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Abstract. Many studies on using online laboratories for learning focus
on pedagogical contexts in K-12 education with well-defined problems as
well as well-defined learning goals, assessments, and outcomes. We de-
scribe a study on the use of an online laboratory for self-directed learning
through the construction and simulation of conceptual models of ecolog-
ical systems. The learning goals and the demographics of the learners in
this study are unknown; only the modeling behaviors and outcomes are
observable. We analyzed the modeling behaviors of 315 learners and 822
instances of learner-generated models using machine learning techniques
such as clustering and dimensionality reduction. We found three types
of learner behaviors: observation (focused on simulation), construction
(focused on conceptual model), and exploration (full cycle of model con-
struction, simulation, and revision). We found that while the observation
behavior was most common, the exploration behavior led to higher model
quality.

Keywords: Self-directed learning · Modeling and simulation · Online
laboratory · Learning analytics.

1 Introduction

In recent years, self-directed learning through media and information technology
has become increasingly prevalent. For example, people often learn by reading
and contributing to articles in Wikipedia [7] and by using and producing open-
source software in Scratch [22]. This is learning without any instructor, syllabus,
or mandate to cover essential materials. It is what Haythornthwaite et al. (2018)
call “Learning in the Wild” (with due acknowledgement of Hutchins’ original
“Cognition in the Wild”) [12]. It is non-formal learning taking place outside
classroom settings by asking, answering, and learning at the discretion of the
learners.

Online laboratories too provide affordances for self-directed learning. A learner
can learn independently and investigate their own hypothesis by designing multi-
ple experiments and evaluating their hypothesis via simulations at the discretion
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of the learner [16][17]. Learners can use online laboratories to represent various
phenomena around the learners and better understand the phenomenon or pre-
dict the outcomes of hypothetical changes [16][17]. Given that addressing envi-
ronmental problems is among the biggest challenges, learners can play a more
active role in learning about ecological phenomenon using online laboratories.

One challenge in using online laboratories for self-directed learning is mea-
surement of the learning outcomes as there almost surely will be a large variance
in the ecological phenomena being modeled as well as in the learning goals and
behaviors. However, at present there is a lack of understanding of the processes
and outcomes of self-directed learning in online laboratories including in the
domain of ecology. Many studies on the use of virtual laboratories for learn-
ing focus on pedagogical contexts in K-12 education with well-defined problems
as well as well-defined learning goals, assessments, and outcomes (for example,
[16][3][9][17]). As online laboratories become increasingly widespread, it is impor-
tant to not only formulate appropriate measures of learning but also to validate
learning theories and findings from the literature.

This paper analyzes self-directed learning in VERA (Virtual Experimentation
Research Assistant), a publicly available online laboratory for modeling ecologi-
cal systems [2][1] (vera.cc.gatech.edu). VERA is a web application that enables
users to construct conceptual models of ecological systems and run interactive
agent-based simulations of these models. This allows users to explore multiple
hypotheses about ecological phenomena and perform “what if” experiments to
either explain an ecological phenomenon or attempt to predict the outcomes of
future changes to an ecological system.

We investigate three research questions. (1) What kinds of learning behaviors
emerge in self-directed learning in an online laboratory? (2) How do the behaviors
evolve over time? (3) How do the learning behaviors relate to learners with
different engagement levels and model quality? In this study the learning goals,
the demographics of the learners or even their precise geographical location are
unknown. The only observables are the modeling behaviors and outcomes.

2 Related Work

The topic of measuring learning in online laboratories has already found sig-
nificant traction within the AI in Education community. For instance, Gobert
et al. (2013) assessed middle school students’ skills in designing controlled ex-
periments from online microworlds in the Inq-ITS system (Inquiry Intelligent
Tutoring System) [9]. The authors used students’ log data to hand-score their
actions based on pre-defined categories. Basu et al. (2013) assessed middle school
students’ learning process and outcomes based on metrics that specify the dis-
tances between the student’s models and the corresponding expert models [3].
These studies are interesting in that they use the actions students take within
online laboratories as the basis for measurement [9][3][17]. However, the primary
setting for these studies was not on self-directed learning, but on well-defined
problems in K-12 science education with formal learning and specific goals.
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Other studies have extracted learner behaviors for measuring and under-
standing informal learning, self-regulated learning, and self-directed learning in
open exploratory environments [4][14][20]. Some researchers have analyzed ob-
served behaviors to uncover learning patterns in MOOCs [20] and an online
problem-solving environment [14], typically with clustering methods. However,
these approaches were used in contexts where learning outcomes could be mea-
sured (e.g., video completion, solutions to given problems).

Perhaps the closest literature to our research is recent work on clustering
learner data [6][14][20] and assessing informal learning using Scratch [27][22][21].
On the one hand, some of our learning techniques build on this earlier work. On
the other, the two context are very different: informal learning about beginner
programming by children in earlier work, and self-directed learning in an online
laboratory for ecological modeling in the present study.

3 A Brief Description of VERA

In VERA, learners build conceptual models of complex phenomena, evaluate
them through agent-based simulation, and revise the models as needed. VERA
uses Component-Mechanism-Phenomenon (CMP) language [18], a variation of
the Structure-Behavior-Function (SBF) language [11], for conceptual modeling
of complex systems. VERA provides the syntax and semantics to construct the
CMP conceptual models of an ecological phenomenon consisting of interacting
components (e.g., biotic, abiotic), relationships (e.g., consume, destroy, etc.), and
their properties (e.g., initial population, lifespan, etc.). Following our earlier work
on the ACT and MILA-S system [25][17], VERA uses an artificial intelligence
compiler to automatically translate the patterns in the conceptual models into
the primitives of agent-based simulation of NetLogo [26].

Figure 1 shows an example of a conceptual model created by a self-directed
learner (1), and the corresponding simulation output (3). Learners can add bi-
otic/abiotic components and relationships between them in a canvas, change a
set of simulation parameters for each component/relationship, and run agent-
based simulation of the conceptual model. Learners’ log data within the VERA
system creates timestamped records of actions such as adding a component, re-
moving a component, or connecting two components with a relationship. These
individual actions were categorized into three activity classes: model construc-
tion, parameterization, and simulation.

1. Model Construction: is defined as instances wherein something new is in-
serted into the model (both components and relationships), or a previously
existing portion of the model is removed.

2. Parameterization: is defined as instances where previously-added compo-
nents or relationships’ parameters are modified.

3. Simulation: is defined as instances wherein simulation is executed.
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Fig. 1. An Example of Conceptual Model Created by a Self-Directed Learner. (1)
Model Construction. (2) Parameterization. (3) Simulation.

4 Analysis of Self-Directed Learning in VERA

VERA has been publicly available and globally accessible through multiple web-
sites since the fall of 2018. A preliminary analysis showed that several thousand
users accessed VERA through the end of 2021. However, a large majority of users
spent only very limited time with VERA and did not construct or simulate any
model. Only 315 learners during this time constructed and/or simulated a total
of 822 models. We deliberately did not collect any data on the demographics or
the precise geographical location of the learners to protect their privacy. Instead,
only two types of data are available for analysis: (1) Learners’ interactions with
VERA (log data); and (2) Learners’ final work products (conceptual models).

4.1 Behavioral Patterns

We analyzed learners’ modeling behaviors in three phases. First, an activity
sequence for each model was created. Second, each activity sequence was grouped
by their sequence lengths (short, medium, long). Third, a Levenshtein Distance
algorithm was applied to each group to measure similarities among the sequences
[19] and then the sequences were clustered using the Agglomerative Hierarchical
method [15].

Creating Activity Sequence In order to identify the behavior patterns, we
first extracted action sequences for every model of a learner l. For instance, if
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a learner performed a series of actions of adding a component, adding another
component, and running a simulation within his or her model, the activity se-
quence is ‘ccs’ (construction, construction, simulation). Given that an activity
has no time duration in our data, we focus on the transition from one activity
to another. Having the segments of time may result in some activities displayed
if the granularity of the time segment is longer than the time between activities.
This leaves a total of 822 activity sequences, one for each model, created by the
315 learners. Mean and median sequence length are respectively 52.17 and 15
with a minimum length of 1 and a maximum length of 1605.

Segmenting Activity Sequence Levenshtein Distance computes the number
of insertions, deletions and replacements needed to transform one string into the
other [19]. This means the similarity for two sequences with the same pattern can
be measured as low when they have significantly different sequence lengths. For
this reason, we grouped similar sequence lengths together. First, outliers (too
short or too long sequences) that are above a threshold of mean + 2*SD and be-
low the threshold of mean - 2*SD were eliminated (N=33). Then a segmentation
optimization method (Kernel Density Estimation (KDE)) was applied to split
the remaining 789 sequences into three different groups by their length based on
two local minima in density: short sequence (<29.59, N=556), medium sequence
(≥29.59, <42.85, N=76), and long sequence (>42.85, N=157).

Fig. 2. Dendrograms with data points (x-axis) and cluster distance (y-axis) of (1) Short
Group (Left) (2) Medium Group (Middle) (3) Long Group (Right).

Behavior Clustering of Similar Sequences The extracted activity sequences
from the data are divided into three length groups, and the Levenshtein Distance
(a string metric for measuring the difference between two sequences) was applied
within each length group [19]. An Agglomerative Hierarchical method, the most
common type of hierarchical clustering to group objects in clusters based on
their similarity, is used to aggregate the most similar sequences based on the
Levenshtein distance matrix [15][6]. The bottom-up algorithm initially treats
each sequence as individual cluster and then successively merge pairs of clusters.

As a result, the short length group produced two sequence clusters, the
medium length group produced two sequence clusters, and the long length group
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produced three sequence clusters, as illustrated by the Dendograms in Figure 2.
A total of seven clusters were visually compared and merged into three clusters;
Figure 3 illustrates the resulting three clusters using the visualization technique
in [6].

Fig. 3. Three Behavior Clusters of Similar Activity Sequences. 16 activity sequences
are randomly selected for each type. Type 1 focuses on experimenting with very little
or no model construction. Type 2 focuses on model construction. Type 3 shows various
activities.

Behavioral Clusters Figure 3 shows three behavioral clusters in VERA with
16 randomly selected example sequences for each cluster. Each horizontal line in
the figure shows a sequence of activities in a model, the length of an activity in
a sequences corresponds to the frequency of the activity. The sequence clusters
have the following characteristics:

1. Type 1 (N=382): Observation. The learners engage in experimenting with
different simulation parameters with very little or no evidence of construction
of conceptual models.

2. Type 2 (N=338): Construction. The learners engage in short sessions of
model construction with little or no simulation of the conceptual models.

3. Type 3 (N=69): Exploration (or Full Cycle). The learners engage in a full
cycle of model construction, parameterization, and simulation.
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4.2 Learners’ Engagement

Aggregated Learner Data We create a set of five features using the aggre-
gated user data to identify different learner types: 1) the number of original
models, 2) the number of copied models, 3) total counts of model construction,
4) total counts of parameterization, and 5) total counts of simulations. For each
learner l, we aligned all models of a learner l including original and copied models
in sequence from the earliest to the latest. Then, we constructed a i x 3 matrix
Pl using the learners’ models and frequencies of their three activities (model con-
struction, parameterization, simulation), where fi,j is the frequency of activity
aj(1 <= j <= 3) in model i.

Pl =

f1,1 f1,2 f1,3
...

...
...

fi,1 fi,2 fi,3

 (1)

We compute Pl for all 315 learners to construct a matrix Tu that has 315 x 5
dimensions.

Tl =

v1,1 v1,2 v1,3 v1,4 v1,5
...

...
...

vl,1 vl,2 vl,3 vl,4 vl,5

 (2)

where vl,1 is the number of original models a learner l made, and vl,2 is the
number of copied models for a learner l. vl,3, vl,4, vl,6 are created by averaging
columns in Pl.

Learner Clustering with PCA and K-Means++ We used Principal Com-
ponent Analysis (PCA) as a dimension reduction technique to find a linear com-
bination of the features in Tl [13]. The feature values were scaled as few values
with different quantities may impact the linear regression algorithm.

All learners were plotted with the first and second PCA components (PC1
and PC2). PC1 explains 77.48% of the variance and PC2 explains 9.53% of the
variance. Together, they explain 87.01%. Consequently, a new matrix Tp was
created that has 315 x 2 dimensions with the two vectors a1, a2 that define the
first two principal components.

We applied a clustering algorithm on the Tp. We used the K-means++ algo-
rithm, which is the regular K-means algorithm with a smarter initialization of
the centroid and improves the quality of the clustering. To find an appropriate
k, we plotted the total Within-Group Sum of Squared Error (SSE) for increasing
k values (see Figure 4 (Left)). We chose k=5 as increasing the value of k from
4 to 5 reduces considerably the value of the total Within-Group SSE. However,
further increasing k affects the SSE values only minimally.
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Engagement Learner Groups Table 1 summarizes feature importance by
the magnitude of the corresponding values in the eigenvectors. All features in
PC1 have similar importance while Feature 3, 4, 5 (total counts of construction,
parameterization, and simulation) are the most important for PC1. Feature 1
(the number of original models) is the most important for PC2. In other words,
higher PC1 means a higher level of engagement (many actions). Learners with
higher PC1 have completed many actions. Higher PC2 means more models (es-
pecially original models), but fewer actions on them. The rightmost cluster with
only one were excluded from the analysis (see Figure 4). Therefore, we derived
four types of learners as illustrated in Figure 4 (Right):

1. Learner Cluster A (green): This learner group has relatively high PC1 and
low PC2 values. They are the most active learners who created some con-
ceptual models with many actions on them.

2. Learner Cluster B (navy blue): This learner group has relatively medium PC1
and medium PC2 values. They are moderately active learners who created
some models with moderate actions on them.

3. Learner Cluster C (yellow): This learner group has relatively low PC1 and
high PC2 values. They are less active learners who created many models but
with fewer actions on them.

4. Learner Cluster D (purple): This learner group has relatively low PC1 and
low PC2 values. They are less active learners who created less models.

Fig. 4. The Total Within-Group SSE Values by Different Number of Clusters (K)
(Left). K=5 was Selected. The Corresponding Learner Clusters (Right). The rightmost
cluster with only one were excluded from the analysis.

4.3 Behavior Patterns with Different Engagement Learner Groups

Table 2 summarizes the distribution of behavior types for each learner group.
Type 1 (Observation) behavior is the most common in most learner groups except
for C. While Type 1 behavior is widely used in all groups, Type 2 (Construction)
and Type 3 (Exploration or Full Cycle) sharply divide between the more engaged
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Table 1. The Importance of Each Feature v by the Magnitude of the Corresponding
Values in the Eigenvectors (Higher Magnitude — Higher Importance).

Component v1 v2 v3 v4 v5
PC1 0.39588313 0.40277977 0.46261331 0.48078568 0.48567383
PC2 0.83169548 0.21416105 -0.20546292 -0.34241763 -0.32086262

group (A, B) and the less engaged group (C, D). Type 2 is more commonly
used for the less engaged groups whereas Type 3 is more commonly used for
more engaged groups. There was a statistically meaningful relationship between
behavior types and learner groups as determined by chi-square test (p<0.001).

Table 2. The Distribution of Behavior Types for Each Learner Group. A (Higher
Engagement) to D (Lower Engagement). Highest Value in Bold. Percentage in Paren-
thesis.

Learner Group Type 1 (Observation) Type 2 (Construction) Type 3 (Full Cycle)

Group A 38 (48.71%) 22 (28.20%) 18 (23.07%)
Group B 38 (50.00%) 19 (25.00%) 19 (25.00%)
Group C 100 (37.73%) 147 (55.47%) 18 (6.79%)
Group D 168 (52.17%) 142 (44.09%) 12 (3.72%))

4.4 Behavior Patterns with Different Model Quality

We used two proxies to measure model quality. Model complexity is defined as the
total number of model components and relationships (referred as depth in other
literature [21]][22]). Model variety is defined as the number of unique categories
used for components and relationships (commonly referred as breadth in other
literature [21]).

For model complexity and variety, there is a statistically significant difference
between the types as determined by one-way ANOVA test (model complexity:
p< 0.001, f= 75.36; model variety: p< 0.001, f=26.80). We conducted t-tests
for pairwise comparisons between 1) behavior types and model complexity and
2) behavior types and model variety. For behavior types and model complexity,
significant differences were found between all pairwise comparisons (e.g., Type
1 and Type 2: p<0.005, t=2.9835, Type 1 and 3: p<0.001, t=-7.6527, Type 2
and 3: p<0.001, t=-11.2651). For behavior types and model variety, significant
differences were found between all pairwise comparisons (e.g., Type 1 and Type
2: p<0.01, t=2.6965, Type 1 and 3: p<0.001, t=-5.8629, Type 2 and 3: p<0.001,
t=-6.5342).

Figure 5 shows the differences in model complexity and model variety for
each behavior type. The conceptual models that manifested Type 3 (full cy-
cle) behavior had the most complex models (mean=12.5) followed by Type 1
(mean=8.52) and Type 2 (mean=6.22). The conceptual models that manifested
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Type 3 (full cycle) behavior had the most variety models (mean=3.5) followed
by Type 1 (mean=2.9) and Type 2 (mean=2.3).

Fig. 5. Mean, Median, and Lower and Upper Quartiles of Model Complexity (Left)
and Variety (Right).

5 Discussion of Self-Directed Learning in VERA

We found three types of self-directed learning behaviors in VERA. Type 1 (Ob-
servation) shows a mostly passive behavior in that learners first either simply
copy exemplar models or make small tweaks to them, and then run simulations
on them. Thus, there is a frequent parameterization-simulation sequence in the
data (as illustrated in Figure 3). This behavior pattern typically has short ses-
sion lengths (mean=22.62 actions). It is the most common behavior among three
learner groups (A,B,D). As Sins (2006) pointed out [24], modeling is a cogni-
tively difficult process, and thus observing the simulation of the exemplar models
and modifying them can help learners better understand the system being mod-
eled. Previous studies also indicated the importance of learning from exemplar
or expert models [3]. For most (but not all) learners, Type 1 preceded Type 3,
and many learners created an original models once they had attained a decent
working knowledge of the observed behavior.

Type 2 (Construction) learners spent most time of adding/deleting elements
in a model with much less attention to model simulation/evaluation. This behav-
ior pattern has the shortest session length among the three behaviors (mean=16
actions) and also less common for more engaged learners (A, B) than less en-
gaged learners (C, D) (see Table 2. Detailed analysis suggests that this type of
behavior typically is found in construction of initial models. For example, 190
out of 286 learners showed this behavior for their first model (followed by 77
(Type 1) and 19 (Type 3)). This aligns well with earlier findings described in
the literature on the use of virtual laboratories in pedagogical contexts in K-12
education [17]. The authors found that the initial phase of model construction
consisted primarily of testing out the connections between conceptual model and
simulations than explicitly trying to accurately model the system [17]. Multiple
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teams in their study constructed conceptual models and made small changes to
them early on to understand the ways in which elements in the conceptual model
would manifest in the model simulation.

Type 3 (Exploration) learners display the full cycle of exploratory behavior
consisting of model construction, parameterization, and simulation, and comes
closest to the scientific way of thinking described in the literature (for exam-
ple, by [23]). This behavior had the longest session among the three behaviors
(mean=154.73 actions); it was also the least common behavior for learners in
less engaged groups. Engaging in a full-cycle of model construction, evaluation
(simulation), and revision (parameterization) led the learners to build more com-
plex and varied models. This result aligns with findings reported in the literature
such as [24][10]). For example, [10] describes a study in middle school science in
which small teams of learners who collaboratively engaged in the evaluation and
revision of the conceptual models in general created qualitatively better models
than those who engaged only in the construction of conceptual models.

Our findings also align with findings in other exploratory learning environ-
ments (for example, programming [4], problem-solving [14], video watching in
MOOCS [20]). We were able to associate each behavior type to strategies found
in other work. First, Type 1 (Observation of simulation) was associated with
studying [8], rehearsing [5], and only video-watching [20] in which learners in-
vest time to better understand a particular concept or to attain a decent working
knowledge. Second, Type 2 (Construction) is associated with testing out the con-
nections [17]. Type 3 (Full-cycle) is associated with problem solving behaviors
of K-12 students who exhibit high meta-cognitive skills in that they constantly
keep evaluating their solution by comparing their current state and the goal
state [14]. Just like we focused on the behavior patterns rather than the dura-
tion of certain behaviors, Blikstein (2014) found that the changes in the code
update pattern is a more important factor determining student performance in
programming courses [4].

6 Conclusions

We described a study on the use of an online laboratory for self-directed learning
by constructing and simulating conceptual models of ecological systems. In this
study, we could observe only the modeling behaviors and outcomes; the learn-
ing goals and outcomes were unknown. We used machine learning techniques to
analyze the modeling behaviors of 315 learners and 822 conceptual models they
generated. We derive three main conclusions from the results. First, learners
manifest three types of modeling behaviors: observation (simulation focused),
construction (construction focused), and full exploration (model construction,
evaluation and revision). Second, while observation was the most common be-
havior among all learners, construction without evaluation was more common
for less engaged learners and full exploration occurred mostly for more engaged
learners. Third, learners who explored the full cycle of model construction, evalu-
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ation and revision generated models of higher quality. These modeling behaviors
provide insights into self-directed learning at large.
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20. Maldonado-Mahauad, J., Pérez-Sanagust́ın, M., Kizilcec, R.F., Morales, N.,
Munoz-Gama, J.: Mining theory-based patterns from big data: Identifying self-
regulated learning strategies in massive open online courses. Computers in Human
Behavior 80, 179–196 (2018)

21. Matias, J.N., Dasgupta, S., Hill, B.M.: Skill progression in scratch revisited. In:
Proceedings of the 2016 CHI conference on human factors in computing systems.
pp. 1486–1490 (2016)

22. Scaffidi, C., Chambers, C.: Skill progression demonstrated by users in the scratch
animation environment. International Journal of Human-Computer Interaction
28(6), 383–398 (2012)

23. Schwarz, C.V., Reiser, B.J., Davis, E.A., Kenyon, L., Achér, A., Fortus, D.,
Shwartz, Y., Hug, B., Krajcik, J.: Developing a learning progression for scien-
tific modeling: Making scientific modeling accessible and meaningful for learners.
Journal of Research in Science Teaching: The Official Journal of the National As-
sociation for Research in Science Teaching 46(6), 632–654 (2009)

24. Sins, P.H., Savelsbergh, E.R., van Joolingen, W.R.: The difficult process of scientific
modelling: An analysis of novices’ reasoning during computer-based modelling.
International Journal of Science Education 27(14), 1695–1721 (2005)

25. Vattam, S.S., Goel, A.K., Rugaber, S.: Behavior patterns: Bridging conceptual
models and agent-based simulations in interactive learning environments. In: 2011
IEEE 11th International Conference on Advanced Learning Technologies. pp. 139–
141. IEEE (2011)

26. Wilensky, U., Reisman, K.: Thinking like a wolf, a sheep, or a firefly: Learning
biology through constructing and testing computational theories—an embodied
modeling approach. Cognition and instruction 24(2), 171–209 (2006)

27. Yang, S., Domeniconi, C., Revelle, M., Sweeney, M., Gelman, B.U., Beckley, C.,
Johri, A.: Uncovering trajectories of informal learning in large online communities
of creators. In: Proceedings of the Second (2015) ACM Conference on Learning@
Scale. pp. 131–140 (2015)


	Understanding Self-Directed Learning in an Online Laboratory

