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Abstract. Citizen scientists have the potential to expand scientific
research. The virtual research assistant called VERA empowers citizen
scientists to engage in environmental science in two ways. First, it auto-
matically generates simulations based on the conceptual models of eco-
logical phenomena for repeated testing and feedback. Second, it leverages
the Encyclopedia of Life biodiversity knowledgebase to support the pro-
cess of model construction and revision.
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1 Introduction

General public scientists, sometimes called citizen scientists, participate in scien-
tific research in part to contribute to and expand the impacts of any study [1–3].
Yet, the role of citizen scientists is often limited to data collection [4,5]. We seek
to develop computational techniques and tools to empower citizen scientists to
play a more active role in scientific research, especially in environmental science
and policy [6].

The scientific process often starts with the identification of an atypical or
abnormal phenomenon such as unprecedented movement of a biological species
into a new geographical region [7]. The scientist may then propose, elaborate,
evaluate, revise/refine, and accept/reject multiple hypotheses for explaining the
phenomenon. Professional scientists widely use multiple kinds of models of the
system of interest including conceptual models and simulation models [8,9]. Con-
ceptual models are abstract and declarative representations of a system with
components, relations, and processes. Simulation models can be executed to
evaluate a hypothesis by calculating the real effects and courses of action under
certain conditions of the system. Thus, a conceptual model can help express
hypotheses that can then be evaluated and revised through simulations. The
construction of a conceptual model requires relational knowledge that involves
relationships between two species (e.g., predator-prey relationships), whereas
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model simulation requires quantitative information about a species (e.g., popu-
lation, birthrate, lifespan). These are two areas in which many citizen scientists
need much support.

Thus, our research question is how to develop a virtual research assistant that
can help citizen scientists construct, test and revise their hypotheses about eco-
logical phenomena. The Virtual Ecological Research Assistant (VERA; http://
support.dilab.gatech.edu/okuwiki/mantis/virtual ecological research
assistant vera/start) empowers citizen scientists in two ways. First, it automati-
cally generates simulations based on the conceptual models of ecological phenom-
ena for repeated testing and feedback. Second, it leverages Encyclopedia of Life
(http://eol.org/) biodiversity knowledgebase to support the process of model con-
struction and revision. A couple of pilot studies show promising results.

2 VERA

Conceptual models of ecological phenomena in VERA are expressed in the
Component-Mechanism-Phenomenon (CMP) language [10,11]. CMP modeling of
natural systems is an adaptation of the Structure-Behavior-Function modeling of
technological systems [12,13]. A CMP model consists of components and relation-
ships between components. A component can be one of four types: biotic, abiotic,
base population, and habitat. A relationship relates one component to another
in a directed manner (e.g., component X consumes component Y). The allowed
relationships vary based on the source, and destination components selected, but
always are a subset of the relations ontology supported by EOL. The sixteen
types of relationships presently implemented in VERA including “consumes,”
“destroys,” “infects,” and “spreads.” Figure 1 illustrates the VERA system that
includes MILA-S [10,11] for automatic generation of agent-based simulations and
EOL for retrieving traits of species.

2.1 Automatic Generation of Agent-Based Simulations

Following our earlier work on the ACT [14] and MILA-S system [10,11], VERA
uses an artificial intelligence compiler to automatically translate the patterns in
the conceptual models into the primitives of agent-based simulation of NetLogo
[15]. The running of the simulation enables the user to observe the evolution
of the system variables over time, and iterate through the model-simulate-refine
loops [16]. In this way, like MILA-S, VERA integrates both qualitative reasoning
in the conceptual model and quantitative reasoning in the simulation reasoning
on one hand, and explanatory reasoning (conceptual model) and predictive rea-
soning (simulation).

2.2 Integration with Encyclopedia of Life

VERA integrates MILA-S with EOL [17] to provide the user with access to
knowledge about biological species, for example, data about the traits of a
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Fig. 1. The overall structure of VERA. VERA includes MILA-S to let users cre-
ate conceptual models about the problems in ecological systems and execute simu-
lations. In the meantime, VERA uses EOL TraitBank to scaffold the process of model
construction.

species. In particular, once having built a conceptual model of an ecological
phenomenon, the user may need quantitative data about the biological species
in the model to set up the agent-based model simulation. VERA enables the
user to look up this kind of data in EOLs TraitBank [18]. For example, when
creating a model that explains why a specific kind of starfish is dying off the
west coast of USA, the user can search EOLs TraitBank for the birthrate and
lifespan of the starfish and set the simulation parameters accordingly.

We are presently constructing additional tools for accessing knowledge from
EOL to support citizen scientists. For example, when adding predator-prey rela-
tionships of starfish, a user may not know what starfish eat or what might eat
starfish. To facilitate looking up this kind of information, we seek to use IBMs
Bluemix services to search the EOL for an answer by entering a question such
as “What do starfish eat?”

3 Conclusion

The VERA system helps citizen scientists in constructing and testing models
of ecological systems in two ways. First, it automatically generates simulations
based on the conceptual models of ecological phenomena for repeated testing
and feedback. Second, it leverages the Encyclopedia of Life biodiversity knowl-
edgebase to support the process of model construction and revision. Initial pilot
studies indicate promising results. To contribute to environmental sustainabil-
ity, citizen scientists can use the VERA system to model, analyze, explain, and
predict problems in ecological systems.
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