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Abstract. Modeling is an important aspect of scientific problem-solving. How-
ever, modeling is a difficult cognitive process for novice learners in part due to
the high dimensionality of the parameter search space. This work investigates
50 college students’ parameter search behaviors in the context of ecological mod-
eling. The study revealed important differences in behaviors of successful and
unsuccessful students in navigating the parameter space. These differences sug-
gest opportunities for future development of adaptive cognitive scaffolds to support
different classes of learners.
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1 Introduction

Scientific modeling is a complex cognitive process that requires integrating a variety of
thinking skills and background knowledge in an investigative process [13]. Thus, studies
examining middle school, high school, and college students’ engagement with scientific
modeling have highlighted a broad range of issues, including parameterization [15,
24, 27, 29]. Parameterization is the task of selecting values for a model’s parameters
and equations to define and/or test traits of a system’s key behaviors [15, 24]. The
parameterization task is often difficult due to a lack of domain knowledge and the
high dimensionality of the parameter search space [26]. First, domain knowledge is
required to constrain a range of possible values for a parameter (e.g., a sheep will
usually give birth to between 1 and 2 litters). Second, parameter search strategies are
required to systematically test the hypothetical changes in amodel with the large number
of parameters and the large range of values. As the parameterization in modeling is an
important and difficult skill for novice learners, it is necessary to understand why it is
difficult for them and how they struggle with it in order to provide them with cognitive
support.

This paper is a preliminary step towards the creation of a learner model and
technology-based cognitive scaffolding for scientific modeling. Thus, the goal of this
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paper is to understand how novices explore the parameter space and identify success-
ful/unsuccessful parameter search behaviors. The research questions associated with
this effort were: 1) How do novices explore the parameter space? 2) How do parameter
search behaviors relate to the success/unsuccess of the modeling task? Answering these
questions requires discovering learning behavior patterns and developing a learner’s
mental model, which can be learned from data mining, especially learning analytics
[8, 9].

In this study, we collected log data of 50 college students to observe their parameter
search behaviors and identify modeling behavior patterns by comparing the differences
between the groups who completed the task successfully and those who were unsuccess-
ful. The publicly and freely available modeling environment called VERA was used in
the experiment (https://vera.cc.gatech.edu/, [1, 2]). Although many studies have iden-
tified novices’ difficulties in parameterization [15, 24, 27, 33] and developed cognitive
scaffolds to support the parameterization task [4, 5, 12], they were limited due to the
dependence on the predefined expert models, referencemodels, or data. Instead, we posit
that interactive cognitive support should recognize themodelers’ differing intentions and
strategies as well as give personalized feedback according to the recognized behaviors
to help them test various hypotheses and ideas.

Our contributions are threefold. First, the results complement the body of research
on modeling behaviors for novice learner’s success and struggles. Second, our log data
study provides quantitative evidence for the model-fitting behaviors found in other pro-
tocol studies (for example, [15, 24]) and suggests that general-purpose cognitive support
may be insufficient for many students. Lastly, insights about the novices’ unproductive
modeling behaviors suggest useful directions for designing adaptive scaffolds.

2 Related Work

2.1 Understanding Novices’ Difficulties in Parameterization

Prior research has shown a number of difficulties for students doing quantitative mod-
eling by presenting a detailed analysis of their cognitive processes [15, 24, 27]. The
students typically struggled with defining and manipulating the system parameters and
deciding what parameter values to use in their equations. Most students had a strong
focus on adjusting model parameters to fit the empirical data or the given simulation out-
put graph without deeply thinking about the system [24, 27]. Many students had a hard
time understanding the indirect effects of manipulating the large number of simulation
parameters and the large range of values that can appear in a model [15]. Consequently,
the students tended to focus on the individual parameters separately instead of under-
standing the direct and/or indirect interactions among the components of a system as a
whole [15, 24]. The students’ difficulties in exploring the parameter search space have
negative correlations with the quality of the model that students created [24]. There-
fore, previous research emphasized the importance of adequate scaffolding that takes a
top-down approach during parameterization so that students can focus on explaining the
underlying mechanism [15, 24, 27].

Although these studies examined novices’ difficulties duringmodel parameterization
due to the high dimensionality of the parameter search space, they did not necessarily
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investigate why such difficulties emerge and how novices explore the parameter space.
In this study, we investigate how learners manipulate the parameter values and how
they use the output to guide adjustments to their models in detail to identify behavioral
signals and build a learner model. In addition, previous studies typically used directed
observations and verbal protocols to identify the difficulties of novices while working
on a modeling task. In this study, we used students’ interaction log data for detailed
analysis that provides a more objective analysis.

2.2 Adaptive Scaffolding During the Parameterization Process

Cognitive scaffolding provides support to learners while they are learning a new task and
enables them to do certain tasks that they may not be able to do without the support [10].
Adaptive scaffolding recognizes learners’ behaviors, intervenes when they are in need
of help, and reacts to different behaviors and issues during the task [19, 20]. Various
scaffolding strategies have been proposed to help learners developmodels, such as giving
feedback and hints on the student’s model as well as the student’s modeling process.
For example, sample equations have been given to support students’ quantification of
models along with the model diagrams they match and the output they yield [11, 15].
Real-world datasets have been given to help them set real-world quantities to use for
parameters in their models [5, 15]. Expert models and reference models have served
as ground truths to assess students’ models and give feedback by comparing against
behaviors generated by a correct expert model [4, 5, 28].

Most scaffolds only provide support with regard to setting up and defining the param-
eter values as defined scenarios, datasets, or reference models [4, 5, 11]. Typically, the
system monitors modelers’ models and gives corresponding feedback when there is a
mismatch between the learners’ models and the correct expert model or dataset [4, 5].
However, students may have different modeling goals, which sometimes do not match
the example model (e.g., students may want to explore ecological collapse rather than
stability). To support testing of new ideas ormaking novel hypotheses, adaptive scaffold-
ing should also be provided during parameter exploration to support various modeling
trajectories.

3 VERA for Ecological Modeling

VERA is an intelligent web-based ecological modeling application that allows learners
to explore ecological systems and perform “what-if” experiments [1, 2]. In Fig. 1, the
top image shows a screenshot of the model canvas in VERA where a learner can build
a conceptual model by adding biotic, abiotic, and habitat components and defining the
relationships among them. Conceptual models of ecological phenomena in VERA are
expressed in the Component Mechanism Phenomenon (CMP) language [17] that derive
from the Structure-Behavior-Function theory of modeling complex systems [14].

On the model canvas, the simulation parameters of each component that can affect
its simulation behavior can be changed in the right panel. To help learners quantify
the model, VERA uses the Smithsonian’s Encyclopedia of Life (EOL) digital library
to retrieve the structured data about the species and suggest the parameter values of its
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lifespan, bodymass, offspring count, reproductive maturity, etc. [2, 21]. VERA also uses
genetic algorithms for parameter optimization to fit the model to the data. [7].

After constructing the conceptual model in the model canvas, VERA generates an
agent-based NetLogo simulation (https://ccl.northwestern.edu/netlogo/, [31, 32]) based
on the model and the simulation parameters (See the bottom image in Fig. 1) [18]. In
this way, VERA integrates both qualitative reasoning in the conceptual model and quan-
titative reasoning in the agent-based simulation on one hand, and explanatory reasoning
(conceptual model) and predictive reasoning (simulation) on the other. At the start of the
COVID-19 pandemic, VERA Epidemiology (VERA-Epi) was created to support agent-
based versions of compartmental epidemiology models [6]. Thus, the infrastructure of
VERA has a degree of domain generality.

Fig. 1. The VERA system. (A) The model canvas, which provides a CMP model of the kudzu
food web. (B) Model components. (C) Simulation parameters. (D) The simulation output graph
– x axis: Time (months); y axis: Population. (E) Start, Stop, and Reset of the simulation output.
(F) The model components on the simulation results screen.

4 Study

We conducted an experiment in a live classroom setting to understand how novices
navigate the modeling parameter space while interacting with the modeling system. The
study was conducted during one 50-min class period in an undergraduate biology class
at Georgia Institute of Technology, a large, public R1 institution in the southeastern US.

https://ccl.northwestern.edu/netlogo/
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4.1 Participants

A complete log data of 50 students who are enrolled in an Introductory Biology course
in Fall 2019 was recorded (N= 50). Given the nature of the course and the students’ self-
assessments, the students were novice biologists and modelers who had limited biology
knowledge or experience in modeling. On a 1–5 Likert scale, the average familiarity
with biology was 2.80. The average self-perceived familiarity with modeling was only
2.22. The students did not receive any extra monetary compensation or course credit for
their time. The students were asked to do this as an in-class exercise relevant to what they
were learning for the course. Three researchers motivated students bymoving around the
classroom checking how they are doing and answering their questions. Additionally, two
instructors of the course were sitting back in the classroom to observe the study. While
the number of students enrolled in the class was 220, in our analysis we included only the
students attended the class on the day of our intervention, performed the class activity,
consented to study, and completed all of the assignments related to the intervention (e.g.,
pre-test, in-class test, and training session). Students who missed any of these steps were
eliminated from our analysis.

4.2 Procedure

Before the day of the class intervention, the students took a biology pre-test as a class
assignment to assess their baseline biology knowledge. During the intervention, we spent
approximately 15 min training the students on the concept of scientific modeling and
the use of the system. We introduced each of the modeling and simulation tabs and the
meaning of each simulation parameter, and thenwalked through one scenario of building
and revising a model. Next, the students were instructed to spend 25 uninterrupted min-
utes to complete a modeling task on a pre-built (kudzu) model (Fig. 1). The experiment
instructions were given through a Qualtrics survey. After the exploration, students took
an in-class biology test. All the students in the class used the modeling application on
their own laptops during the study.

4.3 Modeling Task

Without knowing the effects of the values of the kudzu bug population (KBP) in advance,
the students were asked to manipulate the population to select the best value for the
ecosystem stability (e.g., making sure that kudzu, the kudzu bug, and American horn-
beam all survive, creating a predator-prey cycle). The students were first asked to observe
the simulation results of the initial model that manifests a fast-growing kudzu popula-
tion. Then they answered three multiple-choice questions to test their understanding
about the phenomenon. Then they were asked to alter the KBP between 1 and 1000 to
provide what they thought to be the optimal value for the KBP for the stability of the
ecosystem (in terms of kudzu, kudzu bug, and American hornbeam) and explain their
reason in a short text. The initial model given to students manifested a fast-growing
kudzu population when KBP is 1.
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Fig. 2. The parameter spaces of the Kudzu Bug Population (KBP) and the simulation output
graphs for each space.

4.4 Data

We analyzed the 50 students’ log data and their submitted answers through Qualtrics. To
use the students’ biographic and school performance data, we obtained institute records
to de-identify and pair the data obtained during the study and the class performance data.
This was done in accordance with an Institute Review Board protocol (H18258). The
class performance data included students’ pre-class biology test and in-class biology test
scores, and the score on the exercise questions that were given about the kudzu behaviors
during the modeling task.

The students’ log data during the modeling task was analyzed to create a set of
features that were considered important and commonly used in prior work on analyzing
and assessing behaviors [3, 8, 9, 25]. Alongwith the features derived from prior work, we
created three new features to get additional information about themodeling behaviors. In
particular, we selected 10 features to analyze different modeling behaviors including 1)
the total number of attempts, 2) time spent on simulation (e.g., observing the simulation
results), 3) time spent on revision (e.g., changing the parameter values for each iteration),
4) the number of simulation pauses, 5) the median of the attempted values, 6) the number
of the attempted values in false ranges (e.g., out of the success range), 7) redundancy
(e.g., revisiting previously explored ranges), and 8–10) three test scores.

Deviation was used to identify how evenly the students explored the space by cal-
culating the standard deviation of the frequency of each space. For example, if student
A tried three numbers in range between 10 to 570 (Parameter Space B in Fig. 2) and
student B tried three numbers in range between 1–570 (Space A and B), student A will
have a higher deviation than student B. The number of explored spaces (num explored)
was created to identify how broadly the students explored the space by counting whether
they explored each of the three result spaces. For example, num explored is 1 if he/she
explored only one space (either A, B, or C), 2 if two spaces were explored, and 3 if
all three spaces (A, B and C) were explored. Success/Unsuccess was created to deter-
mine whether the modeling task was successful or unsuccessful based on the students’
answers. If the selected KBP value was between 10–570, it was given a score of 1 (Suc-
cess); otherwise, 0 (not a success). Consequently, a total of 13 features were used for
analysis.
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4.5 Results

Dimension Reduction. We used lda as a dimension reduction technique to find a linear
combination of the modeling features that were predictive of task success [13]. The
first component of the lda model and the biology knowledge feature were used as a
new set of features for the analysis. We scaled the feature values as few values have
different quantities which would impact the linear regression algorithm. Figure 3 shows
all students plotted with the biology knowledge and the first lda component with their
respective success labels.

Fig. 3. The scatter plot based on the LDA component and biology knowledge.

As shown in Fig. 3, 78% of the students (N= 39) found the parameter value that fits
in the successful range (expressed by orange “o”); 22% of the students (N= 11) did not
find the right parameter range (expressed by blue “x”). The students are divided into four
different categories and represented in each quadrant based on the performance and the
modeling type: (1) low performance/modeling type A, (2) high performance/modeling
type A, (3) low performance/ modeling type B, and (4) high performance/ modeling type
B.

The task success strongly correlates with the modeling type (r= 0.5265, p< 0.0001)
while it does not strongly correlate with the biology knowledge (r= 0.1939, p= 0.1771).
Specifically, themodeling behaviorApresented in quadrants 1 and 2 is considered amore
successful behavior than that in quadrants 3 and 4. For example, among the modeling
typeA in quadrant 1 and 2, 100%of the students successfully completed the taskwhereas
among the modeling type B, only 47.6% of the students successfully completed the task.
Among the high-performance group, 81.5% of the students successfully completed the
task. Among the low-performance group, only 72.22% were successful.
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LDA Features and Modeling Features Correlations. We looked into how the origi-
nal modeling features are correlated with the values of the first lda component and how
much they contributed to the different modeling types a and b. All the features showed
statistically significant correlations except for deviation (r = −0.24, p < .5). The most
significant features predictive of task success were the total number of attempts (r = −
0.65, p < .001), the number of attempted values in false ranges (r = −0.72, p < .001),
and the number of explored spaces (r = −0.56, p < .001). Which are all negatively
correlated with task success. The positively correlated modeling features are the time
spent on simulation (r = 0.29, p < .05) and the time spent on revision (r = 0.35, p <

.05), and redundancy (r = 0.42, p < .005).

Table 1. Summary of the parameter search patterns and descriptive statistics for successful and
unsuccessful students. Values are means (std error in brackets).

Pattern Relevant Feature Successful Unsuccessful

The students iterated
more times

The total number of
attempts

4.28 (1.50) 5.81 (2.56)

The number of
simulation pauses

2.92 (1.46) 3.30 (1.52)

The students spent less
time in observing the
simulation results and
changing the parameter
values

The time spent on
revision (normalized)

134.72 (85.02) 105.61 (55.36)

The time spent on
simulation
(normalized)

21.09 (17.09) 14.32 (4.87)

The students navigated
in false ranges

The number of
explored spaces

1.74 (0.63) 2.18 (0.40)

Deviation 1.27 (0.63) 1.48 (0.88)

The number of the
attempted values in
false ranges

0.89 (0.88) 1.81 (1.16)

The students revisited
the already explored
values and spaces

Redundancy 46.15% (18 out of 39) 72.72% (8 out of 11)

Modeling Behaviors. From the results, some patterns of parameter search can be
derived. The unsuccessful modeling behavior type b was more wandering. This means
that the students who fall into the modeling type b category iterated many times, and
their attempted values were more likely to be concentrated in the false ranges as they
navigated different parameter spaces. Table 1 is the summary of the parameter search
patterns of unsuccessful students who show modeling type b (e.g., all unsuccessful stu-
dents showed modeling type b, see Fig. 3). Note that the patterns of successful and
unsuccessful students are in complete contrast to each other.
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Doing many iterations is a commonly found behavior of novice search strategies
in modeling [15, 24, 29]. Our study additionally reveals how and why the students’
parameter search behavior is inefficient. The model-fitting behaviors observed by [15]
and [24] were quantitatively observed (e.g., trying similar values on a certain space). In
web search studies, [30] found two extreme learner groups: explorers and navigators, one
being highly variable and one being highly consistent. Our results indicate somewhere
in between showing both variability and consistency in their search interaction. For
example, the students of model type A were consistent in that their attempted values
were well balanced and less redundant, but also variable in that they tried broader space
than the students of model type B. Nonetheless, we expect that results can be varied by
task (e.g., well-defined task and complex sense-making tasks) and interface affordance
(e.g., numeric input and slide bar).

4.6 Design Implications for Adaptive Cognitive Scaffolding

The above results provide insight into adaptive scaffolding for modeling based on the
recognized parameter search behaviors and issues. The following design implications
may also be applicable to other quantitative modeling tools or systems that require
parameterization, including defining and adjusting the parameter values.

First, one common problem identified among unsuccessful students is that they
repeatedly explore the similar values that produce similar simulation outputs. Agent-
based models are stochastic, and the system behavior emerges out of interactions among
a large number of components [23]. Consequently, the students have to test similar
values many times to see their expected outcomes as it is difficult to predict which
component and parameter value changes the system behavior significantly. In other
words, the students heuristically have to learn the sensitivity of the parameters through
trial and error as each parameter has a different degree of effect on the simulation results
(e.g., some simulation parameters react more sensitively than the other parameters).
For example, Fig. 2 shows discrete spaces for KBP that produce significantly different
simulation behaviors. Such discrete spaces can be identified by automatically comparing
the simulation outputs and using them to suggest different spaces.

Second, the students that were unsuccessful in the modeling task often explored a
non-valid parameter search space. For example, we provided the students with a range
of numbers with which to explore the parameter space, but without this constraint, it is
more likely that students would take more time trying more numbers to find the valid
space. While the learner can freely explore the parameter space by experimenting with
various parameter values, the constraints can help the learner know whether his or her
model makes sense in the real world and explore the parameter space more efficiently
and effectively. In this process, the domain knowledge, such as the notion of exponential
growth, logistic growth, and carrying capacity in ecology, can be leveraged to help
narrow the parameterization space.

Third, the parameter values tried by the students were concentrated in one specific
region of the space. In this paper, the parameter space was divided into three meaningful
regions based on the kudzu behaviors (Fig. 2). Along with helping learners to search the
parameter space, it is also important to have them understand the model as a whole by
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having them exploring the three different parameter spaces rather than focusing on one
space. Although these spaces were divided manually by the researchers, the similarities
of the simulation results in different regions can be calculated to identify the distinct
spaces. Then, the interactive tool can encourage learners to observe the unexplored
spaces or to revisit the space to compare results, gain a deeper insight into structure of
the parameter spaces, and see the meaningful patterns.

Last, while previous studies such as [4, 28] assumed that there were right or wrong
models based on the expert or reference models, the learner can also try different values
just to test new ideas or make new predictions, for example, to probe whether the model
responds in predicted ways across a range of values. The system thus should be able to
recognize what the learner is trying to achieve in the model to give appropriate guidance.
For example, when searching the parameter space, increasing values can be a signal to
suggest the range of values of the next parameter search space; decreasing values can
be a signal to suggest the range of values of the previous search space.

5 Conclusion

We draw three preliminary conclusions from this research. First, our work confirms sev-
eral findings from earlier work reported in the literature: parameterization in scientific
modeling of complex phenomena is difficult because of the large number of parameters
in a model and the large ranges of the values of the parameters, and that many learn-
ers struggle with parameterization. We observed this struggle even with college-level
biology students. Second, general-purpose cognitive scaffolding in intelligent modeling
environments like VERA is not sufficient for many students. The incompleteness and
imprecision of the default values of the system parameters still leaves a large problem
space of parameter values to be searched. Third, this suggests that intelligent learning
environments need adaptive cognitive scaffolding to help learners navigate the large
search spaces. The provision of heuristics for the search might be one such scaffolding
yet to be evaluated.

In our study, we explored the parameter search strategies with one model component
and parameter. Having the learners explore far more complex space (many components
and many parameters) may give us different insights into parameter search strategies.
This work is an early step in understanding learners’ parameterization search patterns
and leaves many exciting questions to be answered with further research. The ability to
classify a learner’s search strategy is an interesting problem on its own, but a learner-
specific adaptive interface could test the feasibility of applying this type of results in
real-time and build learner profiles that will enable personalized interaction.
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