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Introduction 

Artificial intelligence (AI) is the field of research that strives to understand, 

design and build cognitive systems. From computer programs that can beat top 

international grand masters at chess to robots that can help detect improvised 

explosive devices in war, AI has had many successes. As a science, it differs 

from cognitive psychology in two ways. Firstly, its main methodology is the 

exploration of cognitive theory by building intelligent artifacts. Though the design 

of any intelligent artifact would be classified as an AI, AI as a discipline is united 

in the core belief that intelligence is a kind of computation. Thus, in practice, AI 

artifacts are almost always computers or computer programs. This also explains 

why AI laboratories typically are found in computer science departments. 

Secondly, psychology is mostly interested in the understanding of 

intelligence found naturally in humans and other animals, whereas, in addition, AI 

concerns itself with the understanding of intelligence in agents it designs.  From 

the AI perspective, the concept of intelligence is not one that should be limited to 
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the abilities of humans or even animals in general, but should cover potentially 

any kind of intelligent system, be it human, computer, animal, or alien. Albus 

(1991, p. 474) puts it eloquently: "A useful definition of intelligence ... should 

include both biological and machine embodiments, and these should span an 

intellectual range from that of an insect to that of an Einstein, from that of a 

thermostat to that of the most sophisticated computer system that could ever be 

built."  

To demonstrate this latter difference, it is helpful to distinguish AI research 

into two kinds. Engineering AI concerns itself with how to design the smartest 

intelligent artifacts possible, regardless of whether the processes implemented 

reflect those found in natural intelligences. The vast majority of AI research falls 

into this category. Cognitive AI, in contrast, endeavors to design artifacts that 

think the way people (or sometimes other animals) do. A sub-category of 

cognitive AI is cognitive modeling, which tries to quantitatively model empirical 

human participant data. Many cognitive modeling groups are working in 

psychology departments. AI cognitive models differ from other models in 

psychology in that AI always implements information-processing theories. That 

is, the theory describes intelligence in terms of content, representation, access, 

use and acqusition of information, as opposed to, for example, a statistical model 

of the influences on IQ (e.g., age) in a population.  

This article focuses on cognitive AI for several reasons: The original 

dream of AI was to develop human-level intelligence, this handbook is intended 

for an audience of cognitive scientists, and the authors themselves work in this 

paradigm.  

Be it a leftover from Cartesian dualism, or a desperate hold onto the 

uniqueness of humanity, many people have an almost mystical view of 

intelligence. One result is that when an AI program manages to accomplish some 

cognitive task, a common reaction is to claim that it's not an example of 

intelligence. Indeed, at one point arithmetic calculation was thought to be one of 

best displays at intelligence, but now almost no one wants to say their calculator 

is intelligent. Because of this moving of the goal posts, AI has been jokingly 
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referred to as standing for "Almost Implemented."  For the most part, this is only 

a semantic issue. In fact, AI discoveries have revolutionized our world; although 

not always labeled as AI, the findings of the field have been used so widely in the 

software the runs our businesses and financial transactions that our economy as 

we know it would grind to a halt without the work of AI-inspired programs 

(Kurzweil, 2005). Among many, many other applications, AIs help land our 

airplanes, understand our voices on the phone, and detect credit card fraud. 

 
1. What AI Brings to Cognitive Sciences 

Critics of AI from psychology sometimes view AI programs as being 

psychologically implausible. Indeed, cognitive claims of AI theories typically are 

under-constrained by empirical human data, and thus, for the most part, 

criticisms of AI from psychology are not inaccurate. Most AI is engineering AI, 

and even cognitive AI must go out on limbs simply because there just is not 

enough data to constrain all the choices AI scientists need to make. However, AI 

contributes to the understanding of intelligence in several ways. 

First, although they can be underconstrained, AI programs demonstrate 

what kinds of data need to be collected. Because AI works at a very precise level 

of detail, it brings to light theoretical ambiguities that psychology may not 

immediately or explicitly realize it needs to make. For example, it is one thing to 

say that a person can only comprehend one speaking voice heard at a time. It is 

quite another to create a computer implementation of this attentional effect --- to 

do so requires making decisions about the interaction and influences of volume, 

which one voice you are listening to first, what factors affect attentional switching, 

among many other issues. The level of detail that makes AI programs 

underconstrained is the very quality that brings to light previously un-conceived 

factors. 

Humans obviously have only limited information and information-

processing resources, and, thus, their rationality is intrinsically bounded (Simon 

1969). However, it is also true that many cognitive problems that people routinely 

solve are computationally intractable. For example, deciding how to design a 
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poster for a concert offers more possibilities than can possibly be considered in 

reasonable time. AI approaches to solving intractable problems shed light on 

what ways will not work. If AI shows that a means for solving a problem will take 

too long to be practical, then AI has shown that people cannot be doing it that 

way, at least not routinely. 

On the other hand, AI can show that certain methods are possible. 

Though showing that something is possible is far from proving that it is, many 

current theories in psychology do not have such proof.  AI serves a valuable 

function as creating proofs-of-concept. 

Another thing AI is particularly good at is exploring the benefits and 

limitations of various ways to represent and organize knowledge in memory.  

Many of these benefits are only clear when dealing with a strict information-

processing level of detail. Are beliefs represented as words, pictures, or 

something else? Given all of the cognitive tasks memories are supposed to 

contribute to, AI is in a good position to shed light on such issues. As we will 

describe in more detail below, this subfield of AI is known as "knowledge 

representation." 

Finally, once there is an AI program that resembles some part of human 

thinking to a researcher's satisfaction, it is possible to run experiments on the 

program that are either unethical or too expensive (in terms of time or money) to 

run on living beings.  In simulation you can run thousands of experiments in a 

day, with exquisite control over all variables. 

 
2. Navigational Planning: An Illustrative Example 

We want to illustrate a simple example of AI in some detail so that this 

chapter is more than just so many big words. Let us suppose that Sunny, a 

cheerful AI agent, is about to start a new job in a new city. Sunny starts its car at 

its apartment and needs to navigate to an office building in downtown. How might 

Sunny think and what might Sunny do, given that this is its first day in the city 

and it has never been to the office building? Our goals in this section are to 
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explain some dimensions in designing AI agents as well as describe some issues 

in putting multiple capabilities into an AI agent.1 

 
2.1 Action, Perception and Cognition   

To reach its office from its apartment, Sunny might use one (or more) of 

several possible strategies. For example, it might drive its car a short distance in 

some direction, and then see if it has reached the office building. If it has, then it 

has accomplished its goal. If it has not, then it might again drive a short distance 

in  some direction, and then again see if has reached the building. Sunny could 

repeat this process until it reaches its goal. Blindly moving about like this would 

likely take a very long time, but in terms of internal processing, this method is 

very efficient. This perceive-act internal computational processing, called  

situated action (or reactive control; Arkin 1999), works by perceiving the 

immediate environment, acting based on those perceptions, and then repeating.  

The computational processing in reactive control is very efficient and requires no 

memory. However, depending on the environment and the goal, it may produce 

needlessly complicated external behavior since Sunny could be driving short 

distances in arbitrary directions for a very long time before it reaches its goal. In 

fact, this strategy does not guarantee that the goal will ever be reached. 

Alternatively, when Sunny started at its apartment, it might simply ask 

Honey, a sweet AI agent who happens to be passing by, about how to reach the 

office building. Honey, a long-time resident of the city, might give Sunny detailed 

directions, which Sunny could simply follow. In contrast to the previous strategy, 

this strategy produces very efficient output behavior: Assuming that Honey's 

directions are good, Sunny should reach its goal quite efficiently. However, this 

strategy of asking requires a society of intelligent agents (human or AI), each 

                                                
1 Much of our discussion of this problem is based on the work of the first author and his 
students in the early nineties when they developed a computer program called Router for 
addressing this class of problems (Goel, Ali, Donnellan, Gomez, & Callantine, 1994) and 
instantiated Router on a mobile reactive robot called Stimpy (Ali & Goel 1996). They 
also developed a knowledge-based shell called Autognostic for learning by reflection on 
Router program embodied in Stimpy (Stroulia & Goel 1999) as well as reflection on 
Stimpy's reactive controller (Goel, Stroulia, Chen, & Rowland, 1997). 
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with different knowledge. It also requires a culture in which Sunny may in fact 

approach Honey for directions, Honey may in fact stop to help Sunny, and the 

two can communicate in a shared language, Sunny may trust Honey, a total 

stranger, enough to follow its directions in a new city, etc. AI research on robot 

societies and human-robot interaction is in its early stages, and so here we will 

briefly mention only a small set of selected issues. 

How may Sunny and Honey talk with each other? How may Sunny talk 

with a human? Understanding and generating natural language is the goal of the 

AI subdiscipline of natural language processing (NLP).  Researchers in the area 

of natural language understanding take written text or spoken language and 

create accurate knowledge representations reflecting the meaning of the input. 

Natural language generation works roughly in the reverse --- taking in knowledge 

and generating appropriate words and speech to communicate that meaning; 

This has received much less attention in AI. Two robots might be able to share 

knowledge very efficiently if that knowledge is represented in the same way. 

However, there is little agreement in AI over how knowledge should be 

represented in general. Different knowledge representation strategies appear to 

be better for different tasks.  

When Honey gives advice, how is Sunny to know whether that advice is 

plausible? Except for limited environments, this problem seems to require 

general commonsense reasoning, a field closely related to knowledge 

representation. It is a widely held belief that most computer programs lack of 

common knowledge and an inability to reason with it effectively is a major 

problem for much of AI. The subfield of commonsense reasoning endeavors to 

overcome this challenge. The most famous is the CYC project (Lenat & Guha, 

1990), a major project to manually encode all human commonsense knowledge. 

More recent strategies include Web-based knowledge collection methods, such 

as OpenMind Commonsense (Singh, Lin, Meuller, Lim, Perkins, & Zhu, 2002) 

and Peekaboom (von Ahn, Liu, & Blum, 2006).  

Here is another strategy by which Sunny may reach its office buidling: Let 

us suppose that when Sunny was originally built in an AI laboratory, it was 
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bootstrapped with some knowledge. Some of this knowledge may have been 

heuristic in its content and encoded in the form of a production rule. A heuristic is 

like a "rule of thumb," and a production is an "If x then do y" kind of rule. So, for 

example, Sunny might be bootstrapped with the knowledge that "if the goal is to 

reach downtown in a city, then move in the direction of the tallest buildings."  This 

knowledge directly uses the goal (reaching downtown) to suggest a high-level 

action (move in the direction of the tallest buildings), and is heuristic in its nature 

since it may not correctly apply in all cities. If Sunny had this knowledge, then it 

might begin by perceiving the environment around it, locating the tallest buildings 

in the horizon, deciding to head in their direction, and moving toward them. When 

it reaches the next intersection, Sunny might again locate the tallest buildings 

relative to its current location, change its direction if needed, and so on. This 

strategy of perceive-think-act not only requires some knowledge but also means 

more complex internal processing than the simpler perceive-act strategy of 

situated action. On the other hand, depending on the environment, perceive-

think-act may result in a far simpler external behavior because now the behavior 

is more explicitly directed by the goal. 

This kind of strategy can be implemented as a production system (Newell 

& Simon 1972), which represents "what to do," or procedural knowledge, with if-

then rules. In Sunny's case, the rules dictate physical action in the environment. 

Production systems are often used for making changes in memory as well.  

Rules can add, change, and remove goals and elements in memory. Surprisingly 

complex behavior can result with this method. This particular approach has been 

very successful in cognitive modeling. Well known cognitive architectures  such 

as SOAR (Laird, Newell & Rosenbloom) and ACT-R (Anderson & Lebiere, 1998) 

are production systems at heart. Production systems have representations of 

declarative and procedural knowledge. Declarative knowledge is relatively static 

and is used by the productions (the procedural knowledge), and is often 

represented as frames (Minsky 1975). Frames are similar to classes in object-

oriented programming: They define a class of entities and what attributes they 

have. Instances of these frames take particular values for these attributes. For 
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example, the frame for PERSON might contain the attributes NAME and AGE, 

and an instance of person might have a NAME of "Julie" and an AGE of "45." 

Like frames, semantic networks (Sowa 1987) are a widely used representation 

scheme in AI. One can imagine a semantic network as a map of concepts, with 

nodes representing concepts (such as MAN and DOG) and labeled links 

between them (labeled, for example, with OWNS). Frames and semantic 

networks are thought to be informationally equivalent, which means that there is 

no loss of information when translating from one to another. Semantic networks 

are one kind of belief representation, called in the AI literature knowledge 

representation.   

Another long standing and still very strong area of AI is representation and 

processing based on logic. Logic is used for inference, but has also been 

adapted for use in many other specific tasks, such as theorem proving McCarthy 

1988). 

Let us consider one other strategy for Sunny's  task before we move on to 

the next topic: Sunny might consult a map of the new city. The important 

characteristics of a city map in this context are that it is an external 

representation of the world (i.e., it is not stored internally in Sunny) and that it is a 

visuospatial model of the world (i.e., there is a one-to-one structural 

correspondence between selected spatial objects and relations in the world and 

the objects and relations on the map; see Glasgow, Narayanan & 

Chandrasekaran, 1995).  Sunny may use this map to plan a navigation route to 

the office building and then execute the plan. This too is a perceive-think-act 

strategy. However, as compared to the heuristic method, the "thinking" in this 

strategy uses very different content and representation of knowledge. The 

internal processing in this strategy in general may be more costly than the 

processing in heuristic search; however, depending on the environment, this 

strategy might lead to a solution that has a better chance of success, for 

example, the solution generated by this model-based method is less likely to get 

stuck in some cul de sac than the solution generated by the heuristic method. 
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Once Sunny has studied the map, it has some version of it stored in its 

memory. When Sunny needs to navigate to a location on it, it can refer to the 

map. Finding a route on a map is not trivial, however. At each intersection, a 

choice must be made. One of the first insights of the field was that a great many 

cognitive problems can be solved by systematically evaluating available options. 

This method, that of searching through a space of choices, is applicable in many 

domains and is still widely used. Researchers focusing on search compare the 

various search methods that have been invented and describe the classes of 

problems to which each is most applicable. Because most interesting search 

spaces are enormous (e.g., there are more possible chess game configurations 

than there are atoms in the universe), researchers invent heuristics to guide the 

AI to explore the more promising areas of the search space. One problem for 

which search has been particularly useful is in planning, which is the generation 

of a ordered sequence of actions prior to actually executing those actions. 

Of course we can easily think of several other strategies for addressing 

Sunny's task, especially in today's world of the internet and the global positioning 

system. But more importantly for our present discussion we also can see some of 

the dimensions of designing an AI agent. Firstly, an AI agent lives in some 

environment, and what and how an agent can think depends in large part on the 

environment in which the agent lives. Some environments may contain other 

agents, who may be cooperative, competitive or combative. Some environments 

are dynamic. Some environments are only partially observable. Some 

environments are non-deterministic, and so on. One of the many contributions of 

AI is a more precise characterization and analysis of different kinds of 

environments, though much of the AI analysis so far has focused mostly on 

physical, not social, environments. Secondly, an agent may have access to 

different kinds of knowledge contents and representations. The knowledge may 

be engineered or acquired. The representations can be internal or external. The 

knowledge contents can range from nil to heuristic rules to detailed, high-fidelity 

models of the environment. Another major AI contribution is more precise and 

detailed account of knowledge contents and representations. Thirdly, different 
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strategies lead to very different trade-offs among knowledge requirements, the 

computational efficiency of internal processing, and the quality of generated 

solutions and behaviors. Yet another contribution of AI is more precise 

enumeration and analysis of these trade-offs.  
 
2.2 Reasoning, Learning and Memory           

So far we have talked only about what our hypothetical AI agent, Sunny, 

might think and do when trying to reach its office for the first time. However, 

because Sunny is an AI agent, it shall also learn from its interactions with the 

environment. What and how might Sunny learn from its experiences? Sunny 

acquires a new experience each time it interacts with the environment, including 

navigating from its apartment to its office, talking with Honey, etc., irrespective of 

what internal strategy it uses. Further, to the degree to which Sunny's internal 

processing is accessible to it, it may also acquire an internal experience each 

time it does internal processing. In addition, when Sunny executes a plan or an 

action on the environment, the environment might provide it with feedback. This 

feedback may come immediately after the execution of an action (e.g., taking a 

turn at an intersection and getting caught in a cul de sac), or after a series of 

actions (e.g., taking a sequence of turns and reaching the goal). The feedback 

might simply be that the outcome - success or failure --- of a plan, or it may 

contain more information, for example, a specific action in the plan failed 

because it led to a cul de sac. Thus, an experience can contain not only an 

interaction with the environment, but also some feedback on the interaction, and 

perhaps also a trace of the internal processing in that interaction.  

Sunny might potentially learn many different things from its experiences in 

the environment. For example, Sunny might simply encapsulate experiences as 

cases and store them in memory for reuse in future. On the first day, for 

example, Sunny might use a map to plan a navigation route and then execute the 

plan in the environment, as indicated in the previous subsection. The next day, 

when Sunny again faces the task of navigating to its office from its apartment, it 

might find a solution simply by retrieving the navigation plan in the case acquired 
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from the previous day, rather than relying on general-purpose knowledge and 

rules. This is called case-based reasoning (Kolodner, 1993). This approach 

views reasoning largely as a memory task, that is, as a task of retrieving and 

modifying almost correct solutions from memory to address the current problem.  

As Sunny learns from its experiences, its internal processing as well as its 

external behaviors may change. Initially, for example, Sunny might use a map of 

the environment for navigating through the new city. However, as it navigates 

through the world and stores its experiences as cases in its memory, it may 

increasingly generate new navigation plans by case-based reasoning. However, 

as the number of cases in memory increase, the cost of retrieving the case 

appropriate for a new problem also increases. Thus, again, each reasoning 

strategy offers computational trade-offs among knowledge requirements, 

processing efficiency and solution quality.  

More generally, AI typically thinks of each strategy for action selection 

discussed in the previous subsection as setting up an associated learning goal, 

which in turn requires a corresponding strategy for learning from experiences.   

Let us suppose, for example, that Sunny uses the strategy of situated action for 

action selection. It may, for example, use a table (called a policy) that specifies 

mappings from percepts of the world into actions on it.  Then, from the feedback, 

or the reward, on a series of actions, Sunny can learn updates to the policy so 

that over time its action selection is closer to optimal. This is called reinforcement 

learning (Sutton & Barto 1998). Note that if the series of actions results in 

success, then the reward will be positive; otherwise it is negative. Reinforcement 

learning is an especially useful learning strategy when the reward is delayed, that 

is, it comes after a series of actions rather than immediately after an action. 

Alternatively, suppose that Sunny uses the strategy of using production rules 

such as "If x then do y" to select actions. In this case, Sunny can use the learning 

strategy of chunking (Laird, Newell & Rosenbloom 1987) to learn new rules from 

its experiences over time. Thus, just as AI has developed many reasoning 

strategies for action selection, it has developed many learning strategies for 

acquiring the knowledge needed by the reasoning strategies. Further, just like 
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the reasoning strategies, the learning strategies too offer trade-offs among 

knowledge requirements, computational efficiency and solution quality. 

Most of the methods described thus far fall roughly into a category that 

can be described as "symbolic" approaches, characterized by the manipulation of 

qualitative, recognizable, discrete symbols. Another broad approach is 

quantitative or sub-symbolic. Though the border between these two approaches 

is fuzzy, we can think of a symbolic representation having a symbol for the letter 

"R" and a subsymbolic system representing the letter with the dots that make it 

up on a screen. Since the dots, or pixels, are not meaningful in themselves, they 

are thought to be at a level of description below the symbol. The rest of the 

methods described in this subsection tend to use subsymbolic representations. 

So far we have assumed that Sunny has perfect knowledge of the 

environment, even if that knowledge is limited. However, many real-world 

domains involve uncertainty, and AI methods based on probability have been 

very successful at working in these environments.  Probability theory has been 

used in algorithms that use Hidden Markov Models to predict events based on 

what has happened in the past. Hidden Markov Models are mathematical 

representations that predict the values of some variables given a history of how 

the values of these and other variables have changed over time (Raibiner & 

Juang 1986). Probabilities are also used to determine beliefs, such as how likely 

it is that a street Sunny wants to use has been closed, given that the rain in that 

part of the city was 80% likely to have been freezing. Bayes' Rule is useful for 

determining such conditional probabilities of some events (e.g., a road being 

closed) given the probability of others (e.g., freezing rain). Bayesian belief 

networks are mathematical representations that predict the probability of certain 

beliefs being true, given the conditional probabilities of other beliefs being true 

(Pearl 2000). These networks are useful for updating probabilities of beliefs as 

information about events in the world arrives. 

Statistics is the foundation of much of machine learning, a subdiscipline of 

AI that aims to create programs that use data and limited previous beliefs to 

create new beliefs. There are a great many kinds of learning algorithms, 
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including artificial neural networks, which are the  basis of connectionism in 

cognitive science (Rumelhart, McClleland & the PDP Research Group, 1986, 

McCelland, Rumelhart, and the PDP Research Group, 1986). Whereas most of 

the systems we’ve discussed process recognizable symbols, neural networks 

represent information at a sub-symbolic level (such as in pixels or bits of sound) 

as activations of nodes in a network. The processing of a neural network 

depends on how the nodes change each others’ activations. The output of a 

neural network is an interpretation of the activations of certain nodes (for 

example, indicating whether or not a room is dark).  Genetic algorithms are 

another means of computation that is (often) based on processing subsymbolic 

representations. Inspired by the theory of biological evolution, genetic algorithms 

create solutions to problems by applying some fitness function to a population of 

potential solutions (Mitchell 1998). Solutions with a high fitness are used to 

generate members of the next generation (often with some mutation or crossover 

of features), after which the process repeats. 

 
2.3 Deliberation and Situated Action 

Although above we briefly discussed situated action (reactive control) and 

situated learning (reinforcement learning), much of our discussion about Sunny, 

our friendly robot, pertained to deliberation. While AI theories of deliberative 

action selection typically are explicitly goal directed, goals in situated action often 

are only implicit in the design an AI agent. Deliberation and situated action in AI 

agents occur at different time scales, with deliberation typically unfolding at 

longer time scales than situated action. In general, designs of AI agents include 

both deliberative and situated components. For example, the design of Sunny, 

our friendly robot, may contain a deliberative planner that generates plans to 

navigate from one location in a city to another. Note that since there are may 

people and other robots working or walking on the roads, Sunny's environment is 

dynamic in that the state of the world may change during the time Sunny takes to 

generate a plan. How may Sunny navigate from its apartment to its office building 

in this dynamic environment?  
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Sunny of course may use the deliberative planner to plan a path between 

offices. However, while the planner can produce navigation plans, it may not 

represent the movements of all the people and other robots on the roads. So 

deliberation by itself is not good enough for the dynamic urban environment. 

Alternatively, Sunny may use situated action (i.e., perceive-act) that we 

described in the previous section. While this may help Sunny avoid collisions with 

moving people - as it soon as it the nearby presence of a person, it may move 

away - its progress towards the goal of reaching a specific office is likely to be 

slow, perhaps painfully slow. 

Yet another alternative is endow Sunny with the capability of both 

deliberative planning and situated action. In fact, this is exactly what many 

practical robots do. As a result, Sunny becomes capable of both long-range 

planning and short-range reaction. It may use its deliberative planner to come up 

with a plan for reaching the office building. Then, as it is executing the navigation 

plan, it constantly monitors the world around it and acts to avoid collisions with 

moving people. Next, as soon as it has moved away from a collision, it reverts to 

execution of its navigation plan. In this way, Sunny combines both deliberation 

and situated action. While this integration of deliberation and situated action has 

obvious benefits, it also has additional knowledge requirements as well as 

additional computational costs of shifting between strategies. 

So far we have talked of perceiving the environment as though it were a 

minor task. For human beings, perception often appears to be effortless, but 

automating perception in AI agents has proven to be one of the many difficult 

problems in AI.  The field of computer vision creates programs that take as input 

photos and video, and generates beliefs about objects, textures, movements, as 

well as higher-level features such as emotions, movement styles, and gender. 

Speech recognition is another major field in perception. The ability of computers 

to understand your credit card number when you speak it into the phone is the 

result of over 50 years of AI work. Many of the the algorithms used to understand 

speech and sound are shared with those of machine learning. 
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Likewise, achieving physical motion in the real world is difficult. Robotics is 

the field of AI that controls machines that interact directly with the physical world 

(as opposed to a program that, say, bought stocks electronically.) Robotics uses 

computational perception, machine learning, and sometimes natural language 

processing.  Some of the major problems specific to robotics are navigation and 

the handling of objects. Robots can work in collaboration with each other, which 

overlaps with the fields of intelligent agents (or agent-based AI), which builds 

intelligent programs that operate through the interaction of many individual 

agents, and swarm intelligence, in which the individual agents  do not have much 

intelligence individually. 

 
2.4 Deliberation and Reflection  

Above, we briefly discussed the need for both longer-range planning and 

shorter-range situated action in autonomous AI agents because the environment 

in which they reside is dynamic.  However, changes in the environment 

themselves may unfold over different time scales. In the short term, for example, 

people and robots may be moving around on the roads of a Sunny's city. In the 

long term, roads themselves may change, new apartments and office buildings 

may be constructed, etc. When the latter happens, the navigation plan that 

Sunny's deliberative planner produces will start failing upon execution. How 

might Sunny adapt its knowledge of the environment as the environment 

changes? Alternatively, if Sunny had been designed incorrectly to begin with, 

how might it adapt its reasoning process?  

Recent AI research on meta-reasoning is starting to design AI agents 

capable of self-adaptation. Such an AI agent may contain a specification of its 

own design. For example, the meta-reasoner in Sunny may have a specification 

of Sunny's design, including its  functions (e.g., its goals) as well as its 

mechanisms for achieving the functions (e.g., the method of map-based 

navigation planning). When Sunny generates a plan that fails upon execution, the 

Sunny's meta-reasoner uses the specification of its design to diagnose and repair 

its reasoning process. If the feedback from the world on the failed plan pertains 
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to an element of knowledge (e.g., at intersection A, I expected a road going 

directly towards downtown but when I reached there, I found no such road), then 

Sunny enters this new knowledge in its map of the city. Thus, while the 

deliberative planner in Sunny reasons about actions in the external world, 

Sunny's reflective meta-reasoner reasons about its external world as well as its 

internal knowledge and reasoning.  
 
2.5 Putting It All Together     

In this section, we took navigational planning as an example to illustrate 

how AI is putting together multiple capabilities ranging from perception, cognition 

and action on one hand, to reasoning, learning and memory on the other, to 

reflection, deliberation and situated action on yet another. Of course, the design 

choices we have outlined above are exactly that: choices. For example, instead 

of using deliberation to mediate between reflection and situated action as 

described above, an AI agent may reflect directly on situated action. Different AI 

researchers pursue different set of choices. In a way, the enterprise of AI is to 

explore such design choices and examine the computational trade-offs that each 

choice offers. 

What has emerged out of this line of work is an understanding that the 

design of an AI agent depends on the environment it lives in, that no one design 

is necessarily the best for all environments. Further, the design of an AI agent in 

any non-trivial environment requires multiple capabilities, and multiple methods 

for achieving any capability such as reasoning and learning. 

 
3. A Very Brief History of Artificial Intelligence 

In the middle of the twentieth century, the scientific world experienced a 

shift in focus from descriptions of matter and energy to descriptions of 

information. One manifestation of information theory applied to real-world 

problems was the field of cybernetics (Weiner, 1948, 1961), the study of 

communication and control in self-regulating analog systems. Cybernetics' focus 

on analog signal contributed to its losing ground against symbolic-based 
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approaches, such as AI. Not only did AI approaches come to dominate the 

research into the same problems, but the symbol-processing approach came to 

dominate cognitive psychology as well. 

Search was the first major paradigm of AI. The first artificial intelligence 

program ever written is the Logic Theorist (Newell, Shaw & Simon 1958). Many 

of the problems early AI researchers focused on were, in retrospect, simple. The 

early exuberance of AI was tempered with the first "AI Winter" that dominated the 

late sixties and the 1970s, characterized by a decrease of optimism and funding, 

and caused by the unfulfilled expectations. Early interest in associative 

processing was diminished by an influential book (Minsky & Papert, 1969) 

around the same time. 

The AI Winter of the 1970s however also witnessed the emergence of new 

theories and paradigms. For example, ANALOGY (Evans 1968) solved simple 

geometric analogy problems that appear on some intelligence tests. SHRDLU 

(Winograd, 1972) performed natural language processing to understand 

commands to a robot to pick up and manipulate blocks. Marr (1982) developed a 

three-stage computational theory of vision. Schank (1975) first developed a 

theory of conceptual structures for natural language understanding (Schank 

1975) and then a theory of memory, reasoning and learning (Schank 1982).  

 Working in a different paradigm, Feigenbaum, Buchanan and their colleagues 

first developed an expert system called Dendral that could generate hypotheses 

about molecular structures from spectroscopic data (Lindsay et al. 1980), and 

then an expert system called Mycin that could generate hypotheses about E. Coli 

bacterial diseases from heterogeneous patient data (Buchanan & Shortliffe 

1984). AI's revival in the 1980s was due in part to the success of these expert 

systems that wre designed to replicate the expertise of individuals with a great 

deal of domain knowledge. Knowledge engineers would interview and observe 

experts, and then attempt to encode their knowledge into some form that an AI 

program could use. This was done with a variety of methods, including decision 

trees (which can be thought of as using the answers to a series of questions to 

classify some input, as in the game twenty questions). Since  expert systems 
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were of use to business, there was a renewed interest in AI and its applications. 

Funding for AI research increased.  

One of the ideological debates of the 1980s was between the "neaties" 

and the "scruffies," where the former used a formal, often logic-based approach, 

and the latter focused on modeling human intelligence and getting AIs to use 

semantic information processing. Geographically, the neaties were based at 

Stanford University and the west coast, and in Japan, and the scruffies at MIT 

and the east coast. Neaties thought that knowledge representation and 

processing should be mathematically rigorous and elegant, and evaluations 

should involve proofs. Scruffies believed that intelligence is so complex that it is 

unwise to put such constraints on at this early stage of development of AI theory 

and methodology. Today, most of the engineering AI research would be 

classified as neat. A good deal of, but not all, contemporary cognitive AI is 

scruffy. 

In the 1980s, interest in artificial neural networks was revived by cognitive 

modeling by connectionists (Rumelhart, McClelland & the PDP Research Group, 

1986; McClelland, Rumelhart, & the PDP Research Group 1986). Connectionism 

continues to have influence in modern cognitive science; in engineering AI, 

artificial neural networks are regarded as just one of many statistical learning 

mechanisms (such as Markov models and other methods mentioned in the 

previous section.) Interestingly, some of the approaches and ideas of the 

cyberneticists have had a revival in these subsymbolic approaches to AI. 

Over time the limits of expert systems became clear. As they grew in size, 

they became difficult to maintain and could not learn. As a knowledge base 

grows, inconsistencies between different chunks of knowledge tend to arise. In 

part again because of unfulfilled expectatons, in the 1990s, AI is entered a 

second "winter," with diminished optimism, interest, and funding. Hwoever, 

during the second winter, again, new frameworks appeared, including embodied 

cognition, situated cognition and distributed cognition. These frameworks 

emphasize how the body and environment both constrain and afford cognition, 

how cognition always is in the context of the physical and social worlds where 
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these worlds themselves afford information to the cognitive agent.  Similarly, 

Agent-based AI on one hand seeks to unify cogniton with perception and action, 

and  on the other, studies AI agents as a member of a team of other agents 

(artificial or human). 

At present, AI appears to have entered a new phase of revival. This is in 

part due to the new frameworks that appeared in the 1990s, especially that of 

agent-based AI. By now, AI is ubiquitous in industrialized societies, though it 

often does not go by that name. Many researchers avoid the term, feeling that it 

has been tarnished by the boom-and-bust cycle of interest and funding it has 

enjoyed in its 50 year history. However, techniques from AI are used in many 

practical applications, including understanding your voice when you talk to your 

credit card company, making recommendations for books when you shop online, 

the landing systems of our airplanes, the path-finding of characters in computer 

games, generating web search engine results, face detection in cameras and 

online photo archives, and automatic translation. 

 
4. Measuring the Intelligence of AIs 

When measuring the intelligence of human beings, the test need not have 

questions representing every kind of intelligent thing a person could do. Rather, 

the test result is intended to measure the general intelligence of the taker 

(Wechsler 1939; Raven 1962). Where one form of intelligence (e.g., 

mathematical) does not predict another (e.g., verbal), two tests are required. 

In artificial intelligence, the problem is much bigger. Since AIs are 

designed by people, they have enormous variety, depending on the goals of the 

researcher creating them. As such, an AI that scores well on the SAT verbal 

section, like Latent Semantic Analysis (Landauer, 1998), will be likely to not only 

score poorly when tested on other cognitive tasks, but will likely not be able to 

take them at all. In short, performance on any given human IQ test will predict 

general intelligence in an AI even more poorly than it does in human beings. 

Depending on how the AI is built, it can have unique combinations of sensors, 

actuators, and ways to think. Not only are they often completely different from 
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each other, but they are also often very alien to our own experiences as human 

beings. 

A further problem is that AIs tend to be computer programs that run on 

computers, which vary in speed. The same program running on a faster 

computer will be much more effective, and in any timed test this will make an 

enormous difference. It is a philosophical question whether or not the computer's 

speed should affect how we regard the intelligence of the AI. The chess playing 

programs of the early days of AI did not fail because of their bad algorithms; the 

computers they ran on were too slow to make those algorithms effective. Current 

chess champion AIs, such as Hydra (Donninger & Lorentz, 2004) are run on 

normal commercial PCs, rather than the special -purpose hardware required with 

the Deep Blue project that defeated Kasparov (Hsu, Campbell, & Hoane, 1995).  

In the past, certain tasks, such as using memory and speed of calculation, 

were thought to be excellent examples of intelligence, and even modern tests 

often measure these things. These tasks are very easy for computer programs, 

but, for whatever reason, we are reluctant to attribute high intelligence to 

computer programs for being able to do them. Even chess can largely be played 

well using "brute-force" search methods (Hsu et al., 1995). Algorithms that don't 

work well today might work just fine on faster computers of the future. Note also, 

however, that if we were to find a human who could evaluate moves like a 

computer could, we would regard her as very intelligent indeed, at least in her 

own way. 

AI researchers usually evaluate their programs with idiosyncratic 

methodology appropriate to the task. Though these are not thought of as 

intelligence tests, they could be thought of as specialized intelligence tests, just 

as there are sometimes special tests for certain sub-populations of human 

beings, such as children (Legg & Hutter, 2007). In contrast, PERI (Bringsjord, 

Selmer, Schimanski, & Bettina, 2003) is an AI project with the explicit goal of 

passing intelligence tests. As of 2003, it performed well on block design problems 

in the WAIS intelligence test (Wechsler 1939). Even if we could think of a single 

test for all AIs, the variance in their scores would be enormous in comparison to 
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people, for whom the IQ of an individual can usefully be scored relative to a large 

group (Legg & Hutter, 2007). 

The most famous proposed test for AI is the the "imitation game," or, as it 

is more popularly called, the Turing Test (Turing, 1950). In this test, computers 

and human beings are put in typed chat sessions with human judges. If 

computers can reliably fool the judges into thinking they are human, then they 

pass the test. Turing formulated this test in response to the question "Can 

machines think?" Rather than answering that question, he reformulated it into a 

more concrete question of whether or not a machine could fool a human 

interrogator.  Though Turing played it a bit safe, most interpretations of him do 

not, interpreting the purpose of the test to be to distinguish programs that have 

human-level intelligence from those that do not (e.g., Harnad, 1992). In this 

interpretation, the test is not a measurement of intelligence in the sense of giving 

a score that accurately reflects cognitive abilities, but as a pass-or-fail litmus test 

of general intelligence. 

It has proven to be a very difficult test to pass, although some surprisingly 

simple programs, such as ELIZA (Weizenbaum, 1966) and PARRY (Raphael 

1976), sometimes fool some people for short times. Because of this difficulty, 

competitions usually restrict judges to specific topics, as the general-topic version 

is impossible for state-of-the-art AI to pass. Some programs can pass the 

restricted test (according to Turing's suggested numbers), but they appear to do 

so at least in part because of aspects that are not relevant to intelligence, such 

as demonstrating typing errors (Johnson, 1992). Recently there even have been 

Turing test competetions and prizes (e.g., http://www.loebner.net/Prizef/loebner-

prize.html). 

 

4. Conclusion 

In this chapter we have reviewed the history of AI and its major subfields, 

illustrated AI as a science and as a technology, and discussed the problems of 

the measurement of intelligence in AIs. The field has made so much progress 
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that now every year the Association for Advancement of Artificial Intelligence 

(http://www.aaai.org/home.html) organizes a conference for deployed AI 

applications (called Innovative Applications of Artificial Intelligence, 

http://www.aaai.org/Conferences/IAAI/iaai10.php).  

Of course, we have not tried to cover each and every topic in AI. For 

example, over the last decade, there has been a lot of AI research on designing 

the semantic web (Berners-Lee, Hendler & Lassial 2001), a new  version of the 

world wide web that would be capable of understanding information (e.g. 

webpages) stored on it. An another example, just over the last few years, 

interactive games have emerged as an important arena for AI research, 

especially agent-based AI. Nor, in this article, have we attended to AI ethics, 

which is becoming an increasingly important issue. 

An important, and somewhat surprising, lesson from the history of AI  is 

that cognitive tasks that seem difficult for humans to solve (e.g., mathematical, 

logical, and chess problems) are relatively easy to make programs solve, and 

those cognitive tasks that are apparently easy for humans to address (e.g., 

walking, talking, and perceiving) are extraordinarily difficult to make computers 

solve. This apparent paradox has resulted in repeated predictions about bold AI 

successes, only to see them go unfulfilled.   

We suggest there may be two reasons for this paradox. First, our difficult 

problems require deliberate thought and strategies that are explicitly learned. As 

a result, we can often gain insight into how they are solved through introspection. 

Indeed, many of these strategies are actually written down, to be learned through 

reading. In contrast, nobody needs to tell human beings how to see, walk, or 

speak. As a result, our intuitions about how these processes work are, to put it 

mildly, unhelpful. 

The second, perhaps more important, reason is that deliberate processing 

is likely a serial process running as a virtual machine on a network of neurons, 

whereas the automatic processes, the easy tasks, are running directly on the 

neural network. These easy tasks (called System 1 in Stanovich & West, 2003) 

are evolutionarily older, and the parts of our brains that accomplish them 
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(generally near the back of the head, Anderson, 2007) evolved to do just those 

things. In contrast, the more deliberate processing is evolutionarily younger, and 

makes use of the kind of hardware designed for System 1 tasks. System 2 

struggles to do rational, serial processing on an essentially parallel pattern-

matching machine (Stanovich, 2004). In another chapter in this volume, 

Kauffman provides a review of such dual-process theories. 

Computers, and the languages we program them with, are naturally serial 

processors. When we implement artificial neural networks, we are doing it 

backward from nature: Whereas System 2 is a serial virtual machine running on 

parallel hardware, our artificial neural networks are parallel virtual machines 

running on serial hardware. Given this and the fact that we have no conscious 

access to System 1 processes, it is no wonder the AI community has had to work 

very hard to make progress in these areas. As a result, we have chess programs 

that can beat world grandmasters, but no robots that can walk down a street 

even as well as a five-year-old child. We expect that neuroscience findings may 

illuminate the nature of these processes, and the AI community will be able to 

build on them. 

Given the track record of predictions about the future of AI, we will refrain 

from making our own (see Kurzweil 2005 for one possible future). What we can 

and will claim is that AI already has had a profound impact not only in computer 

science and information technology, but also more generally on our culture and 

our philosophy. If the last fifty year history of AI is any guide, then the next fifty 

years will not only be full of exciting discoveries and bold inventions, but they will 

also raise new questions about who we are as humans and what we want to be. 
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