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Abstract. Modeling is an important aspect of scientific problem-solving. How-
ever, modeling is a difficult cognitive process for novice learners in part due to 
the high dimensionality of the parameter search space. This work investigates 
50 college students’ parameter search behaviors in the context of ecological mod-
eling. The study revealed important differences in behaviors of successful and 
unsuccessful students in navigating the parameter space. These differences sug-
gest opportunities for future development of adaptive cognitive scaffolds to sup-
port different classes of learners. 

Keywords: Ecological Modeling, Modeling Behaviors, Parameterization, Cog-
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1 Introduction 

Scientific modeling is a complex cognitive process that requires integrating a variety 
of thinking skills and background knowledge in an investigative process [13]. Thus, 
studies examining middle school, high school, and college students’ engagement with 
scientific modeling have highlighted a broad range of issues, including parameteriza-
tion [15][24][27][29]. Parameterization is the task of selecting values for a model’s 
parameters and equations to define and/or test traits of a system’s key behaviors 
[15][24]. The parameterization task is often difficult due to a lack of domain knowledge 
and the high dimensionality of the parameter search space [26]. First, domain 
knowledge is required to constrain a range of possible values for a parameter (e.g., a 
sheep will usually give birth to between 1 and 2 litters). Second, parameter search strat-
egies are required to systematically test the hypothetical changes in a model with the 
large number of parameters and the large range of values. As the parameterization in 
modeling is an important and difficult skill for novice learners, it is necessary to under-
stand why it is difficult for them and how they struggle with it in order to provide them 
with cognitive support. 
This paper is a preliminary step towards the creation of a learner model and technol-

ogy-based cognitive scaffolding for scientific modeling. Thus, the goal of this paper is 
to understand how novices explore the parameter space and identify successful/unsuc-
cessful parameter search behaviors. The research questions associated with this effort 
were: 1) How do novices explore the parameter space? 2) How do parameter search 
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behaviors relate to the success/unsuccess of the modeling task? Answering these ques-
tions requires discovering learning behavior patterns and developing a learner’s mental 
model, which can be learned from data mining, especially learning analytics [8][9].  
In this study, we collected log data of 50 college students to observe their parameter 

search behaviors and identify modeling behavior patterns by comparing the differences 
between the groups who completed the task successfully and those who were unsuc-
cessful. The publicly and freely available modeling environment called VERA was 
used in the experiment (https://vera.cc.gatech.edu/, [1][2]). Although many studies 
have identified novices’ difficulties in parameterization [15][24][27][33] and devel-
oped cognitive scaffolds to support the parameterization task [4][5][12], they were lim-
ited due to the dependence on the predefined expert models, reference models, or data. 
Instead, we posit that interactive cognitive support should recognize the modelers’ dif-
fering intentions and strategies as well as give personalized feedback according to the 
recognized behaviors to help them test various hypotheses and ideas. 
Our contributions are threefold. First, the results complement the body of research 

on modeling behaviors for novice learner’s success and struggles. Second, our log data 
study provides quantitative evidence for the model-fitting behaviors found in other pro-
tocol studies (for example, [15][24]) and suggests that general-purpose cognitive sup-
port may be insufficient for many students. Lastly, insights about the novices’ unpro-
ductive modeling behaviors suggest useful directions for designing adaptive scaffolds. 

2 Related Work 

2.1 Understanding Novices’ Difficulties in Parameterization 

Prior research has shown a number of difficulties for students doing quantitative mod-
eling by presenting a detailed analysis of their cognitive processes [15][24][27]. The 
students typically struggled with defining and manipulating the system parameters and 
deciding what parameter values to use in their equations. Most students had a strong 
focus on adjusting model parameters to fit the empirical data or the given simulation 
output graph without deeply thinking about the system [24][27]. Many students had a 
hard time understanding the indirect effects of manipulating the large number of simu-
lation parameters and the large range of values that can appear in a model [15]. Conse-
quently, the students tended to focus on the individual parameters separately instead of 
understanding the direct and/or indirect interactions among the components of a system 
as a whole [15][24]. The students’ difficulties in exploring the parameter search space 
have negative correlations with the quality of the model that students created [24]. 
Therefore, previous research emphasized the importance of adequate scaffolding that 
takes a top-down approach during parameterization so that students can focus on ex-
plaining the underlying mechanism [15][24][27]. 
Although these studies examined novices’ difficulties during model parameteriza-

tion due to the high dimensionality of the parameter search space, they did not neces-
sarily investigate why such difficulties emerge and how novices explore the parameter 
space. In this study, we investigate how learners manipulate the parameter values and 
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how they use the output to guide adjustments to their models in detail to identify be-
havioral signals and build a learner model. In addition, previous studies typically used 
directed observations and verbal protocols to identify the difficulties of novices while 
working on a modeling task. In this study, we used students’ interaction log data for 
detailed analysis that provides a more objective analysis. 

2.2 Adaptive Scaffolding during the Parameterization Process 

Cognitive scaffolding provides support to learners while they are learning a new task 
and enables them to do certain tasks that they may not be able to do without the support 
[10]. Adaptive scaffolding recognizes learners’ behaviors, intervenes when they are in 
need of help, and reacts to different behaviors and issues during the task [19][20]. Var-
ious scaffolding strategies have been proposed to help learners develop models, such 
as giving feedback and hints on the student’s model as well as the student’s modeling 
process. For example, sample equations have been given to support students’ quantifi-
cation of models along with the model diagrams they match and the output they yield 
[11][15]. Real-world datasets have been given to help them set real-world quantities to 
use for parameters in their models [5][15]. Expert models and reference models have 
served as ground truths to assess students’ models and give feedback by comparing 
against behaviors generated by a correct expert model [4][5][28]. 
Most scaffolds only provide support with regard to setting up and defining the pa-

rameter values as defined scenarios, datasets, or reference models [4][5][11]. Typically, 
the system monitors modelers’ models and gives corresponding feedback when there is 
a mismatch between the learners’ models and the correct expert model or dataset [4][5]. 
However, students may have different modeling goals, which sometimes do not match 
the example model (e.g., students may want to explore ecological collapse rather than 
stability). To support testing of new ideas or making novel hypotheses, adaptive scaf-
folding should also be provided during parameter exploration to support various mod-
eling trajectories. 

3 VERA for Ecological Modeling 

VERA is an intelligent web-based ecological modeling application that allows learners 
to explore ecological systems and perform “what-if” experiments [1][2]. In Fig. 1, the 
top image shows a screenshot of the model canvas in VERA where a learner can build 
a conceptual model by adding biotic, abiotic, and habitat components and defining the 
relationships among them. Conceptual models of ecological phenomena in VERA are 
expressed in the Component Mechanism Phenomenon (CMP) language [17] that derive 
from the Structure-Behavior-Function theory of modeling complex systems [14].  
On the model canvas, the simulation parameters of each component that can affect 

its simulation behavior can be changed in the right panel. To help learners quantify the 
model, VERA uses the Smithsonian’s Encyclopedia of Life (EOL) digital library to 
retrieve the structured data about the species and suggest the parameter values of its 
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lifespan, body mass, offspring count, reproductive maturity, etc. [2][21]. VERA also 
uses genetic algorithms for parameter optimization to fit the model to the data. [7]. 
After constructing the conceptual model in the model canvas, VERA generates an 

agent-based NetLogo simulation (https://ccl.northwestern.edu/netlogo/, [31][32]) 
based on the model and the simulation parameters (See the bottom image in Fig. 1) 
[18]. In this way, VERA integrates both qualitative reasoning in the conceptual model 
and quantitative reasoning in the agent-based simulation on one hand, and explanatory 
reasoning (conceptual model) and predictive reasoning (simulation) on the other. At the 
start of the COVID-19 pandemic, VERA Epidemiology (VERA-Epi) was created to 
support agent-based versions of compartmental epidemiology models [6]. Thus, the in-
frastructure of VERA has a degree of domain generality. 
 

 
Fig. 1. The VERA system. (A) The model canvas, which provides a CMP model of the kudzu 
food web. (B) Model components. (C) Simulation parameters. (D) The simulation output graph 
– x axis: Time (months); y axis: Population. (E) Start, Stop, and Reset of the simulation output. 
(F) The model components on the simulation results screen. 

4 Study 

We conducted an experiment in a live classroom setting to understand how novices 
navigate the modeling parameter space while interacting with the modeling system. The 
study was conducted during one 50-minute class period in an undergraduate biology 
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class at Georgia Institute of Technology, a large, public R1 institution in the southeast-
ern US.  
 

4.1 Participants 

A complete log data of 50 students who are enrolled in an Introductory Biology course 
in Fall 2019 was recorded (N=50). Given the nature of the course and the students’ self-
assessments, the students were novice biologists and modelers who had limited biology 
knowledge or experience in modeling. On a 1-5 Likert scale, the average familiarity 
with biology was 2.80. The average self-perceived familiarity with modeling was only 
2.22. The students did not receive any extra monetary compensation or course credit 
for their time. The students were asked to do this as an in-class exercise relevant to what 
they were learning for the course. Three researchers motivated students by moving 
around the classroom checking how they are doing and answering their questions. Ad-
ditionally, two instructors of the course were sitting back in the classroom to observe 
the study. While the number of students enrolled in the class was 220, in our analysis 
we included only the students attended the class on the day of our intervention, per-
formed the class activity, consented to study, and completed all of the assignments re-
lated to the intervention (e.g., pre-test, in-class test, and training session). Students who 
missed any of these steps were eliminated from our analysis. 

4.2 Procedure 

Before the day of the class intervention, the students took a biology pre-test as a class 
assignment to assess their baseline biology knowledge. During the intervention, we 
spent approximately 15 minutes training the students on the concept of scientific mod-
eling and the use of the system. We introduced each of the modeling and simulation 
tabs and the meaning of each simulation parameter, and then walked through one sce-
nario of building and revising a model. Next, the students were instructed to spend 25 
uninterrupted minutes to complete a modeling task on a pre-built (kudzu) model (Fig. 
1). The experiment instructions were given through a Qualtrics survey. After the explo-
ration, students took an in-class biology test. All the students in the class used the mod-
eling application on their own laptops during the study. 

4.3 Modeling Task 

Without knowing the effects of the values of the kudzu bug population (KBP) in ad-
vance, the students were asked to manipulate the population to select the best value for 
the ecosystem stability (e.g., making sure that kudzu, the kudzu bug, and American 
hornbeam all survive, creating a predator-prey cycle). The students were first asked to 
observe the simulation results of the initial model that manifests a fast-growing kudzu 
population. Then they answered three multiple-choice questions to test their under-
standing about the phenomenon. Then they were asked to alter the KBP between 1 and 
1000 to provide what they thought to be the optimal value for the KBP for the stability 
of the ecosystem (in terms of kudzu, kudzu bug, and American hornbeam) and explain 
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their reason in a short text. The initial model given to students manifested a fast-grow-
ing kudzu population when KBP is 1. 
 

 
Fig. 2. The parameter spaces of the Kudzu Bug Population (KBP) and the simulation output 
graphs for each space. 

4.4 Data 

We analyzed the 50 students’ log data and their submitted answers through Qualtrics. 
To use the students’ biographic and school performance data, we obtained institute rec-
ords to de-identify and pair the data obtained during the study and the class performance 
data. This was done in accordance with an Institute Review Board protocol (H18258). 
The class performance data included students’ pre-class biology test and in-class biol-
ogy test scores, and the score on the exercise questions that were given about the kudzu 
behaviors during the modeling task. 
The students’ log data during the modeling task was analyzed to create a set of fea-

tures that were considered important and commonly used in prior work on analyzing 
and assessing behaviors [3][8][9][25]. Along with the features derived from prior work, 
we created three new features to get additional information about the modeling behav-
iors. In particular, we selected 10 features to analyze different modeling behaviors in-
cluding 1) the total number of attempts, 2) time spent on simulation (e.g., observing the 
simulation results), 3) time spent on revision (e.g., changing the parameter values for 
each iteration), 4) the number of simulation pauses, 5) the median of the attempted 
values, 6) the number of the attempted values in false ranges (e.g., out of the success 
range), 7) redundancy (e.g., revisiting previously explored ranges), and 8-10) three test 
scores.  
Deviation was used to identify how evenly the students explored the space by calcu-

lating the standard deviation of the frequency of each space. For example, if student A 
tried three numbers in range between 10 to 570 (Parameter Space B in Fig. 2) and stu-
dent B tried three numbers in range between 1-570 (Space A and B), student A will 
have a higher deviation than student B. The number of explored spaces (num explored) 
was created to identify how broadly the students explored the space by counting 
whether they explored each of the three result spaces. For example, num explored is 1 
if he/she explored only one space (either A, B, or C), 2 if two spaces were explored, 
and 3 if all three spaces (A, B and C) were explored. Success/Unsuccess was created to 
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determine whether the modeling task was successful or unsuccessful based on the stu-
dents’ answers. If the selected KBP value was between 10-570, it was given a score of 
1 (Success); otherwise, 0 (not a success). Consequently, a total of 13 features were used 
for analysis. 

4.5 Results 

Dimension Reduction. We used LDA as a dimension reduction technique to find a 
linear combination of the modeling features that were predictive of task success [13]. 
The first component of the LDA model and the biology knowledge feature were used 
as a new set of features for the analysis. We scaled the feature values as few values 
have different quantities which would impact the linear regression algorithm. Fig. 3 
shows all students plotted with the biology knowledge and the first LDA component 
with their respective success labels. 

 
Fig. 3. The scatter plot based on the LDA component and biology knowledge. 

As shown in Fig. 3, 78% of the students (N=39) found the parameter value that fits 
in the successful range (expressed by orange “o”); 22% of the students (N=11) did not 
find the right parameter range (expressed by blue “x”). The students are divided into 
four different categories and represented in each quadrant based on the performance 
and the modeling type: (1) low performance/ modeling type A, (2) high performance/ 
modeling type A, (3) low performance/ modeling type B, and (4) high performance/ 
modeling type B. 
The task success strongly correlates with the modeling type (r = 0.5265, p < 0.0001) 

while it does not strongly correlate with the biology knowledge (r = 0.1939, p = 0.1771). 
Specifically, the modeling behavior A presented in quadrants 1 and 2 is considered a 
more successful behavior than that in quadrants 3 and 4. For example, among the mod-
eling type A in quadrant 1 and 2, 100% of the students successfully completed the task 
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whereas among the modeling type B, only 47.6% of the students successfully com-
pleted the task. Among the high-performance group, 81.5% of the students successfully 
completed the task. Among the low-performance group, only 72.22% were successful. 

LDA Features and Modeling Features Correlations. We looked into how the origi-
nal modeling features are correlated with the values of the first LDA component and 
how much they contributed to the different modeling types A and B. All the features 
showed statistically significant correlations except for deviation (r = -0.24, p <.5). The 
most significant features predictive of task success were the total number of attempts (r 
= -0.65, p <.001), the number of attempted values in false ranges (r = -0.72, p <.001), 
and the number of explored spaces (r = -0.56, p <.001). which are all negatively corre-
lated with task success. The positively correlated modeling features are the time spent 
on simulation (r = 0.29, p <.05) and the time spent on revision (r = 0.35, p <.05), and 
redundancy (r = 0.42, p <.005). 

Table 1.  Summary of the parameter search patterns and descriptive statistics for successful and 
unsuccessful students. Values are means (std error in brackets). 

Pattern Relevant Feature Successful Unsuccessful 

The students iterated more times 
The total number of attempts 4.28 (1.50) 5.81 (2.56) 
The number of simulation 
pauses 2.92 (1.46) 3.30 (1.52) 

The students spent less time in 
observing the simulation results 
and changing the parameter val-
ues 

The time spent on revision (nor-
malized) 

134.72 
(85.02) 105.61 (55.36) 

The time spent on simulation  
(normalized) 

21.09 
(17.09) 14.32 (4.87) 

The students navigated in false 
ranges 

The number of explored spaces 1.74 (0.63) 2.18 (0.40) 

Deviation 1.27 (0.63) 1.48 (0.88) 
The number of the attempted 
values in false ranges 0.89 (0.88) 1.81 (1.16) 

The students revisited the already 
explored values and spaces Redundancy 46.15% (18 

out of 39) 
72.72% (8 out 
of 11) 

Modeling Behaviors. From the results, some patterns of parameter search can be de-
rived. The unsuccessful modeling behavior type B was more wandering. This means 
that the students who fall into the modeling type B category iterated many times, and 
their attempted values were more likely to be concentrated in the false ranges as they 
navigated different parameter spaces. Table 1 is the summary of the parameter search 
patterns of unsuccessful students who show modeling type B (e.g., all unsuccessful 
students showed modeling type B, see Fig. 3). Note that the patterns of successful and 
unsuccessful students are in complete contrast to each other. 
Doing many iterations is a commonly found behavior of novice search strategies in 

modeling [15][24][29]. Our study additionally reveals how and why the students’ pa-
rameter search behavior is inefficient. The model-fitting behaviors observed by [15] 
and [24] were quantitatively observed (e.g., trying similar values on a certain space). In 
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web search studies, [30] found two extreme learner groups: explorers and navigators, 
one being highly variable and one being highly consistent. Our results indicate some-
where in between showing both variability and consistency in their search interaction. 
For example, the students of model type A were consistent in that their attempted values 
were well balanced and less redundant, but also variable in that they tried broader space 
than the students of model type B. Nonetheless, we expect that results can be varied by 
task (e.g., well-defined task and complex sense-making tasks) and interface affordance 
(e.g., numeric input and slide bar).   

4.6 Design Implications for Adaptive Cognitive Scaffolding 

The above results provide insight into adaptive scaffolding for modeling based on the 
recognized parameter search behaviors and issues. The following design implications 
may also be applicable to other quantitative modeling tools or systems that require pa-
rameterization, including defining and adjusting the parameter values. 
First, one common problem identified among unsuccessful students is that they re-

peatedly explore the similar values that produce similar simulation outputs. Agent-
based models are stochastic, and the system behavior emerges out of interactions 
among a large number of components [23]. Consequently, the students have to test 
similar values many times to see their expected outcomes as it is difficult to predict 
which component and parameter value changes the system behavior significantly. In 
other words, the students heuristically have to learn the sensitivity of the parameters 
through trial and error as each parameter has a different degree of effect on the simula-
tion results (e.g., some simulation parameters react more sensitively than the other pa-
rameters). For example, Fig. 2 shows discrete spaces for KBP that produce significantly 
different simulation behaviors. Such discrete spaces can be identified by automatically 
comparing the simulation outputs and using them to suggest different spaces. 
Second, the students that were unsuccessful in the modeling task often explored a 

non-valid parameter search space. For example, we provided the students with a range 
of numbers with which to explore the parameter space, but without this constraint, it is 
more likely that students would take more time trying more numbers to find the valid 
space. While the learner can freely explore the parameter space by experimenting with 
various parameter values, the constraints can help the learner know whether his or her 
model makes sense in the real world and explore the parameter space more efficiently 
and effectively. In this process, the domain knowledge, such as the notion of exponen-
tial growth, logistic growth, and carrying capacity in ecology, can be leveraged to help 
narrow the parameterization space.  
Third, the parameter values tried by the students were concentrated in one specific 

region of the space. In this paper, the parameter space was divided into three meaningful 
regions based on the kudzu behaviors (Fig. 2). Along with helping learners to search 
the parameter space, it is also important to have them understand the model as a whole 
by having them exploring the three different parameter spaces rather than focusing on 
one space. Although these spaces were divided manually by the researchers, the simi-
larities of the simulation results in different regions can be calculated to identify the 
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distinct spaces. Then, the interactive tool can encourage learners to observe the unex-
plored spaces or to revisit the space to compare results, gain a deeper insight into struc-
ture of the parameter spaces, and see the meaningful patterns.  
Last, while previous studies such as [4][28] assumed that there were right or wrong 

models based on the expert or reference models, the learner can also try different values 
just to test new ideas or make new predictions, for example, to probe whether the model 
responds in predicted ways across a range of values. The system thus should be able to 
recognize what the learner is trying to achieve in the model to give appropriate guid-
ance. For example, when searching the parameter space, increasing values can be a 
signal to suggest the range of values of the next parameter search space; decreasing 
values can be a signal to suggest the range of values of the previous search space. 

5 Conclusion 

We draw three preliminary conclusions from this research. First, our work confirms 
several findings from earlier work reported in the literature: parameterization in scien-
tific modeling of complex phenomena is difficult because of the large number of pa-
rameters in a model and the large ranges of the values of the parameters, and that many 
learners struggle with parameterization. We observed this struggle even with college-
level biology students. Second, general-purpose cognitive scaffolding in intelligent 
modeling environments like VERA is not sufficient for many students. The incomplete-
ness and imprecision of the default values of the system parameters still leaves a large 
problem space of parameter values to be searched. Third, this suggests that intelligent 
learning environments need adaptive cognitive scaffolding to help learners navigate the 
large search spaces. The provision of heuristics for the search might be one such scaf-
folding yet to be evaluated. 
In our study, we explored the parameter search strategies with one model component 

and parameter. Having the learners explore far more complex space (many components 
and many parameters) may give us different insights into parameter search strategies. 
This work is an early step in understanding learners’ parameterization search patterns 
and leaves many exciting questions to be answered with further research. The ability to 
classify a learner’s search strategy is an interesting problem on its own, but a learner-
specific adaptive interface could test the feasibility of applying this type of results in 
real-time and build learner profiles that will enable personalized interaction. 
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