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Abstract 
We report a novel approach to addressing the Raven’s Pro-
gressive Matrices (RPM) tests, one based upon purely visual 
representations. Our technique introduces the calculation of 
confidence in an answer and the automatic adjustment of 
level of resolution if that confidence is insufficient. We first 
describe the nature of the visual analogies found on the 
RPM.  We then exhibit our algorithm and work through a 
detailed example.  Finally, we present the performance of 
our algorithm on the four major variants of the RPM tests, 
illustrating the impact of confidence.  This is the first such 
account of any computational model against the entirety of 
the Raven’s. 

 Introduction   
The Raven’s Progressive Matrices (RPM) test paradigm is 
intended to measure eductive ability, the ability to extract 
and process information from a novel situation (Raven, 
Raven, & Court, 2003).  The problems from Raven’s vari-
ous tests are organized into sets.  Each successive set is 
generally interpreted to be more difficult than the prior set.  
Some of the problem sets are 2x2 matrices of images with 
six possible answers; the remaining sets are 3x3 matrices 
of images with eight possible answers.  The tests are purely 
visual: no verbal information accompanies the tests.   
 From Turing onward, researchers in AI have long had an 
affinity for challenging their systems with intelligence tests 
(e.g. Levesque, Davis, & Morgenstern, 2011), and the Ra-
ven’s is no exception. Over the years, different computa-
tional accounts have proposed various representations and 
specific mechanisms for solving RPM problems. These we 
now briefly shall review.   
 Hunt (1974) gives a theoretical account of the infor-
mation processing demands of certain problems from the 
Advanced Progressive Matrices (APM). He proposes two 
qualitatively different solution algorithms—“Gestalt,” 
which uses visual operations on analogical representations, 
and “Analytic,” which uses logical operations on concep-
tual representations.  
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 Carpenter, Just, and Shell (1990) describe a computa-
tional model that simulates solving RPM problems using 
propositional representations.   Their model is based on the 
traditional production system architecture, with a long-
term memory containing a set of hand-authored produc-
tions and a working memory containing the current goals.  
Productions are based on the relations among the entities in 
a RPM problem.   

 Figure 1. An example of a Raven’s problem  
 
Bringsjord and Schimanski (2003) used a theorem-prover 
to solve selected RPM problems stated in first-order logic.  
 Lovett, Forbus and Usher (2010) describe a model that 
extracts qualitative spatial representations from visually 
segmented representations of RPM problem inputs and 
then uses the analogy technique of structure mapping to 
find solutions and, where needed to achieve better analo-
gies, to regroup or re-segment the initial inputs to form 
new problem representations.  
 Cirillo and Ström (2010) created a system for solving 
problems from the SPM that, like that of Lovett et al. 
(2010), takes as inputs vector graphics representations of 
test problems and automatically extracts hierarchical prop-
ositional problem representations. Then, like the work of 
Carpenter et al. (1990), the system draws from a set of pre-
defined patterns, derived by the authors, to find the best-fit 
pattern for a given problem.   
 Kunda, McGreggor, and Goel (2011) have developed a 
model that operates directly on scanned image inputs from 



 

 

the test.  This model uses operations based on mental im-
agery (rotations, translations, image composition, etc.) to 
induce image transformations between images in the prob-
lem matrix and then predicts an answer image based on the 
final induced transformation. McGreggor, Kunda, and 
Goel (2011) also report a model that employs fractal repre-
sentations of the relationships between images.  
 Finally, Rasmussen and Eliasmith (2011) used a spiking 
neuron model to induce rules for solving RPM problems. 
Input images from the test were hand-coded into vectors of 
propositional attribute-value pairs, and then the spiking 
neuron model was used to derive transformations among 
these vectors and abstract over them to induce a general 
rule transformation for that particular problem.  
 The variety of approaches to solving RPM problems 
suggest that no one definitive account exists.  Here, we 
develop a new method for addressing the RPM, based upon 
fractal representations.  An important aspect of our method 
is that a desired confidence with which the problem is to be 
solved may be used as a method for automatically tuning 
the algorithm.  In addition, we illustrate the application of 
our model against all of the available test suites of RPM 
problems, a first in the literature. 

Ravens and Confidence 
Let us illustrate our method for solving RPM problems.   
We shall use as an example the 3x3 matrix problem shown 
in Figure 1.  The images and Java source code for this ex-
ample may be found on our research group’s website. 

Figure 2. Simultaneous relationships 

Simultaneous Relationships and Constraints 
In any Raven’s problem there exist simultaneous horizon-
tal and vertical relationships which must be maintained. In 
Figure 2, we illustrate these relationships using our exam-
ple problem.  As shown, relationships H1 and H2 constrain 
relationship H, while relationships V1 and V2 constrain 
relationship V.  While there may be other possible relation-
ships suggested by this problem, we have chosen to focus 
on these particular relationships for clarity. 
 To solve a Raven’s problem, one must select the image 
from the set of possible answers for which the similarity to 
each of the problem’s relationships is maximal.  For our 

example, this involves the calculation of a set of similarity 
values Θi for each answer Ai:  

Θi ← { S( H1, H(Ai) ), S( H2, H(Ai) ),  
               S( V1, V(Ai) ), S( V2, V(Ai) ) } 

where H(Ai) and V(Ai) denote the relationship formed 
when the answer image Ai is included. S(X,Y) is the 
Tversky featural similarity between two sets X and Y 
(Tversky, 1977): 

S(X,Y) ← f(X∩Y) / [ f(X∩Y) + αf(X-Y) + βf(Y-X) ] 

Fractal Representation of Visual Relationships  
We chose to use fractal representations here for their con-
sistency under re-representation (McGreggor, 2013), and in 
particular for the mutual fractal representation, which ex-
presses the relationship between sets of images. 
 In Figure 3, we illustrate how to construct a mutual frac-
tal representation of the relationship H1. 

Figure 3. Mutual Fractal Representations 

Confidence and Ambiguity 
An answer to a Raven’s problem may be found by choos-
ing the one with the maximal featural similarity.  But how 
confident is that answer?  Given the variety of answer 
choices, even though an answer may be selected based on 
maximal similarity, how may that choice be contrasted 
with its peers as the designated answer?  
 We claim that the most probable answer would in a 
sense “stand apart” from the rest of the choices, and that 
distinction may be interpreted as a metric of confidence.  
Assuming a normal distribution, we may calculate a confi-
dence interval based upon the standard deviation, and score 
each of these values along such a confidence scale.  Thus, 
the problem of selecting the answer for a Raven’s problem 
is transformed into a problem of distinguishing which of 
the possible choices is a statistical outlier. 



 

 

The Confident Ravens Algorithm 
To address Raven’s problems, we developed the Confident 
Ravens algorithm.  We present it here in pseudo-code 
form, in two parts: the preparatory stage and the execution 
stage.  

Confident Ravens, Preparatory Stage 
In the first stage of our Confident Ravens Algorithm, an 
image containing the entire problem is first segmented into 
its component images (the matrix of images, and the possi-
ble answers).  Next, based upon the complexity of the ma-
trix, the set of relationships to be evaluated is established.  
Then, a range of abstraction levels is determined.  
Throughout, we use MutualFractal() to indicate the mutual 
fractal representation of the input images (McGreggor & 
Goel, 2012). 

 Algorithm 1. Confident Ravens Preparatory Stage 

In the present implementation, the abstraction levels are 
determined to be a partitioning of the given images into 
gridded sections at a prescribed size and regularity. 

Confident Ravens, Execution Stage 
The algorithm concludes by calculating similarity values 
for each of the possible answer choices.  It uses the devia-
tion of these values from their mean to determine the con-
fidence in the answers at each level.   

Algorithm 2. Confident Ravens Execution Stage 

 Thus, for each level of abstraction, the relationships im-
plied by the kind of Raven’s problem (2x2 or 3x3) are re-
represented into that partitioning.  Then, for each of the 
candidate images, a potentially analogous relationship is 
determined for each of the existing relationships and a sim-
ilarity value calculated.  The vector of similarity values is 
reduced via a simple Euclidean distance formula to a single 
similarity.  The balance of the algorithm, using the devia-
tion from the mean of these similarities, continues through 

Given an image P containing a Raven’s problem, prepare to 
determine an answer with confidence. 
P R O B L E M  S E G M E N T A T I O N  

By examination, divide P into two images, one containing the 
matrix and the other containing the possible answers.  Fur-
ther divide the matrix image into an ordered set of either 3 or 
8 matrix element images, for 2x2 or 3x3 matrices respective-
ly.  Likewise, divide the answer image into an ordered set of 
its constituent individual answer choices. 

Let M ← { m1, m2, ... } be the set of matrix element images. 
Let C ← { c1, c2, c3, ... } be the set of answer choices. 
Let η be an integer denoting the order of the matrix image 
(either 2 or 3, for 2x2 or 3x3 matrices respectively). 

R E L A T I O N S H I P  D E S I G N A T I O N S  

Let R be a set of relationships, determined by the value of η 
as follows: 
If η = 2: 
 R ← { H1, V1 } where 
 H1 ← MutualFractal( m1, m2 ) 
 V1 ← MutualFractal( m1, m3 ) 
Else: (because η = 3) 
 R ← { H1, H2, V1, V2 } where 
 H1 ← MutualFractal( m1, m2 , m3 ) 
 H2 ← MutualFractal( m4, m5 , m6 ) 
 V1 ← MutualFractal( m1, m4 , m7 ) 
 V2 ← MutualFractal( m2, m5 , m8 ) 
 
 A B S T R A C T I O N  L E V E L  P R E P A R A T I O N   

Let d be the largest dimension for any image in M ∪ C. 

Let A := { a1, a2, ... } represent an ordered range of abstrac-
tion values where 
 a1 ← d, and  ai ← ½ ai-1   
 ∀ i, 2 ≤ i ≤ floor( log2 d ) and ai ≥ 2  

The values within A constitute the grid values to be used 
when partitioning the problem’s images. 

Given M, C, R, A, and η as determined in the preparatory 
stage, determine an answer and its confidence. 

Let Ε be a real number which represents the number of 
standard deviations beyond which a value’s answer may be 
judged as “confident” 

Let S(X,Y) be the Tversky similarity metric for sets X and Y 
 
 E X E C U T I O N   

For each abstraction a ∈A: 
• Re-represent each representation r ∈ R according to 

abstraction a 
• S ← � 

• For each answer image c ∈ C : 
• If η = 2: 

H ← MutualFractal( m3, c ) 
V ← MutualFractal( m2, c ) 
Θ ← { S( H1, H ), S( V1, V ) } 

• Else: (because η = 3) 
H ← MutualFractal( m7, m8, c ) 
V ← MutualFractal( m3, m6, c ) 
Θ ← { S( H1, H ), S( H2, H ),  
   S( V1, V ), S( V2, V ) } 

• Calculate a single similarity metric from vector Θ:  
t ← √ Σ θ2    ∀	
  θ  ∈ Θ 
S ← S ∪{ t } 
 

• Set µ ← mean ( S ) 
• Set σµ ← stdev ( S ) / √n 
• Set D ← { D1, D2, D3, D4, ... Dn }  

where Di = (Si-µ) / σµ 
• Generate the set Z ← { Zi ... } ∀	
  Zi ∈ D and Zi > E 
• If |Z| = 1, return the answer image ci ∈ C which cor-

responds to Zi 
• otherwise there exists ambiguity, and further refine-

ment must occur. 
 
If no answer has been returned, then no answer may be given 
unambiguously. 



 

 

a variety of levels of abstraction, looking for an unambigu-
ous answer that meets the specified confidence constraint. 

The Example, Solved 
Table 1 shows the results of running the Confident Ravens 
algorithm on the example problem, starting at an original 
gridded partitioning of 200x200 pixels (the maximal pixel 
dimension of the images), and then refining the partition-
ing down to a grid of 6x6 pixels, using a subdivision by 
half scheme, yielding 6 levels of abstraction. 
 Let us suppose that a confidence level of 95% is desired.  
The table gives the mean (µ), standard deviation (σµ), and 
number of features (f) for each level of abstraction (grid).  
The deviation and confidence for each candidate answer 
are given for each level of abstraction as well.  

Table 1. Image Deviations and Confidences 
Yellow indicates ambiguous results, red indicates that 

the result is unambiguous 

The deviations presented in table 1 appear to suggest that if 
one starts at the very coarsest level of abstraction, the an-
swer is apparent (image choice 3).  Indeed, the confidence 
in that answer never dips below 99.66%. 
 We see evidence that operating with either too sparse a 
data set (at the coarsest) or with too homogeneous a data 
set (at the finest) may be problematic.  The coarsest ab-
straction (200 pixel grid size) offers 378 features, whereas 
the finest abstraction (6 pixel grid size) offers more than 
400,000 features for consideration.  
 The data in the table suggests the possibility of automat-
ically detecting these boundary situations.  We note that 
the average similarity measurement at the coarsest abstrac-
tion is 0.589, but then falls, at the next level of abstraction, 
to 0.310, only to thereafter generally increase.  This consti-
tutes further evidence for an emergent boundary for the 
maximum coarse abstraction.  
 We surmise that ambiguity exists for ranges of abstrac-
tion, only to vanish at some appropriate levels of abstrac-
tion, and then reemerges once those levels are surpassed. 
The example here offers evidence of such behavior, where 
there exists ambiguity at grid sizes 100, 50, 25, and 12, 
then the ambiguity vanishes for grid size 6. Though we 
omit the values in Table 1 for clarity of presentation, our 
calculations show that ambiguity reemerges for grid size 3.  
This suggests that there are discriminatory features within 
the images exist only at certain levels of abstraction. 

Results 

We have tested the Confident Ravens algorithm against the 
four primary variants of the RPM: the 60 problems of the 
Standard Progressive Matrices (SPM) test, the 48 problems 
of the Advanced Progressive Matrices (APM) test, the 36 
problems of the Coloured Progressive Matrices (CPM) test, 
and the 60 problems of the SPM Plus test.   Insofar as we 
know, this research represents the first published computa-
tional account of any model against the entire suite of the 
Raven Progressive Matrices.  
 To create inputs for the algorithm, each page from the 
various Raven test booklets were scanned, and the result-
ing greyscale images were rotated to roughly correct for 
page alignment issues. Then, the images were sliced up to 
create separate image files for each entry in the problem 
matrix and for each answer choice. These separate images 
were the inputs to the technique for each problem. No fur-
ther image processing or cleanup was performed, despite 
the presence of numerous pixel-level artifacts introduced 
by the scanning and minor inter-problem image alignment 
issues. Additionally, each problem was solved inde-
pendently: no information was carried over from problem 
to problem, nor from test variant to test variant.  
 The code used to conduct these tests was precisely the 
same code as used in the presented example, and is availa-

image deviations & confidences 
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ble for download from our lab website.  The Raven test 
images as scanned, however, are copyrighted and thus are 
not available for download.   

Abstractions, Metrics, and Calculations 
The images associated with each problem, in general, had a 
maximum pixel dimension of  between 150 and 250 pixels.  
We chose a partitioning scheme which started at the max-
imum dimension, then descended in steps of 10, until it 
reached a minimum size of no smaller than 4 pixels, yield-
ing 14 to 22 levels of abstraction for each problem.   
 At each level of abstraction, we calculated the similarity 
value for each possible answer, as proscribed by the Confi-
dent Ravens algorithm.  For those calculations, we used the 
Tversky contrast ratio formula (1977), and set α to 1.0 and 
β equal to 0.0, conforming to values used in the coinci-
dence model by Bush and Mosteller (1953), yielding an 
asymmetric similarity metric preferential to the problem 
matrix’s relationships. From those values, we calculated 
the mean and standard deviation, and then calculated the 
deviation and confidence for each answer.  We made note 
of which answers provided a confidence above our chosen 
level, and whether for each abstraction level the answer 
was unambiguous or ambiguous, and if ambiguous, in what 
manner.   
 As we were exploring the advent and disappearance of 
ambiguity and the effect of confidence, we chose to allow 
the algorithm to run fully at all available levels of abstrac-
tion, rather than halting when an unambiguous answer was 
determined.    

Performance on the SPM test: 54 of 60 
On the Raven’s Standard Progressive Matrices (SPM) test, 
the Confident Ravens algorithm detected the correct an-
swer at a 95% or higher level of confidence on 54 of the 60 
problems.  The number of problems with detected correct 
answers per set were 12 for set A, 10 for set B, 12 for set 
C, 8 for set D, and 12 for set E.  Of the 54 problems where 
the correct answers detected, 22 problems were answered 
ambiguously.  

Performance on the APM test: 43 of 48 
On the Raven’s Advanced Progressive Matrices (APM) 
test, the Confident Ravens algorithm detected the correct 
answer at a 95% or higher level of confidence on 43 of the 
48 problems.  The number of problems with detected cor-
rect answers per set were 11 for set A, and 32 for set B.  Of 
the 43 problems where the correct answers detected, 27 
problems were answered ambiguously.   

Performance on the CPM test: 35 of 36 
On the Raven’s Coloured Progressive Matrices (CPM) test, 
the Confident Ravens algorithm detected the correct an-
swer at a 95% or higher level of confidence on 35 of the 36 
problems.  The number of problems with detected correct 
answers per set were 12 for set A, 12 for set AB, and 11 for 
set B.  Of the 35 problems where the correct answers de-
tected, 5 problems were answered ambiguously.   

Performance on the SPM Plus test: 58 of 60 
On the Raven’s SPM Plus test, the Confident Ravens algo-
rithm detected the correct answer at a 95% or higher level 
of confidence on 58 of the 60 problems.  The number of 
problems with detected correct answers per set were 12 for 
set A, 11 for set B, 12 for set C, 12 for set D, and 11 for set 
E.  Of the 58 problems where the correct answers detected, 
23 problems were answered ambiguously.   

Confidence and Ambiguity, Revisited 
We explored a range of confidence values for each test 
suite of problems, and illustrate these findings in Table 2.  
 Note that as confidence increases from 95% to 99.99%, 
the test scores decrease, but so too does the ambiguity.  
Analogously, as the confidence is relaxed from 95% down 
to 60%, test scores increase, but so too does ambiguity.  By 
inspection, we note that there is a marked shift in the rate 
at which test scores and ambiguity change between 99.9% 
and 95%, suggesting that 95% confidence may be a rea-
sonable choice.   

Table 2. The Effect of Confidence on Score and Ambiguity 

confidence 
thr eshold 

 SPM 60 APM 48 CPM 36 SPMPlus 60 

 cor r ect ambiguous cor r ect ambiguous cor r ect ambiguous cor r ect ambiguous 

99.99%   41 1 28 1 24 0 44 2 

99.9%   49 4 38 8 30 0 53 5 

99%   53 14 42 16 33 1 58 14 

95%   54 22 43 27 35 5 58 23 

90%   55 29 45 31 36 9 59 32 

80%   57 36 45 38 36 9 59 37 

60%   58 42 47 45 36 14 60 45 

 



 

 

 
 Our findings indicate that at 95% confidence, those 
problems which are answered correctly but ambiguously 
are vacillating almost in every case between two choices 
(out of an original 6 or 8 possible answers for the prob-
lem).  This narrowing of choices suggests to us that ambi-
guity resolution might entail a closer examination of just 
those specific selections, via re-representation as afforded 
by the fractal representation, a change of representational 
framework, or a change of algorithm altogether. 
 
Comparison to other computational models 
As we noted in the introduction, there are other computa-
tional models which have been used on some or all prob-
lems of certain tests.  However, all other computational 
accounts report scores when choosing a single answer per 
problem, and do not report at all the confidence with which 
their algorithms chose those answers. As such, our reported 
totals must be considered as a potential high score for Con-
fident Ravens if the issues of ambiguity were to be suffi-
ciently addressed. 
 Also as we noted earlier, this paper presents the first 
computational account of a model running against all four 
variants of the RPM.  Other accounts generally report 
scores on the SPM or the APM, and no other account exists 
for scores on the SPM Plus. 
 Carpenter et al. (1990) report results of running two ver-
sions of their algorithm (FairRaven and BetterRaven) 
against a subset of the APM problems (34 of the 48 total).  
The subset of problems chosen by Carpenter et al. reflect 
those whose rules and representations were deemed as in-
ferable by their production rule based system.  They report 
that FairRaven achieves a score of 23 out of the 34, while 
BetterRaven achieves a score of 32 out of the 34. 
 Lovett et al (2007, 2010) report results from their com-
putational model’s approach to the Raven’s SPM test.  In 
each account, only a portion of the test was attempted, but 
Lovett et al project an overall score based on the perfor-
mance of the attempted sections.  The latest published ac-
count by Lovett et al (2010) reports a score of 44 out of 48 
attempted problems from sets B through E of the SPM test, 
but does not offer a breakdown of this score by problem 
set. Lovett et al. (2010) project a score of 56 for the entire 
test, based on human normative data indicating a probable 
score of 12 on set A given their model’s performance on 
the attempted sets. 
 Cirillo and Ström (2010) report that their system was 
tested against Sets C through E of the SPM and solved 8, 
10, and 10 problems, respectively, for a score of 28 out of 
the 36 problems attempted.  Though unattempted, they 
predict that their system would score 19 on the APM (a 
prediction of 7 on set A, and 12 on set B). 
 Kunda et al. (2013) reports the results of running their 
ASTI algorithms against all of the problems on both the 
SPM and the APM tests, with a detailed breakdown of 
scoring per test.  They report a score of 35 for the SPM 

test, and a score of 21 on the APM test.  In her dissertation, 
Kunda (2013) reports a score of 50 for the SPM, 18 for the 
APM, and 35 on the CPM. 
 McGreggor et al. (2011) contains an account of running 
a preliminary version of their algorithm using fractal repre-
sentations against all problems on the SPM.  They report a 
score of 32 on the SPM, 11 on set A, 7 on set B, 5 on set C, 
7 on set D, and 2 on set E.  They report that these results 
were consistent with human test taker norms.  Kunda et al. 
(2012) offers a summation of the fractal algorithm as ap-
plied to the APM, with a score of 38, 12 on set A, and 26 
on set B.   
 The work we present here represents a substantial theo-
retical extension as well as a significant performance im-
provement upon these earlier fractal results.  

Conclusion 
In this paper, we have presented a comprehensive account 
of our efforts to address the entire Raven’s Progressive 
Matrices tests using purely visual representations, the first 
such account in the literature.  We developed the Confident 
Ravens algorithm, a computational model which uses fea-
tures derived from fractal representations to calculate 
Tversky similarities between relationships in the test prob-
lem matrices and candidate answers, and which uses levels 
of abstraction, through re-representing the visual represen-
tation at differing resolutions, to determine overall confi-
dence in the selection of an answer.  Finally, we presented 
a comparison of the results of running the Confident Ra-
vens algorithm to all available published accounts, and 
showed that the Confident Ravens algorithm’s perfor-
mance at detecting the correct answer is on par with those 
accounts. 
 The claim that we present throughout these results, how-
ever, is that a computational model may provide both an 
answer as well as a characterization of the confidence with 
which the answer is given.  Moreover, we have shown that 
insufficient confidence in a selected answer may be used 
by that computational model to force a reconsideration of a 
problem, through re-representation, representational shift, 
or algorithm change.  Thus, we suggest that confidence is 
hereby well-established as a motivating factor for reason-
ing, and as a potential drive for an intelligent agent.   
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