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Improvisation is a hallmark of human creativity and serves a functional purpose in
completing everyday tasks with novel resources. This is particularly exhibited in tool-
using tasks: When the expected tool for a task is unavailable, humans often are able
to replace the expected tool with an atypical one. As robots become more
commonplace in human society, we will also expect them to become more skilled
at using tools in order to accommodate unexpected variations of tool-using tasks. In
order for robots to creatively adapt their use of tools to task variations in a manner
similar to humans, they must identify tools that fulfill a set of task constraints that are
essential to completing the task successfully yet are initially unknown to the robot. In
this paper, we present a high-level process for tool improvisation (tool identification,
evaluation, and adaptation), highlight the importance of tooltips in considering tool-
task pairings, and describe a method of learning by correction in which the robot
learns the constraints from feedback from a human teacher. We demonstrate the
efficacy of the learning by correction method for both within-task and across-task
transfer on a physical robot.
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1 INTRODUCTION

The abundant use of tools for a large range of tasks is a hallmark of human cognition (Vaesen, 2012).
Design of new tools for accomplishing novel tasks, as well as improvisation in the absence of typical
tools and use of tools in novel ways, are characteristics of human creativity. Consider for example, the
design of a paperweight to hold a sheaf of papers, or the use of a paperweight to hammer in a nail if an
actual hammer is not available. Both require reasoning about complex relationships that
characterizes human cognition and creativity (Penn et al., 2008): The latter task, for instance,
requires reasoning about the relationships among the force required to hammer in a nail, the surface
of the nail’s head, the surface of the paperweight bottom, the weight of the paperweight, and so on.

A robot situated in human society will also encounter environments and tasks suited for human
capabilities, and thus it is important for a robot to be able to use human tools for human tasks (Kemp
et al., 2007). While a robot may learn to complete a new task with a new tool via demonstrations by a
human teacher (Argall et al., 2009; Rozo et al., 2013), the demonstration(s) provided for that tool
cannot prepare the robot for all variations of that tool it is likely to encounter. These variations can
range from different tool dimensions (e.g., different sized spoons, hammers, and screwdrivers) to tool
replacements when a typical tool is not available (e.g., using a measuring cup instead of a ladle, or a
rock instead of a hammer). An additional challenge is that tools are often used to manipulate other
objects in the robot’s environment. Given that the shape of a tool alters its effect on its environment
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(Sinapov and Stoytchev, 2008), a tool replacement may
necessitate a change in the manipulation of that tool in order
to achieve the same task goal (Brown and Sammut, 2012).

One aim of developing creative robots is to enable robots to
exhibit creative reasoning in a similar manner as humans in order
to enhance human-robot collaboration. Recently, Gubenko et al.
(2021) have called for an interdisciplinary approach that
synthesizes conceptual frameworks from diverse disciplines
such as psychology, design, and robotics to better understand
both human and robot creativity. In human cognition, creative
reasoning is exemplified by improvised tool use; particularly, our
ability to use analogical reasoning to identify replacement tools or
methods that may be used to achieve the original goal, as well as
reason over the differences between the original and replacement
approaches in order to adapt the replacement to the task (Goel
et al., 2020). In design, for example, there is the notion of intrinsic
functions and ascribed functions (Houkes and Vermaas, 2010): In
the latter, the user can use the object or tool for an ascribed
function. Our goals for creative robots are similar: to be able to
reason over the suitability of possible tool replacements when the
original tool is unavailable, and reason over how the robot’s
execution of the task must be adapted for the replacement tool.

There are several key challenges in enabling robots to
creatively use new tools. First, the robot must explore novel
tool replacements that support the task constraints. Second, the
robot must be able to evaluate a novel tool’s suitability for a
particular task, which involves learning a model of the
interactions between the robot’s gripper, the tool, objects in
the robot’s environment that are manipulated by that tool,
and how those interactions affect the completion of the task
goals. Finally, the robot must adapt its task model to the novel
tool in order to fulfill these constraints. Prior work has addressed
these first two challenges by constructing or identifying creative
tool replacements (Choi et al., 2018; Sarathy and Scheutz, 2018;
Nair and Chernova, 2020). In this paper, we identify and model
the tooltip constraints that play a role in all three of these
challenges. In particular, we focus on the third challenge of
adapting a robot’s task model to a novel tool. The
contributions of this paper are as follows:

1) An exploratory analysis of the manipulation constraints that
must be fulfilled when using a tool to complete three tasks in
simulation.

2) Two models that represent the relationship between the
orientation and position constraints when manipulating
a tool.

3) An algorithm for training these models using interaction
corrections provided by a human teacher, first proposed in
Fitzgerald et al. (2019).

4) A discussion of the generalizability of these models when
applied to new tools and/or tasks.

We organize the rest of this paper as follows. Section 2
presents a summary of related work in cognitive science,
computational creativity, and robotic tool use. Section 3
defines the tool transfer problem in terms of constraints on
the tooltip pose, which we then explore in Section 4 via an

extensive evaluation of the effect of tooltip perturbations on task
performance in simulation. In Section 5, we discuss how a robot
may learn these constraints through corrections provided via
interaction with a human teacher. Finally, we summarize this
paper in Section 6.

2 BACKGROUND

2.1 Defining Creative Reasoning
What does it mean for a robot to be “creative”? Prior work in
creative robotics has often fallen under one of two categories of
creativity: 1) Producing a creative output involving creative
domains such as music (Gopinath and Weinberg, 2016) and
painting (Schubert and Mombaur, 2013), or 2) Invoking a
creative reasoning process. Within the latter category, several
criteria for creative reasoning have been proposed, such as
autonomy and self-novelty (Bird and Stokes, 2006), in which
the robot’s creative output is novel to itself but not necessarily to
an outside observer. Another definition of a creative reasoning
process is one that emphasizes both the variation of potential
solutions considered by the agent, as well as the process used to
consider and select from those options (Vigorito and Barto,
2008).

Creative reasoning may also be defined in an interactive
setting. Co-creativity is a process for creative reasoning in
which an agent interacts with a human to iteratively improve
upon a shared creative concept. In doing so, co-creativity fosters
creative reasoning and may improve the quality of the resulting
output (Yannakakis et al., 2014). In prior work, we have defined
co-creative reasoning in the context of a robot that collaborates
with a human teacher to produce novel motion trajectories, while
also aiming to maximize its own, partial-autonomy (Fitzgerald
et al., 2017). In the context of a robot reasoning over how it may
execute a task in a new environment, this co-creative process
allows the robot to obtain the contextual knowledge needed to
adapt its task model to meet the constraints of the novel
environment.

Creative reasoning has been defined in other relevant
domains, such as design creativity. Analogical reasoning is said
to be a fundamental process of creativity in design (Goel, 1997).
In design by analogy, a new design is created by abstracting and
transferring design patterns from a familiar design to a new
design problem, where the design patterns may capture
relationships among the abstract function, behavior, structure,
and geometry of designs. Design also entails discovery of problem
constraints (Dym and Brown, 2012) including making implicit
constraints in a design problem more explicit (Dabbeeru and
Mukerjee, 2011). Fauconnier and Turner (2008) introduced
conceptual blending as another process for creative reasoning.
This approach addresses analogical reasoning and creativity
problems by obtaining a creative result from merging two or
more concepts to produce a new solution to a problem.
Abstraction is enabled by mapping the merged concepts to a
generic space, which is then grounded in the blend space by
selecting aspects of either input solution to address each part of
the problem. Applied to a robotic agent that uses this creative
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process to approach a new transfer problem, the robot may
combine aspects of several learned tasks to produce a new
behavior.

Overall, these methods for creative reasoning highlight
two important components of creative reasoning: The
exploration of novel solutions to a problem, and an
evaluation of each candidate solution’s effectiveness. Prior
work in creative reasoning (e.g., analogical reasoning,
interactive co-creativity, and conceptual blending) have
addressed these challenges, but not yet in the context of
creative tool use by an embodied robot. This domain
requires additional considerations, in that it is grounded in a
robot’s action and perception (Fitzgerald et al., 2017). First, the
robot has imperfect perception of its environment and/or tools,
and thus may not have a complete model of the tool(s) it may
use. Second, its solution must be in the form of a motion
trajectory that utilizes the tool to achieve the task goals. As a
result, not only is the choice of tool a creative one, but the usage
of that tool is creative as well. We now review relevant literature
that addresses these challenges within the robotic tool use
domain.

2.2 Identifying Novel Tool Candidates
Existing work typically focuses on identifying the affordances of
potential tool candidates. Affordances represent the “action
possibilities” that result from the relationship between an
object and its environment (Gibson, 1979). Once the
affordances of candidate tools have been identified, a robot
can reason over the most suitable tool for a particular task
and integrate it into its motion plan (Agostini et al., 2015;
Choi et al., 2018). However, identifying tool affordances is a
non-trivial challenge. Recent work in computer vision has applied
deep neural networks to this problem in order to visually predict
the affordances for a particular tool (Do et al., 2018). The UMD
Part Affordance Dataset (Myers et al., 2015) is intended to
support further work on visual affordance detection. This
dataset contains RGB-D images for 105 tools, grouped into 17
object categories. Each tool is photographed at roughly 75
orientations, each of which corresponds to a pixel-wise
labeling according to 7 possible affordances (e.g., cutting,
grasping, pounding). Other, physics-based features such as the
dimensions or material of an object may also be used to judge
their effectiveness as potential tools, such as when identifying a
pipe as a makeshift lever to pry open a door (Levihn and Stilman,
2014). Prior work has shown that, in addition to using
demonstrations to learn a task, a robot may also use
demonstrations to learn to recognize the affordance-bearing
subparts of a tool such that it can identify them on novel
objects (Kroemer et al., 2012).

When a suitable tool replacement is not already available in
the robot’s environment, it may be necessary to assemble one
(Sarathy and Scheutz, 2018). Choi et al. (2018) extends the
ICARUS cognitive architecture to assemble virtual tools from
blocks. Nair et al. (2019) describes a method for tool construction
by pairing candidate tool parts and then evaluating each pair by
the suitability of the shape and attachability of the two parts. Later
work (Nair and Chernova, 2020) integrates this process into a

planning framework such that the task plan includes both the
construction and use of the required tool.

While candidate tool identification is not the focus of this
article, it is an essential step in our eventual goal of creative tool
use. Overall, prior work on this topic demonstrates the task-
specific requirements for identifying novel tool candidates, and
the importance of identifying the salient features of a tool within
the context of the current task. We now consider how these
features affect the tool’s suitability when evaluating them for a
particular task.

2.3 Evaluating Novel Tool Candidates
The shape of a tool alters its effect on its environment (Sinapov
and Stoytchev, 2008), and thus a tool replacement may necessitate
a change in the manipulation of that tool in order to achieve the
same task goal (Brown and Sammut, 2012). For tasks involving
the use of a rigid tool, the static relationship between the robot’s
hand and the tooltip is sufficient for controlling the tool to
complete a task (Kemp and Edsinger, 2006; Hoffmann et al.,
2014). These methods assume a single tooltip for each tool, and
that this tooltip is detected via visual or tactile means. For tasks
involving multiple surfaces of the tool, the task model can be
explicitly defined with respect to those segments of the tool, and
repeated with tools consisting of similar segments (Gajewski et al.,
2018). However, this assumes a hand-defined model that
represents the task with respect to pre-defined object
segments, and that these object segments are shared across
tools. Given enough training examples of a task, a robot can
learn a success classifier that can later be used to self-supervise
learning task-oriented tool grasps and manipulation policies for
unseen tools (Fang et al., 2018). We similarly aim to situate a new
tool in the context of a known task, but eliminate the assumptions
that 1) the new tool is within the scope of the training examples
(which would exclude creative tool replacements) and 2) that the
tool features relevant to the task are observable and recorded by
the robot.

2.4 Adapting Task Models to Novel Tools
The aim of transfer learning for reinforcement learning domains
is typically to use feedback obtained during exploration of a new
environment in order to enable reuse of a previously learned
model (Taylor and Stone, 2009). In previous work, we have
shown how interaction can be used to transfer the high-level
ordering of task steps to a series of new objects in a target domain
(Fitzgerald et al., 2018). Similarly, the aim of one-shot learning is
to quickly learn a new task, often improving learning from a
single demonstration by adapting previous task knowledge. Prior
work in this space focuses on learning a latent space for the task in
order to account for new robot dynamics (Srinivas et al., 2018) or
new task dynamics (Fu et al., 2016; Killian et al., 2017). “Meta-
learning” approaches have succeeded at reusing visuomotor task
policies learned from one demonstration (Chelsea et al., 2017)
and using a new goal state to condition a learned task network
such that it can be reused with additional task objects (Duan et al.,
2017). We address the problem of a robot that has not yet been
able to explore these relationships, aiming to enable rapid
adaptation of a task model for unseen task/parameter
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relationships. The tool transform models learned by our
approach are not specific to any task learning algorithm or
representation, and thus can compliment or bootstrap
methods for reinforcement, one-shot, and meta learning.

2.5 Summary of Related Work
Through prior work, we have identified three key steps for
creative tool use: Exploring novel tools, evaluating novel tools,
and adapting task models to novel tools. These stages are not
entirely separable from each other, as evaluating reflects how well
the robot anticipates being able to adapt its task model for a
particular tool, and exploration results in a set of tools that meet
some criteria such that they may be evaluated in the context of the
task. A common theme through all three steps is the importance
of constraints (e.g., tool shape, segments, or visual features) that
dictate how a task model may be adapted to a particular tool, and
as a result, play a role in the exploration and evaluation steps
as well.

In the rest of this paper, we focus on this challenge of identifying
and modeling constraints, and demonstrate how these constraints
may be used in the evaluating and adapting steps of creative tool
use.While we do not explicitly address creative tool exploration, we
aim for this work to support future research on identifying these
constraints visually to enable this exploration.

3 TOOLTIPS AS CONSTRAINTS

Suppose that a robot has learned a trajectory Ta � [p(0)
a ,p(1)

a , ... ,p(n)
a ]

consisting of end-effector poses p(i)
a for a particular task using

tool a, and now must complete the same task using a different
tool b. Our goal is to transform each pose individually for tool
b. Representing an original pose for tool a in terms of its 3 × 1
translational vector ta and 4 × 1 rotational vector ra, we
transform it into a pose pb for tool b as follows:

pb � ϕb
a pa( ) � 〈ta + t̂, ra · r̂〉 (1)

Here, ra · r̂ refers to the Hamilton product between the two
quaternions. This definition relies on a known transform between

tools a and b, which requires knowledge of the appropriate
“reference” point for both tools such that their transform can
be computed. Neither reference point is initially known by the
robot, however, nor can it be extracted from the trajectory which
is represented according to the robot’s end-effector, and not
according to any point on the tool itself.

Identifying the “reference point” for a tool is non-trivial. While
prior work has addressed the problem of identifying affordance
regions of a tool, these regions are too broad to characterize the
transform between two tools. Figure 1 illustrates examples of
these labeled affordance regions based on the UMD Part
Affordance Dataset (Myers et al., 2015). While this dataset is
relevant to identifying similar regions on two separate tools, it
does not address the problem of specifying the equivalent points
of a tool that may be used to transform the trajectory for a
particular task from one tool to another. For example, the full
blade of a knife may be labeled as enabling the “cutting”
affordance (Figure 1), even though a cutting task is likely to
be performed with respect to only the edge of the blade.
Furthermore, since affordance data is presented in the form of
pixel-wise image labels, it does not provide any data concerning
the kinematic implications of using this tool. Since the tool is
observed and labeled from a static, overhead perspective,
affordance data is only available along a single 2D plane, and
thus does not indicate the orientation at which each affordance is
or is not valid.

This is essential for manipulating the tool properly; even if the
robot were to determine that the relevant surface of a knife is
located along the edge of its blade, the blade must still be oriented
carefully with respect to the cutting target for the task to be
completed successfully. We refer to the acting surface of the tool
(e.g., a singular point along the edge of the knife blade, or a
singular point on a mallet’s pounding surface) as a tooltip that is
defined by a pose containing both the position and orientation of
that tooltip. In summary, we expect that successful task
completion relies on the robot having a model of the
composite transform between 1) the end-effector, 2) its
grasp of the tool (highlighted in red in Figure 1), and 3) the
tooltip position and orientation.

FIGURE 1 | Affordance regions may be broad, spanning multiple possible tooltips. As a result, predicting the affordance region is not sufficient to plan with respect
to that tool’s tooltip. For example, the full blade surfaces of the saw and knife are labeled as enabling the “cutting” affordance (highlighted in green) and the “grasping”
affordance (highlighted in red); however, cutting is only performed using the edge of the blade, and requires that the blade be oriented toward the cutting target. Similarly,
different points of a hammer headmay enable different tasks (e.g., pounding versus prying), and thus detecting a task-independent affordance region (highlighted in
purple) is not sufficient to plan a task trajectory.
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While we may mathematically represent a tooltip as a
singular pose, practically, however, there are likely many
possible tooltips that may lead to successful task execution.
Additionally, the constraint over the tooltip may also differ
depending on the context in which it is used: The orientation of
a hammer is constrained along two axes when hammering a nail,
but the hammer may still be rotated around the nail (e.g., its
“yaw” rotation) without affecting task performance. This
example supports the notion of a one-to-many relationship
between 1) a tooltip and 2) the tool poses that enable that
tooltip to be used.

In the remainder of this paper, we explore this one-to-many
relationship. In Section 4, we demonstrate how a single tooltip
can be expanded into a set of effective tool poses, thus
highlighting the challenges of learning tooltip constraints. In
Section 5, we consider this relationship in the opposite
direction, and present two models for deriving a single tooltip
from a set of valid poses demonstrated by a human teacher.

4 CHARACTERIZING TOOL CONSTRAINTS

We first explore the effect of tooltip constraints by expanding a
single tooltip into a set of tool poses that result in successful task
execution. To do so, we transform a trajectory that results in
successful task execution (and thus the tooltip is implicitly-
defined) such that the tooltip’s trajectory is perturbed slightly.
In doing so, we can evaluate the effect of that perturbation on task
performance, and ultimately model the constraints that dictate
which poses result in successful use of the tooltip.

In this section, we address two key research questions:

1) How do changes in tool pose affect task performance?

2) How do the constraints on tool pose differ across tools and/or
tasks?

4.1 Evaluating Tool-Task Constraints in
Simulation
We address these research questions by evaluating the
performance of a large set of trajectory perturbations using a
simulated 7-DOF Kinova Gen3 robot arm situated on a round
table in a Gazebo simulated environment. We evaluated the effect
of trajectory perturbations on three tools: A hammer, a mug, and
a spatula (Figure 2). We fixed the robot’s grasp as a static
transform between the robot’s gripper and the tool, and thus
did not evaluate the effects of the robot’s grasp strength or
stability on tool use.

For each tool, we provided a demonstration of three tasks:
Hooking (Figure 3A), lifting (Figure 3B), and sweeping
(Figure 3C). Each demonstration was provided in a Gazebo
simulator as a set of end-effector keyframes. Depending on the
tool being demonstrated, this resulted in 5-7 keyframes for
hooking, 4-6 for lifting, and 13-18 for sweeping. These end-
effector keyframes were then converted to keyframe trajectories
represented in the robot’s joint-space. We used the MoveIt
(Coleman et al., 2014) implementation of the RRTConnect
planner to plan between joint poses during trajectory
execution. We simulated a trajectory perturbation by altering
the rigid transform between the robot’s gripper and the tool itself,
according to a pre-determined set of position and orientation
alterations that are consistent across all tools and tasks. As a
result, each trajectory perturbation is identical with respect to the
robot’s end-effector, but differ with respect to the trajectory of the
tool itself. This allowed us to use the same joint-space trajectory

FIGURE 2 |We performed an evaluation across three tools: a spatula, mug, and hammer. For each tool, we perturbed the trajectory of the tooltip by adjusting the
robot’s grasp of the tool. These pose variations are just a small set of the 729 perturbations we evaluated for each tool-task pairing.
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for all perturbations of a single tool-task pairing, thus reducing
the likelihood of planning errors across all perturbations and also
minimizing any changes in the robot’s joint motion that might
affect task performance. Despite the same trajectory being
executed across all perturbations of a single tool-task pairing,
planning errors may still occur when a perturbation results in the
tool colliding with its environment, thus preventing the rest of the
trajectory from being executed.

Each perturbation resulted from a unique permutation of
changes applied to the tool’s demonstrated position along the
x, y, and z axes and demonstrated orientation along the roll,
pitch, and yaw axes. The tool’s x, y, and z positions were each
configured at one of three distances from the demonstrated
tool position: [ − 0.01, 0, 0.01] meters. The tool’s roll, pitch,
and yaw rotations were each configured at one of three angles
from the demonstrated tool orientation: [− π

16, 0,
π
16] radians.

These position and orientation perturbations were empirically
chosen such that, when combined, their effect on task
performance can be observed on a spectrum. We observed
that larger ranges of pose or orientation changes would be less
likely to result in completion of any aspect of the task, whereas
smaller ranges may not fully explore the range of successful
perturbations. However, as we note later in Section 4.3, we
observe that different tools vary in their sensitivity to these
perturbations, and thus a more fine-grained set of
perturbations should be explored in future work.

Overall, the permutation of these configurations resulted in a
total of 36 � 729 perturbations for each tool-task pairing. We

executed each perturbation twice in simulation (to account for
the non-deterministic effects of the simulator dynamics) and
recorded the average performance of the two trials, with
performance being measured according to task-specific
measures. All performance metrics were scaled to a 0–1 range.
In the hooking task, performance was measured as the distance
(in meters) between the box and the robot’s base, with less
distance correlating to higher performance. The initial and
goal states of this task are shown in Figure 3A. In the lifting
task, the robot’s performance was measured as the green bar’s
height above the table (in meters). A small number of trials
resulted in the bar being removed from the support structure
entirely. In these cases, we recorded the performance as that of the
task’s initial state (i.e., a failure case). Figure 3B shows the initial
and goal states of this task. In the sweeping task, performance is
measured as the number of spheres that were swept off the table,
with maximum performance being 16 spheres. The initial and
goal states of this task are shown in Figure 3C.

4.2 Results
Our evaluation measured how sensitive each tool-task pairing is
to perturbations of the tooltip’s trajectory: The more sensitive the
tool-task pairing is to perturbations, the more likely that a
perturbation will lead to a task failure. Low task performance
may be caused by the tooltip no longer contacting any relevant
objects in the task (and thus leaving the task in its initial state), or
by collisions between the tool’s new configuration and its
environment that prevent the robot from executing the full

FIGURE 3 | Initial and goal states for the (A) hooking, (B) lifting, and (C) sweeping tasks.
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FIGURE 4 | (A) Percentage of failed trials (performance ≤ 0.05). Darker cells indicate higher percentage of failed trials. (B) Mean and standard deviation
performance of thresholded (performance > 0.05) trials. Darker cells indicate higher mean performance.

FIGURE 5 | Performance distributions over all tool-task pairings, with all trials with performance ≤ 0.05 excluded. X- and Y-axes are consistent across all graphs.
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trajectory. We set a threshold performance of 0.05 (on a 0–1
scale), and report the percentage of perturbations that fail to
exceed this threshold in Figure 4.

We include only the set of perturbations that exceed this
threshold in the histograms in Figure 5, which illustrate the
performance distributions over the set of perturbations exceeding
this threshold. Since the original, unperturbed pose is already
known to achieve near-optimal task performance, these graphs
illustrate how many perturbations of that original pose still fulfill
the tooltip constraints and result in high performance (i.e., the
perturbations resulting in the peak observed near x � 1.0 on each
graph). We report the mean and variance over these performance
results in (Figure 4B).

Figure 6 shows the distribution over the mean performance
over all three tasks; that is, the performance metric for each
perturbation is the average of its performance on the sweeping,
hooking, and lifting tasks. We again only consider datapoints
above a performance threshold > 0.05 in order to focus on the set
of valid tooltip constraints for each tool.

4.3 Discussion
Research Question #1: How do changes in tool pose affect task
performance? The relationship between performance and
tool pose may be non-linear. If this relationship were linear,
we would expect Figure 5 to primarily contain Gaussian-like
performance distributions, such that as the robot evaluates
trajectory perturbations further from the original trajectory, its
performance resulting from those perturbations decreases
proportionally. While this is the case in some tool-task pairings
(e.g., all tools used for the sweeping task, and the lifting task using
the hammer), other performance distributions appear to be bi-
modal in nature (e.g., using the hammer in the hooking task or
using the spatula for lifting) or contain several peaks (e.g., using the
mug for hooking). This suggests that there is a non-linear
relationship between changes in the tool pose, and its resulting
effects on task performance. Note that in our evaluation, we applied
trajectory perturbations according to the single tooltip that was
demonstrated for each tool-task pairing. An opportunity for future
research is the identification of alternate tooltips based on the tool’s
shape or structure.

Research Question #2: How do the constraints on tool pose
differ across tools and/or tasks? Tools differed in their sensitivity
to pose changes. For example, using the spatula tool resulted in
the highest percentage of failed trials (35.11–35.8%) across all
three tasks, while the mug resulted in the lowest (3.29–4.25%)
across all three tasks. One hypothesis for this performance
difference is that since the mug was the smallest tool, changes
in the tool pose had a smaller effect on its tooltip pose in
comparison to the taller tools (spatula and hammer). We
observed widely varying failure rates when using the hammer,
ranging from 9.19 to 10.01% on the hooking and sweeping tasks,
respectively, and 45.27% on the lifting task. One reason for this
performance difference may be that a different tooltip was used
for the lifting task compared to the hooking and sweeping tasks.
In the former, the robot uses a “corner” of the hammer to lift the
bar (Figure 3B), whereas the hooking and sweeping tasks use a
wider surface area of the hammer as a tooltip. This may provide
more tolerance to pose perturbations. Overall, this suggests that
the sensitivity of tooltip constraints depends on the surface of
the tool being used.

Figure 6 also supports this hypothesis. These distribution
graphs reflect the consistency in tooltip constraints across tasks.
While the geometry of the tool itself remains constant across
tasks, the same tooltip is not necessarily used across tasks (e.g.,
using separate surfaces of the hammer for sweeping vs lifting).
The reduced performance shown in these graphs (in comparison
to Figure 5) indicates that the tooltip constraints applied to one
task may not be generalizable to other tasks using the
same tool.

We now consider the challenge of how a robot may quickly
learn these constraints in the context of a new tool, and whether
we can model the instances in which a robot can reuse a learned
tooltip model in the context of another task. While a robot can
learn to use a tool through demonstrations, the one-to-many
mapping between tooltip constraints and the set of tool poses that
meet those constraints means that there are many possible
demonstrations that a robot may receive for a tool/task
pairing. Learning the underlying tool constraint is therefore a
challenge, as the teacher is providing demonstrations that sample
from an unknown, underlying relationship between the end-

FIGURE 6 |Mean performance distributions using each tool for all tasks, with all trials with mean performance ≤ 0.05 excluded. X- and Y-axes are consistent across
all graphs.
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effector and the tooltip. In the next section, we explore how a
robot can utilize corrections in order to model and learn the
underlying tooltip constraint.

5 LEARNING CONSTRAINTS FROM
INTERACTIVE CORRECTIONS

In the previous section, we evaluated the one-to-many mapping
between tooltips constraints and end-effector poses that meet
those constraints. In order to adapt the robot’s task model to
a novel tool, however, we also need to analyze this mapping
in the reverse direction: inferring the underlying tooltip
constraint that has resulted in a set of corresponding end-
effector poses.

We address this challenge in the context of a robot that learns
from demonstrations by a human teacher who is familiar with the
task and tool that the robot aims to use. By comparing two
trajectories, each using a separate tool to complete the same task,
we aim to model the relationship between the two tooltips
constraints such that it can be reused in the context of
another task.

While a robot can quickly receive demonstrations (Argall
et al., 2009; Chernova and Thomaz, 2014) using a new tool, these
demonstrations may not be sufficient to learn the underlying
tooltip constraints. Due to the unstructured nature of task
demonstrations, the two demonstrations (each provided
using a different tool) may vary in ways that do not reflect
how the task should be adapted based on which tool is used. For
example, the teacher may choose a different strategy for
completing the task with the second tool, or the robot may
be starting from a new arm configuration when the teacher
demonstrates the task with the second tool. For these reasons,
we utilize corrections of the robot’s behavior, which have been
shown to be effective interface for adapting a previously-learned
task model (Argall et al., 2010; Sauser et al., 2012; Bajcsy et al.,
2018). Rather than have the teacher provide a new
demonstration using the new tool, the robot attempts to
complete the task on its own and is interrupted and
corrected by the teacher throughout its motion. As a result,
this interaction results in a series of correction pairs, where each
pair represents the robot’s originally-intended end-effector pose
and its corresponding, corrected pose that was indicated by the
teacher.

Our research questions are as follows:

1) How can we model a tooltip constraint using data provided
via sparse, noisy corrections?

2) Under what conditions can the tooltip constraints learned
from corrections on one task be used to adapt other task
models to the same replacement tool? What characteristics of
the tool and task predict whether a previously-learned tooltip
constraint can be applied?

In the following sections, we address these research questions
using the Transfer by Correction algorithm, which we first
described in Fitzgerald et al. (2019).

5.1 Problem Definition
We assume that each demonstration consists of a series of
keyframes (Akgun et al., 2012). The robot receives corrections
by executing a trajectory planned using the original task model,
pausing after a time interval defined by the keyframe timings set
during the original demonstration. The teacher then moves the
robot’s gripper to the correct position, after which the robot
resumes task execution for the next time interval, repeating the
correction process until the entire task is complete. Each resulting
correction at interval i consists of the original pose Ci

a (using tool
a) and the corrected pose Ci

b (using new tool b) at keyframe i. A
collection ofK corrections (one for each ofK keyframes) results in
a K x 2 correction matrix:

C �
C0

a C0
b

C1
a C1

b

. . .
CK

a CK
b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

Each corrected pose Ci
b provides a sample of the transfer

function value with the original pose Ci
a at keyframe i as

input, plus some amount of error from the optimal correction
pose:

Ci
b � ϕb

a Ci
a( ) + ϵ ϵn ∼ N 0, σ2n( ) (3)

We assume ϵ is sampled from a Gaussian noise model for each
axis n ∈ [1. . .6] of the 6D end-effector pose. Our aim is to learn a
transfer function ϕ that optimally reflects the tooltip constraints,
using a correction matrix C.

5.2 Approach: Transfer by Correction
Given a task trajectory T for tool a consisting of a series of t
poses in task space such that T � [p0, p1, . . ., pt], we transform
each pose individually for tool b. Representing an original pose
for tool a in terms of its 3 × 1 translational vector ta and 4 × 1
rotational vector ra, we transform it into a pose pb for tool b as
follows:

pb � ϕb
a pa( ) � 〈ta + t̂, ra · r̂〉 (4)

Here, ra · r̂ refers to the Hamilton product between the two
quaternions. The goal is now to estimate the optimal rotational r̂
and translational t̂ transformation components from the
corrections matrix C, and then apply these transformations to
the trajectory T. Our approach addresses this goal by (1)
modeling C, particularly the relationship between each
correction’s translational and rotational components, 2)
sampling a typical translational transformation t̂ and
rotational transformation r̂ from this transform model, and 3)
applying t̂ and r̂ to transform each pose in the task trajectory
according to Equation 4.

5.3 Task Constraints
We observe that corrections indicate constraints of the tooltip’s
position and/or orientation, and that these constraints are
reflected in the relationship between the translation and
rotation components of each correction. Broadly, each
correction may primarily indicate:
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• An unconstrained point in the trajectory, and thus should be
omitted from the tool transform model.

• An orientation constraint, where the rotation of the tooltip (and
thus the end effector) is constrained more than its position (e.g.,
hooking a box is constrained more by the orientation of the
hook than its position, as in the left of Figure 7).

• A center-of-rotation constraint, where the position of the
tooltip is constrainedmore than its rotation (e.g., sweeping a
surface with a brush). Note that the tooltip position is the
center of this constraint rather than the end-effector itself,
and thus the range of valid end-effector poses forms an arc
around the tooltip, and its orientation remains angled
toward the tooltip (e.g., Figure 7B).

We define two tool transform models, first presented in
Fitzgerald et al. (2019), each reflecting either orientation or
center-of-rotation constraints. We fit the corrections matrix to
each tool transform model, using RANSAC (Fischler and Bolles,
1981) to iteratively estimate the parameters of each model while
discarding outlier and unconstrained correction data points. Each
iteration involves 1) Fitting parameter values to a sample of n
datapoints, 2) Identifying a set of inlier points that also fit those
model parameters within an error bound of ϵ, and 3) Storing the
parameter values if the inlier set represents a ratio of the dataset >
d. The RANSAC algorithm relies on a method for fitting
parameters to the sample data, and a distance metric for a
datapoint based on the model parameters. These are not
defined by the RANSAC algorithm, and so we specify the
parameterization and distance metric according to the tool
transform model used, which we describe more in the
following sections. We define an additional method to convert
the best-fitting parameters following RANSAC completion into a
typical transform that can be applied to poses.

5.4 Linear Tool Transform Model
Based on the orientation constraint type, we first consider a linear
model for correction data, where corrections fitting this model

share a linear relationship between the translational components of
the corrections, while maintaining a constant relationship between
the rotational components of corrections (Figure 8A). We model
this linear relationship as a series of coefficients obtained by
applying PCA to reduce the 3D position corrections to a 1D space.

5.4.1 RANSAC Algorithm Parameters
The RANSAC algorithm is performed for k iterations, where we
use the estimation

k � log(1.0 − p)
log 1.0 − wn( )) (5)

with desired confidence p � 0.99 and estimated inlier ratio w �
0.5. Additional parameters are as follows: n � 2 is the number of
data points sampled at each RANSAC iteration, ϵ � 0.01 is the
error threshold used to determine whether a data point fits the

FIGURE 7 | Posesmeeting the same orientation constraint share similar orientations but vary more in their position (A), whereas posesmeeting the same center-of-
rotation constraint rotate around the tooltip (B).

FIGURE 8 | Each plot represents one set of corrections for a task. The
position of each arrow represents the change in < x, y > position, and points in
the direction of the change in orientation introduced by that correction.
Orientation constraints can be seen in (A), where the majority of
corrections on this tool have low variance in their orientation, but higher
variance in their x-y position. Center-of-rotation constraints can be seen in (B),
where the majority of corrections arc around a singular center of rotation, and
orientation is dependent on the x-y position. Unconstrained keyframes
(colored grey) are located near (0,0).
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model, and d � 0.5 is the minimum ratio between inlier and
outlier data points in order for the model to be retained.

5.4.2 Model Parameter Fitting
Model fitting during each iteration of RANSAC consists of
reducing the datapoints to a 1D model using PCA, returning
the mean translational correction and the coefficients for the first
principal component of the sample S:

Θlinear(S) � 〈θμ, θu〉 θμ � 1
|S| ∑p∈S pt (6)

where pt is the 3 × 1 translational difference indicated by the
correction p, S is the subset of the corrections matrix C sampled
during one iteration of RANSAC such that S ⊂ C, and θu is the
eigenvector corresponding to the largest eigenvalue of the
covariance matrix Σ � 1

|S|S
T
t St.

5.4.3 Error Function
Each iteration of RANSAC calculates the total error over all
data points fitting that iteration’s model parameters. We define
the error of a single correction datapoint p as the sum of its
reconstruction error and difference from the average orientation
correction, given the current model parameters θ:

δlinear(p, θ) � ‖pt − θμ + pt − θμ( )TθuθTu+( )‖ + c 1 − �qnp
T
n( )2( )

(7)

where x+ indicates theMoore-Penrose pseudo-inverse of a vector,
pn is the unit vector representing the orientation difference
indicated by the correction p, �qn is a unit vector in the
direction of the average rotation sampled from the model
(defined in the next section), and c is the weight assigned to
rotational error (c � 1 in our evaluations).

5.4.4 Sampling Function
After RANSAC returns the optimal model parameters and
corresponding set of inlier points Î ⊂ C, the rotation and
translation components of the transformation are sampled
from the model. We define the sampling function according to
the estimated “average” rotation �q:

Ψ(Î, θ̂)linear � 〈�q,�t〉 �q � argmax
q∈S3

qTMq M � 1

|Î| ∑
p∈Î

pi
qp

i
q
T

(8)

The solution to �q for this maximization problem is the
eigenvector corresponding to the largest eigenvalue of M
(Markley et al., 2007). The sample translation �t is the 3D offset
corresponding to the mean value �z from the 1D projection space:

�t � θ̂μ + �zθ̂u
T+

�z � 1

|Î| ∑
p∈Î

pt − θ̂μ( )Tθ̂u (9)

5.5 Rotational Tool Transform Model
We now consider a model for corrections reflecting a center-of-
rotation constraint, in which we make the assumption that

corrections indicate a constraint over the tool tip’s position.
Since the tool tip is offset from the end-effector, the position
and rotation of the end-effector are constrained by each other
such that the end-effector revolves around the tool tip
(Figure 8B). We model this relationship by identifying a
center-of-rotation (and corresponding rotation radius) for the
tool tip, from which we can sample a valid end-effector position
and rotation.

5.5.1 RANSAC Algorithm Parameters
We use the same parameters for k, w, d as in the linear
model. We sample n � 3 points at each iteration, and use the
error threshold ϵ � 0.25. We define functions for model
parameterization, error metrics, sampling, and variance in
the following sections.

5.5.2 Model Parameter Fitting
We define the optimal model parameters for each iteration of
RANSAC as the center-of-rotation (and corresponding rotation
radius) of that iteration’s samples S:

Θrotation(S) � 〈θc, θr〉 (10)

where θc is the position of the center-of-rotation that
minimizes its distance from the intersection of lines
produced from the position and orientation of each correction
sample:

θc � argmin
c

∑|S|
i�1

D c; ai,ni( )2 (11)

where ai and ni are the position and unit direction vectors,
respectively, for sample i in S:

ai � xi, yi, zi[ ]T ni � qi · [0, 1, 0, 0]T( )) · q′ (12)

Here, q1 · q2 refers to the Hamilton product between two
quaternions, and q′ is the inverse of the quaternion q:

q′ � [w, x, y, z]′T � [w,−x,−y,−z]T (13)

We solve for the center-of-rotation by adapting a method for
identifying the least-squares intersection of lines Traa (2013). We
consider each sample i to be a ray originating at the point ai and
pointing in the direction of ni. The center-of-rotation of a set of
these rays is thus the point that minimizes the distance between
itself and each ray. We define this distance as the piecewise
function:

D(c; a,n) � ‖(c − a) − d · n‖2 if d> 0
‖c − a‖2 otherwise

{ (14)

where d is the distance between a and the projection of the
candidate centerpoint c on the ray:

d � (c − a)Tn (15)

We solve for θc using the SciPy implementation of the
Levenberg-Marquardt method for non-linear least-squares
optimization, supplying Equation 14 as the cost function. We
then solve for the radius corresponding to θc:
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θr � 1
|S| ∑

|S|

i�0
‖ai − θc‖ (16)

5.5.3 Error Function
We define the error of a single data point p as its distance from the
current iteration’s center-of-rotation estimate:

δrotation(p, θ) � D c; ap,np( )
dp

( )2

(17)

Where dp is defined in Equation 15.

5.5.4 Sampling Function
After RANSAC returns the optimal model parameters and
corresponding set of inlier points Î ⊂ C, the rotation
component of the transformation is first sampled using the
“average” rotation �qc from θ̂c to all inlier points:

�qc � argmax
q∈S3

qTMq M � 1

|Î| ∑
p∈Î

rpr
T
p (18)

Where rp is the quaternion rotation between θ̂c and the position
of p, defined by normalizing the quaternion consisting of the
scalar and vector parts:

rp � 〈‖a‖2 + baT, bT × a〉 (19)

a � pt − θ̂c b � [‖a‖, 0, 0] (20)

The optimal �qc is the eigenvector corresponding to the largest
eigenvalue of M; this represents the sampled rotation from θ̂c.

We then sample �t by projecting the point at distance θ̂r from θ̂c
in the direction of �qc:

�t � θ̂c + �qc · 0, θ̂r, 0, 0[ ]T( ) · �qc′[ ]
1‥3

(21)

Where x1‥3 indicates the 3 × 1 vector obtained by ommitting the
first element of a 4 × 1 vector x. Finally, we return the sample
consisting of the translation �t and the normalized rotation �q
between �t and θ̂c:

Ψ(Î, θ̂)rotation �〈 �q
‖�q‖ ,�t〉 �q�〈θ̂r‖a‖+baT,bT ×a〉 a� θ̂c −�t b� θ̂r,0,0][

(22)

5.6 Best-Fit Model Selection
The linear and rotational tool transformmodels represent two different
relationships between the translational and rotational components of
corrections. We now define a metric for selecting between these two
models based on how well they fit the correction data:

Ψ(C)best−fit �
Ψ Îl, θ̂l( )

linear
if Δlinear <Δrotation

Ψ Îr, θ̂r( )
rotation

otherwise

⎧⎨⎩ (23)

Where Îl, θ̂l, Îr, θ̂r represent the optimal inlier points and
parameter values from the linear and rotational models,
respectively. The fit of the linear model is calculated as its
range of values z projected in the model’s 1D space:

Δlinear � range(z) z � pt − θ̂μ( )Tθ̂u|∀p ∈ Î{ } (24)

The fit of the rotational model is calculated as the range of unit
vectors in the direction of each inlier point as measured from the
center-of-rotation:

Δrotation � 1 − 1

|Î| ∑
p∈Î

rp · [0, 1, 0, 0]T( ) · rp′[ ]
1‥3

�����������
�����������
2

(25)

where rp is defined in Equation 19.

5.7 Evaluation
We evaluated the transfer by correction algorithm results on a 7-
DOF Jaco2 arm equipped with a two-fingered Robotiq 85 gripper
and mounted vertically on a table-top surface (Figure 9D). Each
evaluation configuration consisted of one task that was 1)
demonstrated using the original, “source” tool, and 2)
corrected to accommodate a novel, replacement tool. We
describe data collection for each of these steps in the following
sections.

5.8 Demonstrations
Three tasks (Figure 9) were demonstrated using three
prototypical, “source” tools (Figures 10A–C), resulting in a
total of nine demonstrations. Demonstrations began with the
arm positioned in an initial configuration, and with the gripper
already grasping the tool. Each tool’s grasp remained consistent
across all three tasks. Objects on the robot’s workspace were reset
to the same initial position before every demonstration. We
provided demonstrations by indicating keyframes (Akgun
et al., 2012) along the trajectory, each of which was reached
by moving the robot’s arm to the intermediate pose. At each
keyframe, the 7D end effector pose was recorded; note that this is
the pose of the joint holding the tool, and not the pose of the tool-
tip itself (since the tool-tip is unknown to the robot).We provided
one keyframe demonstration for each combination of tasks and
source tools in this manner, each demonstration consisting of
7–12 keyframes (depending on the source tool used) for the
sweeping task, 10–11 keyframes (depending on the source tool
used) for the hooking task, and 7 keyframes for the
hammering task.

We represented each demonstration using a Dynamic
Movement Primitive (DMP) (Schaal, 2006; Pastor et al.,
2009). A DMP is trained over a demonstration by
perturbing a linear spring-damper system according to the
velocity and acceleration of the robot’s end-effector at each
time step. By integrating over the DMP, a trajectory can then
be generated that begins at the end-effector’s initial position
and ends at a specified end point location. Thus, after training
a DMP, the only parameter required to execute the skill is
the desired end point location. By parameterizing the end
point location of each DMP skill model according to object
locations, the overall task can be generalized to accommodate
new object configurations. We re-recorded the demonstration
if the trained DMP failed to repeat the demonstration task
with the source tool.
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5.9 Corrections
Following training, the arm was reset to its initial
configuration, with the gripper already grasping a new tool
(Figures 10D,E). Note that these replacement objects have
several surfaces that could be utilized as a tooltip (depending
on the task). For example, any point along the rim of the mug
(Figure 10D) would serve as the prototypical tooltip during a
scooping or pouring task. In the context of the hooking and
hammering tasks used in our evaluation, however, the bottom
of the mug serves as a tooltip. Alternatively, the side of the mug
provides a broad surface to perform the sweeping task. This
range of potential tooltips on a single object highlights the
benefit of using corrections to learn task-specific tooltips,
rather than assume that a prototypical tooltip is appropriate
for all tasks.

Objects on the robot’s workspace were reset to the same initial
position as in the demonstrations; this allowed us to ensure that
any corrections were made as a result of the change in tool, rather
than changes in object positions. The learned model was then
used to plan a trajectory in task-space, which was then converted
into a joint-space trajectory using TracIK (Beeson and Ames,
2015) and executed, pausing at intervals defined by the keyframe
timing used in the original demonstration. When execution was
paused, it remained paused until the arm pose was confirmed. If
no correction was necessary, the pose was confirmed
immediately; otherwise, the arm pose was first corrected by
moving the arm to the correct position. Note that this form of
corrections assumes that each keyframe constitutes a statically
stable state. For tasks involving unstable states, another form of
interaction may be used to provide post-hoc corrections, such as
critiques (Cui and Niekum, 2018).

Two poses were recorded for each correction: 1) the original
end-effector pose the arm attempted to reach (regardless of
whether the goal pose was reachable with the new tool), and
2) the end-effector pose following confirmation (regardless of
whether a correction was given). Trajectory execution then
resumed from the arm’s current pose, following the original
task-space trajectory so that pose corrections were not
propagated to the rest of the trajectory. This process
continued until all keyframes were corrected and executed,
resulting in the correction matrix C (Equation 2).

5.10 Measures
For each transfer execution, we measured performance according
to a metric specific to the task:

• Sweeping: The number of pom-poms swept off the surface of
the yellow box.

• Hooking: The final distance between the box’s target
position and the closest edge of the box (measured in
centimeters).

• Hammering:A binary metric of whether the peg was pressed
any lower from its initial position.

5.11 Results
We highlight two categories of results: Within-task and across-
task performance.

5.11.1 Within-Task Transfer
Within-task performance measures the algorithm’s ability to model
the corrections and perform the corrected task successfully. Transfer
was performed using the transform model learned from corrections

FIGURE 9 | (A) hooking task, (B) sweeping task, (C) hammering task, and (D) the experimental setting.

FIGURE 10 | Tools (A–C) were used to demonstrate the three tasks shown in Figure 9, later transferred to use tools (D,E). These tools exhibit a wide range of
grasps, orientations, dimensions, and tooltip surfaces.
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on that same tool-task pairing. For example, for the sweeping task
model learned using the hammer, corrections were provided on the
replacement tool (e.g., a mug) and then used to perform the sweeping
task using that same mug. For each source tool, we evaluated
performance on all three tasks using each of the two replacement
objects, resulting in 18 sets of corrections (one for each combination of
task, source tool, and replacement tool) per tool transform model
(linear and rotational).

Using the better-performing model resulted in ≥ 85% of
maximum task performance in 83% of cases. The better-
performing model was selected using the best-fit metric in
72% of cases. Figure 11 lists the percentage of transfer
executions (using the best-fit model) that achieve multiple
performance thresholds, where best-fit results were recorded as
the performance of the model returned by Equation 23.

We scaled the result of each transfer execution between 0 and
1, with 0 representing the initial state of the task and 1
representing maximum performance according to the metrics
in Section 5.10. Figure 12 reports the performance distribution
aggregated over all tasks, transferred from each of the three

source tools to either the scrub-brush (Figure 10E, results in
Figure 12A) or mug (pictured in Figure 10D, results in
Figure 12B) as the replacement tool. The mean performance
results are reported in Figure 13A, with darker cells indicating
better performance. Overall, the transform returned using the
best-fit metric resulted in average performance of 6.9x and 5.9x
that of the untransformed trajectory when using the scrub-brush
and mug, respectively, as replacement tools.

5.11.2 Across-Task Transfer
Across-task transfer performance measures the generalizability of
corrections learned on one task when applied to a different task
using the same tool, without having received any corrections on that
tool-task pairing. For example, the hooking task was learned using the
hammer, and transferred to themug using corrections obtained on the
sweeping task. We evaluated 36 total transfer executions (one per
combination of demonstration task, source tool, correction task
(distinct from the demonstration task), and replacement tool) per
tool transform model (linear and rotational).

Figure 14 reports the performance distribution aggregated
over all tasks, transferred from each of the three source tools to
either the scrub-brush (Figure 14A) or mug (Figure 13B) as the
replacement tool. The mean performance results are reported in
Figure 13B, with darker cells indicating better performance.
Overall, the transform returned using the best-fit metric
resulted in average performance of 1.6x and 0.94x that of the
untransformed trajectory when using the scrub-brush and mug,
respectively, as replacement tools. The performance distribution
is improved when using the transform learned from corrections,
resulting in 2.25x as many task executions achieving ≥ 25% of
maximum task performance.

In order to understand the conditions under which a
transform can be reused successfully in the context of another
task, we also report the mean performance results for a subset of
the across-task executions (Figure 13C). This subset consists of
only the task executions where the relative orientation is the same
between 1) the source tool’s tooltips used for the source and target

FIGURE 11 | Percentage of within-task transfer executions (selected by
best-fit model) and untransformed trajectories achieving various performance
thresholds (defined as the % of maximum performance metric for that task,
described in Section 5.10). Our proposed models result in a higher
percentage of transfer executions that complete the task to a high
performance threshold (e.g., sweeping ≥ 85% of the objects off the table).
Furthermore, while the untransformed baseline produces all-or-nothing
performance behavior, our models degrade gracefully, resulting in partial task
completion (represented by lower % performance thresholds) even when the
learned transform is non-optimal.

FIGURE 12 | Aggregate performance results for within-task transfer using the scrub-brush (A) and mug (B) as the replacement tool. Performance was measured
for each task according to the metrics in Section 5.10, and are scaled between 0–1. These results highlight the need for multiple tool transform models; while both
models greatly outperform the baseline task performance (when no transform is used), note that neither model results in the best performance over all tasks and
replacement tools. Using the best-fit metric to select the more appropriate model for each tool-task pairing resulted in the best overall performance.
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tasks and 2) the replacement tool’s tooltips used for the same two
tasks. This subset consisted of 10 executions for the scrub-brush,
and 12 for the mug. Overall, for this subset of executions, the
transform returned using the best-fit metric resulted in average
performance of 12.6x and 1.7x that of the untransformed
trajectory when using the scrub-brush and mug, respectively,
as replacement tools.

5.12 Discussion
Our within-task transfer evaluation tested whether we can model
the transform between two tools in the context of the same task
(represented by the solid blue arrow in Figure 15) using
corrections. Our results indicate that one round of corrections
typically is sufficient to indicate this relationship between tools;
collectively, the linear and rotational models achieved ≥ 85% of
maximum task performance in 83% of cases. Individually, the
models selected by the best-fit metric achieved this performance
threshold in 72% of cases. This indicates that, in general, the fit of
the model itself can be used to indicate the relationship between
end-effector position and orientation for a given tool/task
combination.

Aside from analyzing high task performance, we are also
interested in whether our approach enables graceful
degradation; even if the robot is unable to complete the task
fully with a new tool, ideally it will still have learned a transform
that enables partial completion of the task. The results shown in
Figure 11 demonstrate that Transfer by Correction offers robust
behavior such that even when it results in sub-optimal
performance, it still meets lower performance thresholds in
nearly 90% of cases. In contrast, the untransformed baseline
does not meet lower performance thresholds, and thus produces
all-or-nothing results that lack robustness.

The primary benefit of modeling corrections (as opposed to
re-learning the task for the new tool) is two-fold: First, the robot
learns a transformation that reflects how the task has changed in
response to the new tool, which is potentially generalizable to
other tasks (as we discuss next). We hypothesize that in future
work, this learned transform could be parameterized by features
of the tool (after corrections on multiple tools). Second, since we
do not change the underlying task model, but instead apply the
learned transform to the resulting trajectory, the underlying task
model is left unchanged. We expect that this efficiency benefit

FIGURE 13 |Mean performance of (A)within-task and (B) across-task transfer to the brush andmug replacement tools over all 18 transfer executions for each tool.
(C) Mean performance of across-task transfer to the brush and mug replacement tools over the subset of transfer executions in which the transformation between
source and correction tasks is similar for the source and replacement tool (10 executions for the brush, 12 for the mug). Darker cells indicate higher average performance.

FIGURE 14 |Results for across-task transfer using the scrub-brush (A) andmug (B) as the replacement tool. Performance wasmeasured according to the metrics
in Section 5.10, scaled between 0–1. These results represent the generalizability of a transform model learned on one task and then applied to a different task using the
same tool. Each point represents the performance of a single transfer execution.
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would be most evident when transferring a more complex task
model trained over many demonstrations; rather than require
more demonstrations with the new tool in order to re-train the
task model, the transform would be applied to the result of the
already-trained model.

We have also explored how well this transform generalizes to
other tasks. Different tooltips on the same tool may be used to
achieve different tasks, such as how the end and base of the
paintbrush are used to perform sweeping and hammering tasks,
respectively, in Figure 15. While we do not explicitly model the
relationship between tooltips on the same tool (represented by the
top grey arrow in Figure 15), they are inherent to the learned task
models. A similar relationship exists for the replacement tool
(represented by the bottom grey arrow in Figure 15). Our across-
task evaluation seeks to answer whether the relationship between
tools in the context of the first task (solid blue arrow) can be
reused for a second task (represented by the dashed blue arrow)
without having received any corrections on that tool/task
combination (tool 2 and task 2). While we see lower
performance in across-task evaluations compared to the
within-task evaluations, it does improve transfer in 27.8% of
across-task transfer executions (in comparison to the
untransformed trajectory).

In the general case, our results also indicate that we cannot
necessarily reuse the learned transformation on additional tasks,
as average performance in across-task transfer is slightly worse

than that of the untransformed trajectory when the mug is used as
a replacement tool. This presents the question: Given a transform
between two tools in the context of one task, under what
conditions can that transform be reused in the context of
another task without additional corrections or training? We do
see that across-task performance is best when considering only
the subset of cases where the relationship between the tooltips
used in either task is similar for the source and replacement tools
(in our evaluation, this is 10 of 18 executions using the brush, and
12 of 18 executions using the mug). Within this subset, across-
task transfer improves performance in 41% of transfer executions.
From this we draw two conclusions: 1) the transform applied to a
tool is contextually dependent on the source task, target task, and
tooltips of the source and replacement tool, and 2) a transform
can be reused when the relationship between tooltips used in
either task is similar for the source and replacement tools.

Overall, our evaluation resulted in the following key findings:
Insight #1: Corrections provide a sample of the constrained

transform between the tooltip and the robot’s end-effector. This
underlying constraint is task-dependent; our best-fit model
results indicate that multiple constraint types should be
modeled and evaluated for each task, with the best-fitting
model used to produce the final transform output.

Insight #2: While the tooltip transform is task-specific, it can
be applied to additional tasks under certain conditions. This is
dependent on a second transform: the transform between

FIGURE 15 | Corrections indicate the transform from tool 1 to tool 2 for the same task (indicated by the solid blue arrow). Our within-task transfer evaluation tested
whether we can use corrections to sufficiently model this relationship. Different tasks may use different tooltips from the same tool (such as the different tooltips used to
complete tasks 1 and 2). Our across-task evaluation tests whether the transform learned from corrections (solid blue arrow) can be reused as the transform between the
two tools for another task (indicated by the dashed blue arrow).
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multiple tooltips on the same tool. A tooltip transform can be
reused for an additional task when the transform between the
tooltips used to complete 1) the corrected task and 2) the
additional task are similar for the two tools.

6 CONCLUSION

Tool use is a hallmark of human cognition and tool improvisation
is a characteristic of human creativity. As robots enter human
society, we expect human-like tool improvisation from robots as
well. This paper makes three contributions to robot creativity in
using novel tools to accomplish everyday tasks. First, it presents a
high-level decomposition of the task of tool improvisation into a
process of tool exploration, tool evaluation, and adaptation of task
models to the novel tool. Second, it demonstrates the importance of
tooltip constraints in guiding successful tool use throughout this
process. Third, it describes a method of learning by correction:
repeating a known task with an unknown tool in order to record a
human teacher’s corrections of the robot’s motion.

We focused on how the relationship between the robot’s
gripper and the tooltip dictates how the robot’s action model
should be adapted to the new tool. A challenge in identifying this
relationship is that 1) there are many candidate tooltips on each
tool, and 2) for each tooltip, there exists a one-to-many
relationship between the tooltip and end-effector poses that
fulfill the tooltip constraint.

In this paper, we validated this one-to-many mapping through
a simulated experiment in which we demonstrate a relationship
between pose variations and task performance. Our experimental
results indicate that the sensitivity of tooltip constraints depends
on the surface of the tool being used, and that as the tool pose
deviates from these constraints, the resulting effect on task
performance is nonlinear.

We then examined the opposite mapping: A many-to-one
mapping between pose feedback provided by a human teacher,
and the optimal, underlying tooltip constraint. We developed the
Learning by Correction algorithm, and demonstrated that a
human teacher can indicate the tooltip constraints for a
specific tool-task pairing by correcting the robot’s motion
when using the new tool. We modeled the underlying tooltip
constraint in two ways, using a linear and rotation model, and
also present a metric for choosing the better-fitting model for a set
of corrections. We demonstrated how this model of the tooltip
constraint can then be used to successfully plan and execute the
task using that tool with high task performance in 83% of task
execusions. We also explored how this tooltip constraint model
can be generalized to additional tasks using the same novel tool,
without requiring any additional training data.

Overall, we expect that a focus on identifying novel tools,
evaluating novel tools, and adapting task models to novel tools
in accordance to tooltip constraints is essential for enabling creative
tool use. Our results indicate that successful task adaptation for a
new tool is dependent on the tool’s usage within that task, and that
the transform model learned from interactive corrections can be
generalized to other tasks providing a similar context for the new
tool. Put together, these results provide a process account of robot

creativity in tool use (tool identification, evaluation and adaptation),
a content account (highlighting the importance of tooltips), as well
as an algorithmic account of learning by correction.

6.1 Open Questions
In this paper, we have presented a corrections-based approach to
sampling and modeling the transform resulting from a tool
replacement. In doing so, we model a single, static transform
for a particular tool/task pairing. We have evaluated how well this
model transfers to other tasks using the same tool replacement.
An extension of this work would consider transfer across tools.

We envision that a robot could not only model the transform
samples obtained by interactive corrections, but also learn to
generalize that model to other, similar tools. For example, after
receiving corrections for one ladle for a scooping task, the robot
would ideally be able to model those corrections such that it
would apply to ladles of different shapes or proportions as well.
We anticipate that a robot could learn an underlying relationship
between visual object features (such as dimensions or concavity)
and the resulting transform for that tool.

Meta-learning has been successfully applied to learning
problems in computer vision domains and fully-simulated
reinforcement learning problems (Duan et al., 2017; Chelsea
et al., 2017). When applied to the domain of tool transfer,
meta-learning would ideally enable a robot to use extensive
background training to learn the common relationships between
visual features and tooltips that are shared by tools within their
respective categories (e.g., cups, knives, scoops). When presented
with a novel category of tools, the robot would then only need
demonstrations using a small number of tools within the new
category in order to learn the relationship between visual features
and tooltips within that category. However, as demonstrated in this
paper, tooltips are task-specific; within a single tool, the tooltip used
to complete one task (e.g., the surface of a hammer used to hammer
a nail) is not necessarily the same as the tooltip used to complete
another task (e.g., the side of the hammer may be used to sweep
objects off a surface, or the claw-end of the hammer may be used to
remove a nail). This lack of task-specific training data presents a
challenge for future work, as relying on a dataset containing a
single, canonical tooltip for each tool would fail to capture the task-
contextual nature of tool use.

Finally, this paper has explored one method of interaction to
enable a human teacher to provide corrections to the robot.
However, in human-in-the-loop learning problems, the ideal
interaction type is dependent on the teacher’s role in the
learning system, and the context in which the robot is used
(Cui et al., 2021). For example, the teacher may not have time
to correct every step of the robot’s action, or may instead prefer to
provide corrections only after the robot has tried and failed to
complete a task. We anticipate that future workmay enable a robot
to obtain correction data from a broader set of interaction types.
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