

A response with high correct-
ness should be factually accurate
(based on TMK) to the question or
context.

Completeness
The response fully addresses the
user’s query. High completeness

A response with high completeness
satisfactorily covers all aspects of
a user’s query, ensuring no critical
information is left out.

Confidence

The degree of certainty the AI agent
has regarding the accuracy or ap-
propriateness of its answer to the
user’s query.

High confidence

A response with high confidence is
indicated by straightforward, fac-
tual answers, while terms like ’not
sure,’ ’likely,’ or ’could be’ signify
medium to low confidence.

Comprehensibility
The ease with which a user can un-
derstand the response generated by
the AI agent.

High comprehensibility

A response with high comprehensi-
bility is easy to understand, use-
ful, and actionable. Reduces the
likelihood of misunderstandings or
need for follow-up questions.

Compactness
The quality of conveying necessary
information in a concise and effi-
cient manner.

High compactness
A response with high compactness
is clear and to the point, without
unnecessary elaboration.

Table 5: Evaluation metrics for AI generated responses.

“Painted(Ladder) & Painted(Ceiling).” In this scenario, a
conflict arises: if the robot paints the ladder first, it becomes
wet and cannot be used to reach the ceiling. Partial order
planning helps resolve this by organizing actions to avoid
such conflicts. The optimal sequence is to first paint the
ceiling, then climb down, and finally paint the ladder,
ensuring that the actions for each goal do not interfere with
one another.”


