
 AAAI-2010 Workshop on Meta-Cognition, Atlanta, July 2010

Ashok K. Goel

Design & Intelligence Laboratory
Georgia Institute of Technology

Meta-Reasoning for Self-Adaptation !

Outline:

1.! Introduction: why, what, when and how of meta-reasoning.

2. Proactive, goal-directed reconfiguration of reasoning processes.

3. Combining model-based meta-reasoning and reinforcement

learning.

4. Retrospective, failure-driven repair of domain knowledge.

5. Conclusions: model-based meta-reasoning for self-adaptation.

3

Metareasoning!

Basic metareasoning architecture

Adapted from Cox & Raja, 2007

Why Meta-Reasoning?

Control of reasoning (e.g., Hayes-Roth, Raja & Lesser, Zilberstein)

Bounding of reasoning (e.g., Russell, Horvitz)

Self-Explanation (e.g., Brueker & Wilenga, Chandrasekaran,

 Cox & Ram, Leake, Murdock & Goel)

Retrospective, failure-driven revision of beliefs (e.g., Doyle)

Retrospective, failure-driven revision of domain knowledge

 (e.g., Davis, Leake)

Retrospective, failure-driven revision of reasoning processes

 (e.g., Anderson, Josyula, Oates & Perlis,

 Cox & Ram, Freed & Birnbaum, Stroulia & Goel)

Proactive, goal-directed revision of reasoning processes

Localization of situated learning

When Meta-Reasoning (for Self-Adaptation)?

Retrospective, failure-driven self-adaptation.

Proactive, goal-directed self-adaptation.

What Meta-Reasoning (for Self-Adaptation)?

About the situated element.

 (e.g., Anderson, Josyula, Oates & Perlis, Stroulia & Goel).

About the deliberative reasoner.

 About the reasoner’s beliefs.

 About the reasoner’s domain knowledge.

 About the reasoner’s reasoning processes.

How Meta-Reasoning (for Self-Adaptation)?

Libraries of failures, faults, fixes (e.g., Sussman)

Explanation patterns (e.g., Cox & Ram, Leake)

Traces of processing (e.g., Haigh & Veloso)

Models of the agent (e.g., Freed & Birnbaum, Stroulia & Goel)

 A model of the agent’s design enables self-adaptation.

 Model-based meta-reasoning.

Outline:

1.! Introduction: model-based meta-reasoning for self-adaptation.

2.! Proactive, goal-directed reconfiguration of reasoning processes.

 Joint work with J. William Murdock

3. Localizing reinforcement learning.

4. Retrospective, failure-driven repair of domain knowledge.

5. Conclusions: model-based meta-reasoning for self-adaptation.

Proactive Self-Adaptation: Simple Example!

Insert Bulb Rotate Bulb

Traditional Installation

Install Light Bulb

Agent

+ Remove Light Bulb

New Task

!

Insert Bulb Rotate Bulb

Traditional Installation

Install Light Bulb

Evolved Agent

Remove Light Bulb

Retract Bulb Rotate Bulb

Newly Created Method

Why Not Simple Analogy?"

Example: Disassembly Planning"

Remove

Board-2-1

Remove

Board-2-2

Unscrew

Screw-2-2

Remove

Board-3-1

Remove

Board-3-2

Unscrew

Screw-3-2

Remove

Board-3-3

But what if causal ordering of actions is

different?: Example: Assembly Problem!

Remove

Board-2-1

Remove

Board-2-2

Unscrew

Screw-2-2

Place

Board-2-1

Place

Board-2-2

Screw

Screw-2-2

Different Kinds of Similarity!

•! When different problems have very different
solutions (i.e. different causal ordering of actions),
then complexity of analogical transfer of solutions is
no better than of generative planning. !

•! However, different problems may be solved using
very similar reasoning mechanisms (causal ordering
of reasoning tasks, methods, etc.). !

•! Can we analogically transfer reasoning mechanisms?!

•! Meta-Cases, Meta-Case-Based Reasoning, Meta-

Analogies!

 (Murdock & Goel 1996, 2001, 2008)!

The REM (Reflective Evolutionary Mind) Shell!

•! Task Method Knowledge models may provide an

agent with knowledge of its own design.!

 Origin in task models of knowledge systems!

 (e.g., Generic Tasks, Problem-Solving Methods,

CommonKADS)!

•! TMKL for expressing TMK models of agent designs.!

•! REM can execute the reasoning processes of agents

encoded in TMKL. It can also adapt them for some

classes of problems.!

(Murdock & Goel 2001, 2003, 2008)!

Tasks in TMKL!

•!All tasks can have input & output parameter
lists and given & makes conditions.!

•!A non-primitive task must have one or more

methods which accomplishes it.!

•!A primitive task must include one or more
of the following: source code, a logical
assertion, a specified output value.!

•!Unimplemented tasks have neither of these.!

Methods in TMKL!

•! Methods have provided and result conditions.!

•! In addition, a method specifies a start transition for
its processing control.!

•! Each transition specifies requirements for using it
and a new state that it goes to.!

•! Each state has a task and a set of outgoing
transitions. !

Physical Device Disassembly!

•! ADDAM: Legacy software agent for hierarchical
case-based disassembly planning and (simulated)
execution!

•! Interactive: Agent connects to a user specifying
goals and to a complex physical environment!

•! Dynamic: New designs and demands!

•! Knowledge Intensive: Designs, plans, etc.!

Adapt Disassembly Plan Execute Plan

Encapsulate Target Plan Select Base Plan Top Make Subplan Hierarchy

Make Subplan Hierarchy Method

Plan Then Execute Disassembly

Disassemble

Hierarchical Plan Execution

Select Next Action Execute Action

Sequential Plan Execution

Make Plan Node Mappings Find Equivalent Topology Nodes

Make Equivalent Plan Nodes Find Base Plan Node Children

Select Equivalent Plan Node

Make Plan Node Children

Topology Based Plan Adaptation

Match Topologies Sequentialize Plan Execute Sequential Plan Make Plan Hierarchy

Make Equivalent Plan Nodes Method

Select Equivalent Topology Node Make Equivalent Plan Node Add Equivalent Plan Node

Make Plan Node Children Method

Make Subplan Hierarchy Add Plan Mappings Set Plan Node Children

Map Dependencies

Serialized Dependency Mapping

List Target Dependencies Select Dependency Assert Dependency

Select Child Plan Node

Make Plan Hierarchy Method

Knowledge in TMKL!

•! Foundation: LOOM!

•! Concepts, instances, relations!

•! Concepts and relations are instances and can have

facts about them.!

•! Knowledge representation in TMKL involves

LOOM + some TMKL specific reflective concepts

and relations.!

Sample Meta-Knowledge in TMKL!

•! generic relations!

–! same-as!

–! instance-of!

–! is-a!

–! inverse-of!

•! relation characteristics!

–! single-valued/multiple-
valued!

–! symmetric, commutative!

–! many more!

•! relations over relations!

–! external/internal!

–! state/definitional!

•! concepts of relations
–! binary-relation

–! unary-relation

–! same-as

–! is-a

–! inverse-of

•! concepts relating to
concepts
–! thing

–! concept

–! Meta-concept

REM’s Functional Architecture!

Knowledge

Subtask Subtask

…
Task

Knowledge

Task

or

Retrieve

Existing Method

Create

New Method

Execute

Adapt

Existing Method

Done!

Pieces of ADDAM which are key to the

Disassembly ! Assembly Problem!

Adapt Disassembly Plan Execute Plan

Plan Then Execute Disassembly

Disassemble

Hierarchical Plan Execution

Select Next Action Execute Action

Topology Based Plan Adaptation

Make Plan Hierarchy

Make Equivalent Plan Nodes Method

Make Equivalent Plan Node Add Equivalent Plan Node

Map Dependencies

Select Dependency Assert Dependency

Process for Addressing the Assemble

Task by REM using ADDAM!

•! First the agent tries to find a method for the Assemble
task. It doesn’t have one.!

•! Next it tries to find a similar task which does have a

method. It finds Disassemble.!

–! The index is the input and output information provided in the task.!

–! Similarity is determined by a combination of general rules plus

domain-specific rules and assertions.!

•! Next it searches for a relation which links the effects of the

two task. It finds Inverse-of.!

•! Finally, it uses this relation to modify components of the

existing process to address the new process.!

New Adapted Assembly Task!

COPIED Adapt Disassembly Plan COPIED Execute Plan

COPIED Plan Then Execute Disassembly

Assemble

COPIED Hierarchical Plan Execution

Execute Action

COPIED Topology Based Plan Adaptation

COPIED Make Plan Hierarchy

COPIED Make Equivalent Plan Nodes Method

COPIED Add Equivalent Plan Node

COPIED Map Dependencies

COPIED Select Dependency INVERTED Assert Dependency

INSERTED Inversion Task 1

INSERTED Inversion Task 2

Select Next Action

COPIED Make Equivalent Plan Node

Changes to the TMK Model of ADDAM!

•! After the task which produces plan nodes: add a task which

imposes the inverse-of relation on the type of the node.!

–! e.g., Unscrew ! Screw!

•! The (simple) task which asserts ordering dependencies is

changed to assert the inverse-of ordering dependencies.!

•! After the task which extracts plan nodes from a plan: add a

task which imposes the inverse-of relation on the type of

the node.!

–! e.g., Screw ! Unscrew!

Adaptation Strategy: Inversion!

[Copy methods for known task to main task]

invertible-relations = [all relations for which inverse-of holds with some other relation]

invertible-concepts = [all concepts for which inverse-of holds with some other concept]

relevant-relations = invertible-relations + [all relations over invertible-concepts]

relevant-manipulable-relations = [relevant-relations which are internal state relations]

candidate-tasks = [all tasks which affect relevant-manipulable-relations]

FOR candidate-task IN candidate-tasks DO

 IF [candidate-task directly asserts a relevant-manipulable-relations] THEN

 [invert the assertion for that candidate task]

 ELSE IF [candidate-task produces an invertible output] THEN

 [insert an inversion task after candidate-task]

ADDAM

Example:

Layered Roof

Roof Assembly!

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7
Number of Boards

E
la

p
s

e
d

 T
im

e
 (

s
e
c
o

n
d

s
)

REM: Meta-Analogy
REM: Graphplan
REM: Q-Learning

What kinds of task differences can REM handle?

Inversion

Replication

Simple Generalization/Specialization

A limitation:
For complex problems, REM can only localize

the needed modifications, not precisely identify them

An opportunity:

Use model-based meta-reasoning for localization;

Use local generative planning or reinforcement learning

for identification.

Outline:

1.! Introduction: model-based meta-reasoning for self-adaptation.

2. Proactive, goal-directed reconfiguration of reasoning processes.

3.! Combining model-based meta-reasoning and reinforcement

learning in retrospective failure-driven learning.

 Jointly with Patrick Ulam, Joshua Jones & William Murdock

4. Retrospective, failure-driven repair of domain knowledge.

5. Conclusions: model-based meta-reasoning for self-adaptation.

Using Model-Based Meta-Reasoning for

Localizing Reinforcement Learning!

–!Endow the agent with a TMK model
of its own design. !

–!Upon failure, use model-based meta-

reasoning to localize the failure to a

specific element of task execution!

–!Use reinforcement learning (RL) to

adapt agent’s reasoning at identified

location!

Model

Localize

Failure

Perform

RL

Freeciv

(www.freeciv.org) is a

popular, interactive turn-

based strategy game.

A human plays the game

against multiple software

agents.

The goal is to conquer

the world.

Domain: Interactive Games

Defend The City Task!

•! Goal!
–! Defend the starting city from

enemy civilizations for as
long as possible!

•! Possible actions!
–! Building the unit with

highest defensive value!

–! Producing wealth!

•! Success conditions!
–! Survive 100 turns!

•! Failure conditions!
–! City is defeated!

–! City revolts!

Defend the city model!

•! Tasks!
–! Defend City!

–! Evaluate Defense Needs!

–! Build Defenses (Procedure)!

–! Evaluate Internal Factors (Procedure)!

–! Evaluate External Factors (Procedure)!

•! Methods!
–! Evaluate and Build!

–! Evaluate Defenses!

•! Knowledge!
–! Different for each task!

–! E.g. evaluate external factors produces
knowledge about the number of enemy
units nearby!

Adapting the Defend City Task by "

 Model-Based Meta-Reasoning!

•! Upon task failure, failure type used to localize failure within model!

•! Execution trace used to further narrow space of possible failures locations!

•! Adaptation for each type of failure provided via user-suppplied adaptation

library!

•! Adaptations consist of small changes to procedural tasks (leaf nodes)!

Adaptation

Strategy

Game Input

(Failure

Type)

Model

Localized

Failure

Refine

Failure

Location

Adaptation

Library

Failure

Library

Task

Execution

Trace

Adapting The Defend City Task Via Pure

Model-Based Reasoning!

–! Space of possible adaptations and failures is large!

–! Requires significant knowledge engineering to make the
failure and adaptation library!

–! Difficult to determine if adaptation library is insufficient!

Adaptation

Strategy

Game Input

(Failure

Type)

Model

Localized

Failure

Refine

Failure

Location

Adaptation

Library

Failure

Library

Task

Execution

Trace

Adapting the Defend City Task by

Reinforcement Learning!

•! State space consisting of 9
binary variables!
–! E.g. Are there are less then X

enemy units near the city?!

–! E.g. Are there are less then Y
defensive units currently
stationed at the city!

•! Two actions!

–! Build defensive unit!

–! Build wealth!

•! Negative reward signal
received upon failure!

Reinforcement Learner

States!

Percepts

 Reward

Actions

Combining Model-Based Meta-Reasoning

and Reinforcement Learning !

•! Use model as guide for

divide state space!

•! Associate each

subdivision with specific

portion of model!

•! Each small reinforcement

learner can receive

separate reward signal!

Reinforcement Learner

Adaptation in the Hybrid Technique!

•! Upon task failure, failure type used to localize failure within model!

•! Execution trace used to narrow space of possible failures locations!

•! Only portions of model identified receive reward signal!

Game Input

(Failure

Type)

Model

Localized

Failure

Refine

Failure

Location

Task

Execution

Trace

Perform

Reinforcement

Learning

Reward

Ulam, Jones, Goel & Murdock 2005, 2008

Evaluation!

•! Experimental Setup!

–!Performed 100 trials of 100 turns for each agent on

smallest map setting!

–!Each trial for each agent shared same map!

–! 8 Built-in AI opponents at hardest difficulty!

–!Agent limited to a single city!

•! Evaluation Metrics!

–!Number of failures!

–!Mean time between failures!

–!Number of attacks successfully defended!

Experimental Agents!

•! Control!

–! Agent attempts to maintain 1 defensive unit, no adaptation!

•! Pure model-based reflection agent!

–! Starts from control!

–! Adapts via user defined adaptation library!

•! Pure reinforcement learning agent!

–! Initialized to always build wealth!

–! Q-Learning!

•! Hybrid agent!

–! Initialized to always build wealth!

Experimental Results!

•! Number of trials failed
directly measures success of
agent!
–! Less failures indicates better

performance!

•! Number of attacks per trial!
–! More attacks survived indicates

higher performance!

•! Hybrid model-based/RL
method combines low failure
rate with good survival rate. !

Experimental Results!

•! Average time between failures!

–! Assumes the better the agent learns

the task, the longer the period

between failures!

–! Rate of increase indicator of speed

of learning!

Outline:

1.! Introduction: model-based meta-reasoning for self-adaptation.

2. Proactive, goal-directed reconfiguration of reasoning processes.

3. Combining model-based meta-reasoning and reinforcement

learning.

4. Retrospective, failure-driven repair of domain knowledge.

 Joint Work with Joshua Jones.

5. Conclusions: model-based meta-reasoning for self-adaptation.

43

Predictive Knowledge!

!! Metareasoning techniques for adaptation of agent

processes in REM use predictive knowledge

expressed in a functional self-model. !

!! This predictive knowledge enables the agent to both

detect its failures and diagnose the causes.!

44

Adaptation of Domain Knowledge!

!! How can a metareasoning process be used to adapt an

agent's domain knowledge?!

!! We take an analogous approach, providing the agent

with knowledge representations that explicitly

represent predictive implications of conceptual

knowledge.!

!! We call the metaknowledge associated with each

concept an empirical verification procedure (EVP).!

45

Classification Knowledge for Locating Cities in

Freeciv"

46

Abstraction Networks!

!! Abstraction networks (ANs) is a representation that

adds EVP metaknowledge to concepts in a

classification hierarchy.!

!! ANs are intended to be as general as possible within

hierarchical classification, not committing to:!

!! A particular type of sub-learner !

!! A specific diagnostic probe-selection method!

47 The AN representation, instantiating EVP theory in

the context of compositional classification.

48

Illustration of

non-

exhaustive

diagnosis in

an AN.

49

Auger: Basic Hypotheses"

!! Faster learning with ANs (trees + EVPs)!

!! Faster learning even if imperfect knowledge

engineering (imperfect trees + EVPs)!

!! Faster learning even if absent EVPs!

!! Refinement of concept semantics (bin size)!

50

Auger: Basic Experiments"

!! We have performed basic experiments in 4 domains!

!! Synthetic!

!! FreeCiv Game Playing!

!! DJIA prediction!

!! NFL prediction!

!! 3 learner types have been used!

!! Table-based rote learners!

!! ANNs!

!! kNNs!

51

Auger: Basic Procedures"

!! Two kinds of diagnosis!

!! Non-exhaustive “causal backtracing”!

!! Full EVP execution!

!! Two kinds of training!

!! On-line, sequential!

!! Sequence of examples split into equal sized blocks!

!! For each example, perform inference and check for

error!

!! Then, train!

!! Batch!

!! Used with ANNs only!

!! Typical training set/test set approach with epochs!

52

Results: Synthetic Domain, Rote Learners"

Layer sizes 16-8-4-2-1, 3 choices per node, block size 100 examples, average

of 100 trials.

53

Results: Synthetic Domain, ANNs"

Layer sizes 16-8-4-2-1, 3 choices per node, training set size 1000, test set size

1000, average of 5 trials, full EVP evaluation.

54

Results: Synthetic Domain, kNNs"

Layer sizes 16-8-4-2-1, 4 choices per node, block size 100 examples, average

of 10 trials, k=1.

55

FreeCiv Results"

Performance vs. Unstructured Learners

Conclusions

How meta-reasoning? Model-based meta-reasoning.

Models that are compositional and that encode

predictive knowledge. Models that describe the

design of the agent.

Why meta-reasoning? Two more reasons: proactive,

goal-directed self-adaptation of reasoning processes,

and localization of situated learning.

57

Conclusions!

•! In proactive reconfiguration of reasoning processes,

representation of the agent’s design, function, and

teleology (in the form of TMK models) enables meta-

analogies. !

!! In retrospective repair of domain knowledge,

representation of empirical verification procedures

(EVPs) in abstraction networks (ANs) enables

learning of content of domain knowledge. !

58

Implications for Metareasoning

!! Our work suggests an elaboration of the basic

metareasoning architecture:

Acknowledgements

J. William Murdock, IBM TJ Watson Center

Proactive, Goal-Directed Self-Adaptation (REM)

Task-Method-Knowledge Language (TMKL)

Eleni Stroulia, University of Alberta

Retrospective, Failure-Driven Self-Adaptation

Self-Adaptation in Reactive Agents

Acknowledgements

Joshua Jones, University of Maryland BC

Self-Adaptation of Domain Knowledge

(Augur)

Spencer Rugaber, Georgia Tech

Self-Adaptation in Game Playing Agents

(GAIA)

DARPA Evolutionary of Design of Complex Systems

NSF Science of Design

