
From Design Experiences To Generic Mechanisms:
Model-Based Learning in Analogical Design

�

Sambasiva R. Bhatta and Ashok K. Goel
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280�
bhatta,goel � @cc.gatech.edu

In the Proceedings of the AID-94 workshop on Ma-
chine Learning in Design, Aug. 1994, Lausanne,
Switzerland.

Abstract
Analogical reasoning plays an important role in design.
In particular, cross-domain analogies appear to be impor-
tant in innovative and creative design. However, making
cross-domain analogies is hard and often requires abstrac-
tions common to the source and target domains. Recent
work in case-based design suggests that generic mecha-
nisms are one type of abstractions useful in adapting past
designs. However, one important yet unexplored issue is
where these generic mechanisms come from. We hypoth-
esize that they are acquired incrementally from design
experiences in familiar domains by generalization over
patterns of regularity. Three important issues in general-
ization from experiences are what to generalize from an
experience, how far to generalize, and what methods to
use. In this paper, we describe how structure-behavior-
function models of designs in a familiar domain provide
the content, and together with the problem-solving context
in which learning occurs, also provide the constraints for
learning generic mechanisms from design experiences. In
particular, we describe the model-based learning method
with a scenario of learning of feedback mechanism.

Introduction
Analogical reasoning, it is commonly accepted,
plays an important role in design in general, and in
innovative and creative design in particular. Analog-
ical reasoning is the process of retrieving knowledge
of a familiar problem or situation (called source ana-
log) that is relevant to a given problem (called target)
and transferring that knowledge to solve the cur-
rent problem. Analogies can be of different types:
within-problem, cross-problem but within-domain
(in short, within-domain), and cross-domain. Much
of the existing work in analogical design was in
the framework of case-based reasoning and has fo-
cused on within-domain analogies, e.g., the earlier
versions of STRUPLE (Maher & Zhao, 1987) and

�
This work has been supported by NSF (research

grant IRI-92-10925), ONR (research contract N00014-
92-J-1234), Northern Telecom (research gift), and ARPA.

KRITIK (Goel, 1991). That is, they are limited to
the retrieval of design cases from the same domain
as a given problem, and to making small and simple
‘tweaks’ to the retrieved design to fit the specifi-
cations of the given problem. In contrast, we are
interested in cross-domain analogies in design.

Let us first illustrate what we mean by cross-
domain analogy. A domain is characterized by the
specific structural elements available in it such as
pipes, batteries, and diodes. Cross-domain anal-
ogy involves transferring knowledge from a problem
in one domain to another problem in a different do-
main. For instance, consider the problem of design-
ing a Nitric acid cooler that is required to cool Nitric
acid over a large range of temperature. One way
in which this can be achieved is by putting together
several acid coolers each of which cools acid over
a smaller temperature range. A designer may solve
this problem by transferring knowledge from a past
experience of designing a different kind of device,
say, an electric circuit. In particular, the designer
may instantiate an abstraction such as the generic
mechanism of cascading (replicating a smaller de-
vice several times) learned from specific experiences
in the domain of electric circuits to design the Nitric
acid cooler. Cross-domain analogies are the hardest
because of the issue of recognizing the similarity
between two problems from two different domains
and transferring knowledge between them.

Previous research on analogy in both AI (e.g.,
Greiner, 1988; Falkenhainer, 1989) and psychol-
ogy (e.g., Gick & Holyoak, 1983; Catrambone
& Holyoak, 1989) has indicated that abstractions
shared between source and target domains help in
cross-domain analogies. Much of the previous work
has only focused on the role of abstractions in re-
trieving cases (i.e., using abstractions as indices) but
not in the transfer of knowledge. Some of the issues
of interest then are what might be the content, repre-
sentation, and organization of these abstractions and
how might they be acquired and used for transfer in
analogical design.

In some earlier work on case-based design,
generic teleological mechanisms (GTMs), such as
cascading, feedback, and feedforward, have been
proposed as one type of abstract knowledge that de-
signers might use in adapting design cases (Goel,
1989). GTMs are teleological because they result

1

in specific functions and are generic because they
are case independent. GTMs take as input the func-
tions of a desired design and a known design, and
suggest patterned modifications to the structure of
the known design that would result in the desired
design. We have been exploring the issue of their
representation and use in analogical design. Strou-
lia & Goel (1992) describe how the generic mech-
anism of cascading indeed is useful in non-routine
adaptive design. Another important issue relevant
to learning in design is how these generic mech-
anisms are acquired. Our working hypothesis is
that these generic mechanisms can be acquired in-
crementally from design experiences in familiar do-
mains by generalization over patterns of regularity.
In the IDEAL project,1 we have been exploring these
issues and hypotheses in the context of analogical
design of physical devices such as simple electric
circuits, electronic circuits with operational ampli-
fiers, and heat exchangers.

We have earlier described elsewhere (Bhatta &
Goel, 1993) how IDEAL can learn the generic mech-
anism of cascading from design experiences in ana-
logical design. Since then, we have generalized
the model-based learning method in order to rea-
son about devices with “non-linear” behaviors (i.e.,
those that have cycles (or loops), single cause-
multiple effects (i.e., forks) and multiple causes-
single effect (i.e., joins), etc.), and learn other classes
of mechanisms such as feedback and feedforward.
The current version of IDEAL implements the gen-
eralized model-based learning method. In this pa-
per, we will describe IDEAL’s generalized learning
method and illustrate it with a scenario of learning of
feedback mechanism from designs in the domain of
electronic circuits. The evaluation of the learning of
feedback and feedforward mechanisms along the di-
mension of their utility in facilitating cross-domain
transfer is underway.

Issues in Learning by Generalization
Generalization from experiences raises three impor-
tant issues. First is the issue of relevance—the issue
of deciding what to generalize from an experience.
In this regard, the existing machine learning meth-
ods such as pure induction over design experiences
could potentially become complex. We have ar-
gued elsewhere (Bhatta & Goel, 1994) that there is a
need for more effective and efficient learning meth-
ods in design. We represent in design experiences
a designer’s comprehension of how devices work
(i.e., how the structure of a design results in its out-
put behaviors). We represent this comprehension as
structure-behavior-function (SBF) models and rep-
resent the models of GTMs as behavior-function
(BF) models. We hypothesize that the problem-
solving context in which learning occurs together
with the hierarchical organization of the SBF model
of the device helps determine what to generalize
from the model. Further, the SBF models lead to
a typology of patterns of behavioral regularity over

1IDEAL stands for Integrated “DEsign by Analogy and
Learning.”

which the generalization process can result in learn-
ing GTMs. However, IDEAL does not have a priori
knowledge of what the regularities are, but rather,
given two design experiences (one without an in-
stance of any generic mechanism and another with
the instance of a generic mechanism), it discovers
the appropriate regularity by comparing and ana-
lyzing the given designs. Also, note that the SBF
models define the dimensions and thus constrain the
comparison of any two given behaviors (in the form
of directed graphs, which can include cycles!). Sec-
ond, how far a chosen aspect of the device can be
generalized. We hypothesize that the similarities in
the SBF models of the current design and related
designs in a case memory can help determine how
far to generalize. Third, what methods can be used
for generalization. This is especially relevant when
there are multiple, specialized methods for learning
different classes of abstractions. We hypothesize
that the typology of the patterns of regularity sug-
gested by SBF models can help to determine what
strategy to use.

The Learning Task
The Problem-Solving Context: IDEAL takes as in-
put a specification of the functional and structural
constraints on a desired design, and gives as out-
put a structure that realizes the specified function
and satisfies the structural constraints; it also gives
an SBF model that explains how the structure real-
izes that function. A design case in IDEAL specifies
(i) the functions delivered by the stored design, (ii)
the structure of the design, and (iii) a pointer to
the causal behaviors of the design (the SBF model).
IDEAL indexes its design cases both by functions
that the stored designs deliver and by the structural
constraints they satisfy.

IDEAL’s learning task takes as input a design
experience and forms the BF model of a GTM. The
input knowledge structure for the learning task is
the case-specific SBF model of the given design
experience and the output knowledge structure is the
case-independent BF model of a GTM. The learned
GTM is such that it is an abstraction over certain
patterns of behavioral regularity (explained later)
observed in the given SBF model and the model of
the most similar design in case memory.

Case-Specific SBF Models
IDEAL’s models of specific devices are repre-
sented in the form of structure-behavior-function
(SBF) models. These models are borrowed from
KRITIK system (Goel, 1989) which are based
on a component-substance ontology (Bylander,
1991) and derived from the functional representa-
tion scheme (Sembugamoorthy & Chandrasekaran,
1986; Chandrasekaran, Goel, & Iwasaki, 1993). In
this ontology, the structure of a device is viewed
as constituted of components and substances. Sub-
stances have locations in reference to the compo-
nents in the device. They also have behavioral
properties, such as voltage of electricity, and cor-
responding parameters, such as 1.5 volts, 3 volts,

2

-

+
V

V-

(a) A Basic Op-Amp

ELECTRICITY

voltage:

ELECTRICITY

voltage:

V volts

volts

loc: V -
in

Vin
o

V+

Vout

loc: V o
Vout

GIVEN:

MAKES:

state

state

1

2

USING-FUNCTION

PARAMETRIC-RELATION
Vout = AVo * Vin. . .

(b) Behavior "Amplify Signal" of
 the Basic Op-Amp

-

+
V

V-

ELECTRICITY

voltage:

ELECTRICITY

voltage:

V volts

volts

loc: V -

Vin

o

V+

Vout

loc: V o
Vout

GIVEN:

MAKES:

state

state

1

2

USING-FUNCTION

PARAMETRIC-RELATION

* Vin. . .

. ..

. .

Rin

Rf

i/p

(a) An Inverting Amplifier
 with Op-Amp

ELECTRICITY

voltage: V voltsin

loc: i/p

-o

state 3
’

USING-FUNCTION
 ALLOW electricity
 of R in
. . .

Vout
’ = (-R f / R in

)

USING-FUNCTION
 ALLOW electricity
 of Rf

(b) Behavior "Controlled Amplify Signal"
 of the Inverting Amplifier with Op-Amp

V

LEARNING

DESIRED DESIGN:

CANDIDATE DESIGN:

CONDITION:

B
Y

-B
E

H
A

V
IO

R

B
2

GIVEN:

MAKES:

BY-BEHAVIOR: Behavior B2

?SUB
?prop1:

?SUB
?prop1: ?val22

GIVEN:

MAKES:

BY-BEHAVIOR:

?SUB
?prop1:

?SUB
?prop1:

?val11

?val21

Behavior B1

?SUB
?prop1:

?SUB
?prop1:

?SUB
?prop1: ?val22

BY-BEHAVIOR B1

?val11

?val22 = ?val21/

F2 ?val11’

+ F1: (?val11’) ?val22

F2

F1

?val11

?val11’

BY-BEHAVIOR B

(b) Behavior Modification that
 the Feedback Mechanism suggests

(a) Functional Difference that
 the Feedback Mechanism reduces

B2 = B1 + B22

..

.
.

’

(Vavg
+
-)

TRANSFORM electricity
of Op-Amp

TRANSFORM electricity
of Op-Amp

PARAMETRIC-RELATION

V-o = Vout
’ - R f * If

. . .
(Vavg

+
-

’)

Note:

?val21 = ?val +
-;

?val22 = ?val +
-

22

?val11’ = f (?val11, ?val22)

BY-BEHAVIOR B 22

= f : (?val11, ?val22)

The relationships between B1 and B22 are such that:

INITIAL-STATE (B1) = FINAL-STATE (B22)

-

where B22 achieves function f

Figure 1

Figure 2

Figure 3

denotes a large fluctuation
around an average value, while

denotes a small fluctuation.

FINAL-STATE (B1) (INITIAL-STATES (B22)

(denotes set containment.-

3

etc. For example, the SBF model of a basic opera-
tional amplifier is illustrated in Figure 1 and that of
an inverting amplifier in Figure 2. For each device,
the structure is shown schematically, its function as
the pair of initial and final states of the behavior
(indicated by GIVEN and MAKES in the Figures
1 & 2), and the behavior itself as the sequence of
states and transitions that explains how the structure
achieves the function.

A function in SBF models is represented as a
schema that specifies the behavioral state the func-
tion takes as input, the behavioral state it gives as
output, and a pointer to the internal causal behav-
ior of the design that achieves the function. The
pair of states indicated by GIVEN and MAKES in
Figure 1(b) shows the function “Amplify Signal”
of operational amplifier (the function schema is not
shown separately due to lack of space). Both the
input state and the output state are represented as
substance schemas. The input state specifies that
electricity at location

���
in the topography of

the device (Figure 1(a)) has the property voltage
and the corresponding parameter

�����
volts. The

output state specifies the parameter of voltage is���	��

volts (i.e.,

��������
∆ where ∆ is a large fluc-

tuation around the average value) at location
���

of operational amplifier.
The internal causal behaviors of a device are

viewed as sequences of state transitions between
behavioral states. The annotations on the state tran-
sitions express the causal, structural, and functional
context in which the transformation of state vari-
ables, such as substance, location, properties, and
parameters, can occur. Figure 1(b) shows the causal
behavior that explains how electricity applied at the
input terminal

� �
of operational amplifier is am-

plified at the output terminal
� �

. ��������� 1 is the
preceding state of ��������� �!���#"�� 1

�
2 and �����$��� 2 is its

succeeding state. �����$��� 1 describes the state of elec-
tricity at location

���
and so does �%������� 2 at loca-

tion
���

. The annotation USING-FUNCTION in�����&���'�!���("�� 1
�

2 indicates that the transition occurs
due to the primitive function “transform electric-
ity” of operational amplifier. Furthermore, the an-
notation PARAMETRIC-RELATION indicates the
relationships among values of substance properties
in different states and the component parameters.

Case-Independent BF Models
Recall that Generic Teleological Mechanisms
(GTMs) are one type of abstract (i.e., case-
independent) knowledge that designers might use in
adaptive design, that is, in modifying an old design
by insertion of specific patterns of components (or
substructures). GTMs are teleological because they
result in specific functions and are generic because
they are case independent. For example, the feed-
back mechanism takes as input the desired function
and the function (where the output value of a sub-
stance property is unstable) delivered by an available
device, and suggests a structural pattern (i.e., loop-
ing back some output to the input and modifying the
effective input) of the available device that delivers
the desired function.

IDEAL represents its GTMs in the form of BF
models. The BF model representation of a GTM
encapsulates two types of knowledge: knowledge
about the difference between the functions of a
known design and a desired design that the GTM
can help reduce; and knowledge about modifica-
tions to the internal causal behaviors of the known
design that are necessary to reduce this difference.
For example, Figures 3(a) & 3(b) respectively show
these two types of knowledge for a partial model
of the feedback mechanism. Figure 3(a) shows the
functions) 1 and) 2 respectively of a candidate de-
sign available and the desired design, and the condi-
tions underwhich the mechanism is applicable. The
model of feedback indicates that the desired behav-
ior (* 2) can be achieved by modifying the candi-
date behavior (* 1) through setting up the indicated
causal relationships between the latter and the ad-
ditional behaviors (that achieve the subfunctions of) 2 other than) 1 characterized in the applicability
conditions of the mechanism). In particular, the
feedback mechanism suggests the modification of
looping back some output to the input and modifying
the effective input to the device. Figure 3(b) shows
(both diagrammatically and textually) the relation-
ships in a partial model of the feedback mechanism
that IDEAL indeed learns from the two designs of
amplifiers. Figure 5(b) in contrast shows the rela-
tionships in a more complete model of the feedback
mechanism.

The Model-Based Learning Method
Suppose, for instance, IDEAL’s case memory has the
design (or component) of the basic operational am-
plifier (op-amp) shown in Figure 1. Note that the
output of operational amplifier is dependent on the
open loop gain (+-, � , a device parameter) of the op-
erational amplifier and is typically very high (ideally
infinite) and unstable. Let us now consider the sce-
nario where IDEAL is presented with a problem of
designing an inverting amplifier using an op-amp.2
This has the function of delivering a specific, con-
trollable output, that is, an output which does not
fluctuate much. For instance, the output of the in-
verting amplifier desired is electricity with a voltage
value,

�/.0����1�32
, where

2
represents a small fluc-

tuation over an average value
�4. ����

(see MAKES
state in Figure 2). The fluctuations in the output of
a device can in general arise due to several reasons,
for instance, due to fluctuations in the input of the
device or due to unstable device parameters. In the
case of the design of a basic operational amplifier, for
example, the fluctuations in the output voltage are
due to the device parameter, open-loop gain, +5, � of
the op-amp. IDEAL retrieves the design of the basic
operational amplifier (Figure 1) because the given
functional specification is similar to the amplifying
function of the basic op-amp.

Suppose that IDEAL only has a simple strategy
such as replacing a component in a past design to de-

2An op-amp is always used with feedback, whether it
be in inverting or non-inverting configurations (Sedra &
Smith, 1991).

4

liver new functions. In the current scenario, IDEAL
would only suggest that the op-amp needs to be re-
placed with another one that has the desired +5, � ,
which is not feasible in general! Even if the op-amp
can be replaced, doing so will not satisfy the con-
straint that the output fluctuation be small. Hence,
IDEAL fails to modify the retrieved design to gen-
erate a design for achieving the new function. It
intuitively appears that this task requires an under-
standing of the mechanism of feedback.

Now the question is whether and how IDEAL
can learn a model of the feedback mechanism if
it is given the correct design for the current prob-
lem. When IDEAL thus fails to solve a problem
due to its knowledge conditions, the additional con-
straint specified (i.e., stable output—no or small
fluctuations—beingdesired), and due to the fact that
some components are not available with arbitrary
parameters, it has an opportunity to learn. Then,
if an oracle presents the correct design that both
delivers the desired function and satisfies the addi-
tional constraint (the schematic of the structure of
the new device is shown in Figure 2(a)) and the SBF
model of the new device (shown in Figure 2(b)),
IDEAL can form the initial hypothesis for a model
of the feedback mechanism. This problem-solving
context enables IDEAL to focus on the substructure
(op-amp) that amplifies the input voltage for com-
paring with the corresponding substructure in the
old design (basic op-amp). By generalizing over the
structural pattern (in this substructure) and the cor-
responding behavioral segments in both designs and
their relationships with the others in the new design,
it learns the feedback mechanism. We will now
focus on the learning of the feedback mechanism.

The learning method is model-based in that the
SBF models of the design cases provide the content
for generalizing over the patterns of regularity in
the device structure and device behavior. The rep-
resentation vocabulary of the SBF models further
defines the dimensions along which two behaviors
can be compared and leads to several classes of reg-
ularity based on the “cause-effect” relationships be-
tween behavior segments.3 For instance, behavioral
states, transitions, and behavioral segments (state-
transition-state) are some dimensions at a top level
along which two behaviors can be compared. Within
comparing two behaviors along these dimensions a
few lower level dimensions are substances and com-
ponents, their properties and values, and primitive
functions. A few patterns of regularity in device
behaviors * 1 and * 2 are illustrated in Figure 4; * 1
is the behavior of an available or candidate design
and * 2 is the behavior of the new or desired design.
In the following discussion,) 1 denotes the function
of the candidate design and) 2 that of the desired
design. For the following general description of
IDEAL’s learning method, the reader is referred to the
complete model of the feedback mechanism shown
in Figure 5 unless otherwise mentioned.

The learning method first traverses the two fo-

3A behavior segment is a partial sequence of states and
transitions in a behavior. The smallest behavior segment
will have just two states and a transition between them.

.

.

B21 = B 1

B 22

B1 (- B 22

.

.B21 = B 1 .
.

.

.B21 = B 1
.
.

B 22

B 22

is a state
is a transition or
a behavioral sequence

B2 = B21 + B22

.

.B21 = B 1

B 22

B1 (- B 22/

B1 (- B 22/

B1 (- B 22/

Single Cause -
Multiple Effects

A behavior segment B
reoccurs in traversal of B .

1
2

A state (final state) reoccurs
in traversal of B .2

in B .2

Suppose (a composition of two behavior segments)

A state reoccurs in
traversal of B .2

(- denotes set containment and (-/ its negation

Figure 4: A Few Patterns of Regularity in Device
Behaviors

cused behaviors and compares them for similarity.
When the behavior of the old design (* 1) matches
with (or is similar to) some segment in the new de-
vice behavior (* 2), then there is an opportunity for
IDEAL to learn a generic mechanism that specifies
how to modify a behavior like * 1 to get a behavior
like * 2 that achieves the function like) 2. Suppose
that * 2

� * 21
� * 22, a composition of two behav-

ior segments, and that * 1 matches with * 21. Under
such conditions, IDEAL can form a generic mecha-
nism only on the basis of its analysis of differences
between * 1 and * 2, in particular, the relationships
between * 1 and * 22. IDEAL’s hypothesis is that
the difference in the functions of the two devices
() 2 �) 1) can be attributed to the difference in the
behaviors (* 2 � * 1 , which is the additional behav-
ior * 22) and the relationships between * 1 and * 22.
While traversing the two focused behaviors, IDEAL
can recognize the end of a behavior, recurrence of
states, single cause-multiple effects (i.e., a fork in
the directed graph), and multiple causes-single ef-
fect (i.e., a join in the directed graph), and repetition
of a behavior segment, without an explicit a pri-
ori knowledge of them. From these basic patterns,
IDEAL discovers the regularities in the relationships
between * 1 and * 22 and forms mechanisms such as
cascading, feedback, and feedforward. IDEAL then
generalizes over the specifics of these relationships
so that the learned mechanism is useful in different
problem-solving contexts.

In addition, in order for a new mechanism to
be useful, IDEAL needs to identify the applicabil-
ity conditions for the mechanism. Because IDEAL
believes that the relationships between * 1 and * 22
to be responsible for the difference in the candi-

5

date and desired functions, it forms the decompos-
ability condition on the desired function as one of
the applicability conditions. For instance, when a
desired function,) 2, is specified, and a candidate
design delivers) 1, one applicability condition for
using “a” generic mechanism is to check if) 2 can
be decomposed into) 1 and any other subfunctions
and precisely what those additional subfunctions are.
Hence it finds what the subfunctionsbesides the can-
didate function () 1) that the desired function can be
decomposed into are (i.e.,) 2 =

� �) 1
���

or) 2
=
�

+) 1 or) 2 =) 1 + g). Since in general seg-
ments in * 22 can be distributed partly preceding* 21 and partly succeeding * 21, there can only be at
most two subfunctions other than) 1 (or multiples
of it)—one subfunction

�
that is an abstraction over

the behavior segments that precede * 21 (i.e., * 22
�

1)
and the other subfunction

�
that is an abstraction

over the behavior segments that succeed * 21 (i.e.,* 22
�

2). By tracing * 22 back from the initial state
of * 21 and tracing it forward from the final state of* 21 in * 2, IDEAL can identify the segments * 22

�
1

and * 22
�

2 and find their functional abstractions
�

and
�

in order to learn an applicability condition for
the new mechanism. IDEAL analyzes in this man-
ner because it would enable discrimination among
competing mechanisms in terms of these subfunc-
tions of a desired function, while using the mecha-
nisms in later problem solving. For instance,

�
and�

would be different for feedback and feedforward
mechanisms. Thus IDEAL describes all the generic
mechanisms it learns in a uniform representation,
that is, in terms of relationships between candidate
and desired functions and the corresponding behav-
iors. In sum, a generic mechanism specifies how to
compose the candidate behavior (that achieves) 1)
with the behaviors that achieve the subfunctions

�
and

�
to generate a behavior that achieves the de-

sired function) 2 where) 2 can be decomposed into�
,) 1, and

�
.

In the current problem-solving scenario, apply-
ing the above learning method, IDEAL finds that
the behavior segment (�%���$��� 2 � �����$��� 3 in Figure
2(b)) in * 2, the behavior of the inverting amplifier,
matches with * 1, the behavior of the basic op-amp
(�%���$��� 1 � �%���$��� 2 in Figure 1(b)). Continuing to tra-
verse the additional segments in * 2, it discovers that
there is a cycle (or loop) in * 2 and picks out the re-
lationships between the matching segment * 21 (i.e.,�%������� 2 � �%������� 3) and the preceding behavior seg-
ment (i.e., �(�����$��� 1 � �����$��� 3 ��� �%���$��� 2 which consti-
tutes * 22

�
1) in * 2. The functional abstraction over

this preceding segment is
�

and it becomes part of the
decomposition of) 2. Since in the specific behav-
ior of the new design there are no additional states
succeeding the final state of the matching segment
(i.e., after �%������� 3 in �%���$��� 2 � �����$��� 3) that are not
already taken into account in * 22

�
1, * 22

�
2 in this

learning situation is null and hence there is no sub-
function

�
in the decomposition of) 2. IDEAL then

generalizes over the specific substances, properties
and values, and the relationships to form an initial
hypothesis for a generic mechanism, which is the
mechanism of feedback. The model of the learned
(more precisely, hypothesized) feedback mechanism

DESIRED DESIGN:

CANDIDATE DESIGN:

CONDITION:

BY
-B

EH
AV

IO
R

B2

GIVEN:

MAKES:

BY-BEHAVIOR: Behavior B2

?SUB
?prop1:

?SUB
?prop1: ?val22

GIVEN:

MAKES:

BY-BEHAVIOR:

?SUB
?prop1:

?SUB
?prop1:

?val11

?val21

Behavior B1

?SUB
?prop1:

?SUB
?prop1:

?SUB
?prop1: ?val22

BY-BEHAVIOR B1

?val11

?val22 = ?val21/

F2 = f : (?val11, ?valFB) ?val11’

+ F1: (?val11’) ?val22

+ g : (?val22) (?val22, ?valFB)

F2

F1

?val11

?val11’

?SUB
?valFB

C

BY-BEHAVIOR B 22-1

?val11’ = f (?val11, ?valFB)

BY-BEHAVIOR B 22-2
USING-FUNCTION
 SENSE ?SUB
 of ?SENSOR

?SUB
?prop1: ?val22

(b) Behavior Modification that
 the Feedback Mechanism suggests

(a) Functional Difference that
 the Feedback Mechanism reduces

B2 = B1 + B22

?val21 = ?val +
-;

?val22 = ?val +
-

?prop2:

?valFB = g (?val22)

where B22 = {B 22-1 , B22-2 } and

B22-1 achieves function f and B22-2 achieves function g

The relationships between B1 and B22 are such that:

INITIAL-STATE (B1) = FINAL-STATE (B 22-1)

FINAL-STATE (B1) = INITIAL-STATE (B 22-2)

FINAL-STATE (B 22-2) (- INITIAL-STATES (B 22-1)

Figure 5: A Complete BF Model of the Feedback
Mechanism

and its index are shown in Figure 3.
Note that the feedback mechanism IDEAL learned

in the current scenario (Figure 3) is only a partial
model of the feedback mechanism because it as-
sumes that the controlling or feedback substance is
same as the controlled or output substance (?Sub)),
which is not true in general.4 A more complete
model of the feedback mechanism as illustrated in
Figure 5 ought to distinguish between the feed-
back substance (? �	��
�) and the controlled sub-
stance (? �	��
) as well as consider the more general
decomposition of) 2 in terms of

�
,) 1, and

�
. When

the feedback substance and the controlled substance
are different, the decomposition of) 2 will have the
subfunction

�
and the subfunction

�
would involve

sensing the fluctuations in a property value of the
controlled substance.

Note also that the feedback mechanism IDEAL

4In fact, IDEAL does not even recognize that the feed-
back and controlled substancescould be different because
the current design experiences do not indicate that.

6

had learned does not capture the subtleties of open
loop feedback and closed loop feedback. Even Fig-
ure 5 shows only a model of closed loop feedback.
In order to learn those distinctions, however, IDEAL
requires more design experiences in which the sub-
stances fed back are different and the points in the
device topology to where they are fed back are dif-
ferent. Thus acquiring a complete model of the
feedback mechanism (or, in other words, all the dif-
ferent types of feedback mechanism) may involve
solving a number of design problems incrementally
and revising the hypothesized mechanism.

Conclusions
We have presented a computational model of how
generic mechanisms can be learned from design
experiences incrementally by generalization and
demonstrated it in the context of the design of phys-
ical devices. Case-specific SBF models of devices
in the design experiences provide the content for
learning the BF models of generic mechanisms. The
internal organization of the SBF models (e.g., func-
tional, structural, and behavioral decomposition) to-
gether with the problem-solving context provides
the constraints for learning by generalization. The
vocabulary of the SBF models also provides the di-
mensions along which two devices can be compared
and thus constrain the comparison. Further, similar-
ities between regularities in experiences determine
how abstract a learned generic mechanism can be.

References
Bhatta, S. & Goel, A. 1993. Learning Generic
Mechanisms from Experiences for Analogical Rea-
soning. In Proc. of the Fifteenth Annual Conf. of
the Cog. Sci. Soc., 237–242.
Bhatta, S. & Goel, A. 1994. Discovery of Physical
Principles from Design Experiences. AI EDAM,
8(2):113-123.
Bylander, T. 1991. A Theory of Consolidation
for Reasoning about Devices. Intl. Jnl. of Man-
Machine Studies 35(4):467-489.
Catrambone, R. & Holyoak, K. 1989. Overcoming
Contextual Limitationson Problem-SolvingTrans-
fer. Jnl. of Experimental Psy.: Learning, Memory,
and Cognition 15(6):1147-1156.
Chandrasekaran, B., Goel, A., & Iwasaki, Y. 1993.
Functional Representation As Design Rationale.
IEEE Computer, January:48-56.
Falkenhainer, B. 1989. Learning from Physical
Analogies: A Study in Analogy and the Expla-
nation Process. Ph.D. diss., Department of Comp.
Sci., University of Illinois, Urbana.
Gick, M.L. & Holyoak, K.J. 1983. Schema Induc-
tion and Analogical Transfer. Cognitive Psychol-
ogy 15:1-38.
Goel, A. 1989. Integration of Case-Based Reason-
ing and Model-Based Reasoning for Adaptive De-
sign Problem Solving. Ph.D. diss., Dept. of Comp.
and Info. Sci., The Ohio State University.

Goel, A. 1991. A Model-Based Approach to Case
Adaptation. In Proc. of the Thirteenth Annual Conf.
of the Cog. Sci. Soc., 143-148.
Greiner, R. 1988. Learning by Understanding
Analogies. Artificial Intelligence, 35:81-125.
Maher, M. & Zhao, F. 1987. Using Experi-
ences to Plan the Synthesis of New Designs.
In J. Gero, (Ed.), Expert Systems in Computer-
Aided Design, 349–369. North-Holland, Amster-
dam, Netherlands.
Sedra, A. & Smith, K. 1991. Microelectronic Cir-
cuits. Ch. 3, 86–149. Holt, Rinehart and Winston,
Inc., New York.
Sembugamoorthy, V. & Chandrasekaran, B. 1986.
Functional Representation of Devices and Com-
pilation of Diagnostic Problem-Solving Systems.
In J. Kolodner & C. Riesbeck (Eds.), Experi-
ence, Memory and Reasoning, 47-73. Hillsdale,
NJ: Lawrence Erlbaum.
Stroulia, E. & Goel, A. 1992. Generic Teleological
Mechanisms and their Use in Case Adaptation. In
Proc. of the Fourteenth Annual Conf. of the Cog.
Sci. Soc., 319-324.

7

