Meta-Reasoning for Self-Adaptation

Ashok K. Goel

Design & Intelligence Laboratory
Georgia Institute of Technology

AAAI-2010 Workshop on Meta-Cognition, Atlanta, July 2010
Outline:

1. *Introduction: why, what, when and how of meta-reasoning.*

2. Proactive, goal-directed reconfiguration of reasoning processes.

4. Retrospective, failure-driven repair of domain knowledge.

Metareasoning

Basic metareasoning architecture
Adapted from Cox & Raja, 2007
Why Meta-Reasoning?

Control of reasoning (e.g., Hayes-Roth, Raja & Lesser, Zilberstein)
Bounding of reasoning (e.g., Russell, Horvitz)

Self-Explanation (e.g., Brueker & Wilenga, Chandrasekaran,
Cox & Ram, Leake, Murdock & Goel)

Retrospective, failure-driven revision of beliefs (e.g., Doyle)
Retrospective, failure-driven revision of domain knowledge
(e.g., Davis, Leake)
Retrospective, failure-driven revision of reasoning processes
(e.g., Anderson, Josyula, Oates & Perlis, Cox & Ram, Freed & Birnbaum, Strouilia & Goel)

Proactive, goal-directed revision of reasoning processes
Localization of situated learning
When Meta-Reasoning (for Self-Adaptation)?

Retrospective, failure-driven self-adaptation.

Proactive, goal-directed self-adaptation.

What Meta-Reasoning (for Self-Adaptation)?

About the situated element.
(e.g., Anderson, Josyula, Oates & Perlis, Stroulia & Goel).

About the deliberative reasoner:
About the reasoner’s beliefs.
About the reasoner’s domain knowledge.
About the reasoner’s reasoning processes.
How Meta-Reasoning (for Self-Adaptation)?

Libraries of failures, faults, fixes (e.g., Sussman)

Explanation patterns (e.g., Cox & Ram, Leake)

Traces of processing (e.g., Haigh & Veloso)

Models of the agent (e.g., Freed & Birnbaum, Stroulia & Goel)

A model of the agent’s design enables self-adaptation. Model-based meta-reasoning.
Outline:

2. Proactive, goal-directed reconfiguration of reasoning processes.
 Joint work with J. William Murdock

3. Localizing reinforcement learning.

4. Retrospective, failure-driven repair of domain knowledge.

Proactive Self-Adaptation: Simple Example

Agent

- Install Light Bulb
- Traditional Installation
- Insert Bulb
- Rotate Bulb

+ New Task

- Remove Light Bulb

Evolved Agent

- Install Light Bulb
- Traditional Installation
- Insert Bulb
- Rotate Bulb
- Remove Light Bulb
- Newly Created Method
- Rotate Bulb
- Retract Bulb
Why Not Simple Analogy?
Example: Disassembly Planning

Unscrew Screw-2-2 → Remove Board-2-1 → Remove Board-2-2

Unscrew Screw-3-2 → Remove Board-3-1 → Remove Board-3-2

Remove Board-3-3
But what if causal ordering of actions is different?: Example: Assembly Problem
Different Kinds of Similarity

• When different problems have very different solutions (i.e. different causal ordering of actions), then complexity of analogical transfer of solutions is no better than of generative planning.

• However, different problems may be solved using very similar reasoning mechanisms (causal ordering of reasoning tasks, methods, etc.).

• Can we analogically transfer reasoning mechanisms?

• *Meta-Cases, Meta-Case-Based Reasoning, Meta-Analogies*

The REM (Reflective Evolutionary Mind) Shell

- Task Method Knowledge models may provide an agent with knowledge of its own design.
 Origin in task models of knowledge systems (e.g., Generic Tasks, Problem-Solving Methods, CommonKADS)
- TMKL for expressing TMK models of agent designs.
- REM can execute the reasoning processes of agents encoded in TMKL. It can also adapt them for some classes of problems.
Tasks in TMKL

- All tasks can have input & output parameter lists and given & makes conditions.
- A non-primitive task must have one or more methods which accomplishes it.
- A primitive task must include one or more of the following: source code, a logical assertion, a specified output value.
- Unimplemented tasks have neither of these.
Methods in TMKL

- Methods have provided and result conditions.
- In addition, a method specifies a start transition for its processing control.
- Each transition specifies requirements for using it and a new state that it goes to.
- Each state has a task and a set of outgoing transitions.
Physical Device Disassembly

- ADDAM: Legacy software agent for hierarchical case-based disassembly planning and (simulated) execution
- Interactive: Agent connects to a user specifying goals and to a complex physical environment
- Dynamic: New designs and demands
- Knowledge Intensive: Designs, plans, etc.
Knowledge in TMKL

• Foundation: LOOM
• Concepts, instances, relations
• Concepts and relations are instances and can have facts about them.
• Knowledge representation in TMKL involves LOOM + some TMKL specific reflective concepts and relations.
Sample Meta-Knowledge in TMKL

• generic relations
 – same-as
 – instance-of
 – is-a
 – inverse-of

• relation characteristics
 – single-valued/multiple-valued
 – symmetric, commutative
 – many more

• relations over relations
 – external/internal
 – state/definitional

• concepts of relations
 – binary-relation
 – unary-relation
 – same-as
 – is-a
 – inverse-of

• concepts relating to concepts
 – thing
 – concept
 – Meta-concept
REM’s Functional Architecture

Knowledge
Subtask
Subtask

Task

Execute

Create New Method

Retrieve Existing Method

Adapt Existing Method

Done!
Pieces of ADDAM which are key to the Disassembly → Assembly Problem

- Disassemble
- Plan Then Execute Disassembly
 - Adapt Disassembly Plan
 - Topology Based Plan Adaptation
 - Make Plan Hierarchy
 - Map Dependencies
 - Make Equivalent Plan Nodes Method
 - Make Equivalent Plan Node
 - Add Equivalent Plan Node
 - Execute Plan
 - Hierarchical Plan Execution
 - Select Next Action
 - Execute Action
 - Select Dependency
 - Assert Dependency
Process for Addressing the Assemble Task by REM using ADDAM

• First the agent tries to find a method for the Assemble task. It doesn’t have one.

• Next it tries to find a similar task which does have a method. It finds Disassemble.
 – The index is the input and output information provided in the task.
 – Similarity is determined by a combination of general rules plus domain-specific rules and assertions.

• Next it searches for a relation which links the effects of the two task. It finds Inverse-of.

• Finally, it uses this relation to modify components of the existing process to address the new process.
New Adapted Assembly Task

- Assemble
- COPIED Plan Then Execute Disassembly
- COPIED Adapt Disassembly Plan
 - COPIED Topology Based Plan Adaptation
 - COPIED Make Plan Hierarchy
 - COPIED Map Dependencies
 - COPIED Select Dependency
 - COPIED Add Equivalent Plan Node
 - COPIED Hierarchical Plan Execution
 - Select Next Action
 - Execute Action
 - INVERTED Assert Dependency
- INVERTED Assert Dependency
- INVERTED Inversion Task 2
- INSERTED Inversion Task 1
- INSERTED Inversion Task 2
Changes to the TMK Model of ADDAM

- After the task which produces plan nodes: add a task which imposes the inverse-of relation on the type of the node.
 - e.g., Unscrew → Screw
- The (simple) task which asserts ordering dependencies is changed to assert the inverse-of ordering dependencies.
- After the task which extracts plan nodes from a plan: add a task which imposes the inverse-of relation on the type of the node.
 - e.g., Screw → Unscrew
Adaptation Strategy: Inversion

[Copy methods for known task to main task]
invertible-relations = [all relations for which inverse-of holds with some other relation]
invertible-concepts = [all concepts for which inverse-of holds with some other concept]
relevant-relations = invertible-relations + [all relations over invertible-concepts]
relevant-manipulable-relations = [relevant-relations which are internal state relations]
candidate-tasks = [all tasks which affect relevant-manipulable-relations]

FOR candidate-task IN candidate-tasks DO
 IF [candidate-task directly asserts a relevant-manipulable-relations] THEN
 [invert the assertion for that candidate task]
 ELSE IF [candidate-task produces an invertible output] THEN
 [insert an inversion task after candidate-task]
ADDAM
Example:
Layered Roof
Roof Assembly

![Graph showing the relationship between Number of Boards and Elapsed Time (seconds) for different algorithms: REM: Meta-Analogy, REM: Graphplan, REM: Q-Learning.]
What kinds of task differences can REM handle?

Inversion
Replication
Simple Generalization/Specialization

A limitation:
For complex problems, REM can only localize the needed modifications, not precisely identify them

An opportunity:
Use model-based meta-reasoning for localization;
Use local generative planning or reinforcement learning for identification.
Outline:

2. Proactive, goal-directed reconfiguration of reasoning processes.

3. *Combining model-based meta-reasoning and reinforcement learning in retrospective failure-driven learning.*

 Jointly with Patrick Ulam, Joshua Jones & William Murdock

4. Retrospective, failure-driven repair of domain knowledge.

Using Model-Based Meta-Reasoning for Localizing Reinforcement Learning

– Endow the agent with a TMK model of its own design.
– Upon failure, use model-based meta-reasoning to localize the failure to a specific element of task execution
– Use reinforcement learning (RL) to adapt agent’s reasoning at identified location
Freeciv (www.freeciv.org) is a popular, interactive turn-based strategy game.

A human plays the game against multiple software agents.

The goal is to conquer the world.
Defend The City Task

• **Goal**
 – Defend the starting city from enemy civilizations for as long as possible

• **Possible actions**
 – Building the unit with highest defensive value
 – Producing wealth

• **Success conditions**
 – Survive 100 turns

• **Failure conditions**
 – City is defeated
 – City revolts
Defend the city model

- **Tasks**
 - Defend City
 - Evaluate Defense Needs
 - Build Defenses (Procedure)
 - Evaluate Internal Factors (Procedure)
 - Evaluate External Factors (Procedure)

- **Methods**
 - Evaluate and Build
 - Evaluate Defenses

- **Knowledge**
 - Different for each task
 - E.g. evaluate external factors produces knowledge about the number of enemy units nearby
Adapting the Defend City Task by Model-Based Meta-Reasoning

- Upon task failure, failure type used to localize failure within model
- Execution trace used to further narrow space of possible failures locations
- Adaptation for each type of failure provided via user-supplied adaptation library
- Adaptations consist of small changes to procedural tasks (leaf nodes)
Adapting The Defend City Task Via Pure Model-Based Reasoning

- Space of possible adaptations and failures is large
- Requires significant knowledge engineering to make the failure and adaptation library
- Difficult to determine if adaptation library is insufficient
Adapting the Defend City Task by Reinforcement Learning

- State space consisting of 9 binary variables
 - E.g. Are there are less then X enemy units near the city?
 - E.g. Are there are less then Y defensive units currently stationed at the city

- Two actions
 - Build defensive unit
 - Build wealth

- Negative reward signal received upon failure
Combining Model-Based Meta-Reasoning and Reinforcement Learning

- Use model as guide for divide state space
- Associate each subdivision with specific portion of model
- Each small reinforcement learner can receive separate reward signal
Adaptation in the Hybrid Technique

- Upon task failure, failure type used to localize failure within model
- Execution trace used to narrow space of possible failures locations
- Only portions of model identified receive reward signal

Ulam, Jones, Goel & Murdock 2005, 2008
Evaluation

• Experimental Setup
 – Performed 100 trials of 100 turns for each agent on smallest map setting
 – Each trial for each agent shared same map
 – 8 Built-in AI opponents at hardest difficulty
 – Agent limited to a single city

• Evaluation Metrics
 – Number of failures
 – Mean time between failures
 – Number of attacks successfully defended
Experimental Agents

- Control
 - Agent attempts to maintain 1 defensive unit, no adaptation

- Pure model-based reflection agent
 - Starts from control
 - Adapts via user defined adaptation library

- Pure reinforcement learning agent
 - Initialized to always build wealth
 - Q-Learning

- Hybrid agent
 - Initialized to always build wealth
Experimental Results

- Number of trials failed directly measures success of agent
 - Less failures indicates better performance

- Number of attacks per trial
 - More attacks survived indicates higher performance

- Hybrid model-based/RL method combines low failure rate with good survival rate.
Experimental Results

- Average time between failures
 - Assumes the better the agent learns the task, the longer the period between failures
 - Rate of increase indicator of speed of learning
Outline:

2. Proactive, goal-directed reconfiguration of reasoning processes.

4. *Retrospective, failure-driven repair of domain knowledge.*

 Joint Work with Joshua Jones.

Predictive Knowledge

- Metareasoning techniques for adaptation of agent processes in REM use **predictive knowledge** expressed in a functional self-model.
- This predictive knowledge enables the agent to both detect its failures and diagnose the causes.
Adaptation of Domain Knowledge

- How can a metareasoning process be used to adapt an agent's domain knowledge?
- We take an analogous approach, providing the agent with knowledge representations that explicitly represent predictive implications of conceptual knowledge.
- We call the metaknowledge associated with each concept an *empirical verification procedure* (EVP).
Classification Knowledge for Locating Cities in Freeciv

Diagram:

```
  city_quality
   /    
 shield_start shield_growth shield_utilization
   |      |      |
 shield_development_efficiency shield_potential
   |      |
 shield_food_coincidence
   /    
 food_start sufficient_squares food_growth
   |      |
 food_development_efficiency
   /    
 fresh_water
```


Abstraction Networks

- Abstraction networks (ANs) is a representation that adds EVP metaknowledge to concepts in a classification hierarchy.

- ANs are intended to be as general as possible within hierarchical classification, not committing to:
 - A particular type of sub-learner
 - A specific diagnostic probe-selection method
The AN representation, instantiating EVP theory in the context of compositional classification.
Illustration of non-exhaustive diagnosis in an AN.
Auger: Basic Hypotheses

- Faster learning with ANs (trees + EVPs)
- Faster learning even if imperfect knowledge engineering (imperfect trees + EVPs)
- Faster learning even if absent EVPs
- Refinement of concept semantics (bin size)
Auger: Basic Experiments

- We have performed basic experiments in 4 domains
 - Synthetic
 - FreeCiv Game Playing
 - DJIA prediction
 - NFL prediction
- 3 learner types have been used
 - Table-based rote learners
 - ANNs
 - kNNs
Auger: Basic Procedures

- Two kinds of diagnosis
 - Non-exhaustive “causal backtracing”
 - Full EVP execution
- Two kinds of training
 - On-line, sequential
 - Sequence of examples split into equal sized blocks
 - For each example, perform inference and check for error
 - Then, train
 - Batch
 - Used with ANNs only
 - Typical training set/test set approach with epochs
Results: Synthetic Domain, Rote Learners

Layer sizes 16-8-4-2-1, 3 choices per node, block size 100 examples, average of 100 trials.
Layer sizes 16-8-4-2-1, 3 choices per node, training set size 1000, test set size 1000, average of 5 trials, full EVP evaluation.
Layer sizes 16-8-4-2-1, 4 choices per node, block size 100 examples, average of 10 trials, k=1.
FreeCiv Results

<table>
<thead>
<tr>
<th></th>
<th>AN learner 7th block</th>
<th>Flat Table Learner 7th block</th>
<th>21st block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without city improvements</td>
<td>24%</td>
<td>(4%)</td>
<td>1%</td>
</tr>
<tr>
<td>With city improvements</td>
<td>29%</td>
<td>7%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Performance vs. Unstructured Learners
Conclusions

Why meta-reasoning? Two more reasons: proactive, goal-directed self-adaptation of reasoning processes, and localization of situated learning.

How meta-reasoning? Model-based meta-reasoning. Models that are compositional and that encode predictive knowledge. Models that describe the design of the agent.
Conclusions

• In proactive reconfiguration of reasoning processes, representation of the agent’s design, function, and teleology (in the form of TMK models) enables meta-analogies.

• In retrospective repair of domain knowledge, representation of empirical verification procedures (EVPs) in abstraction networks (ANs) enables learning of content of domain knowledge.
Implications for Metareasoning

- Our work suggests an elaboration of the basic metareasoning architecture:
Acknowledgements

Eleni Strouilia, University of Alberta
Retrospective, Failure-Driven Self-Adaptation
Self-Adaptation in Reactive Agents

J. William Murdock, IBM TJ Watson Center
Proactive, Goal-Directed Self-Adaptation (REM)
Task-Method-Knowledge Language (TMKL)
Acknowledgements

Joshua Jones, University of Maryland BC
Self-Adaptation of Domain Knowledge (Augur)

Spencer Rugaber, Georgia Tech
Self-Adaptation in Game Playing Agents (GAIA)
DARPA Evolutionary of Design of Complex Systems
NSF Science of Design