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Meta-Reasoning for Self-Adaptation !



Outline: 

1.! Introduction: why, what, when and how of meta-reasoning. 

2.   Proactive, goal-directed reconfiguration of reasoning processes.  

3.   Combining model-based meta-reasoning and reinforcement    

learning. 

4.   Retrospective, failure-driven repair of domain knowledge. 

5.   Conclusions: model-based meta-reasoning for self-adaptation.    
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Metareasoning!

Basic metareasoning architecture  

Adapted from Cox & Raja, 2007 



Why Meta-Reasoning? 

Control of reasoning (e.g., Hayes-Roth, Raja & Lesser, Zilberstein) 

Bounding of reasoning (e.g., Russell, Horvitz) 

Self-Explanation (e.g., Brueker & Wilenga, Chandrasekaran, 

                             Cox & Ram, Leake, Murdock & Goel) 

Retrospective, failure-driven revision of beliefs (e.g., Doyle)  

Retrospective, failure-driven revision of domain knowledge 

                        (e.g., Davis, Leake) 

Retrospective, failure-driven revision of reasoning processes 

                        (e.g., Anderson, Josyula, Oates & Perlis,  

                         Cox & Ram, Freed & Birnbaum, Stroulia & Goel) 

Proactive, goal-directed revision of reasoning processes 

Localization of situated learning  



When Meta-Reasoning (for Self-Adaptation)? 

Retrospective, failure-driven self-adaptation. 

Proactive, goal-directed self-adaptation. 

What Meta-Reasoning (for Self-Adaptation)? 

About the situated element.  

          (e.g., Anderson, Josyula, Oates & Perlis, Stroulia & Goel). 

About the deliberative reasoner. 

           About the reasoner’s beliefs. 

           About the reasoner’s domain knowledge. 

           About the reasoner’s reasoning processes.  



How Meta-Reasoning (for Self-Adaptation)? 

Libraries of failures, faults, fixes (e.g., Sussman) 

Explanation patterns (e.g., Cox & Ram, Leake) 

Traces of processing (e.g., Haigh & Veloso) 

Models of the agent (e.g., Freed & Birnbaum, Stroulia & Goel) 

            A model of the agent’s design enables self-adaptation.  

            Model-based meta-reasoning.   



Outline: 

1.! Introduction: model-based meta-reasoning for self-adaptation. 

2.!   Proactive, goal-directed reconfiguration of reasoning processes. 

      Joint work with J. William Murdock      

3.    Localizing reinforcement    learning. 

4.    Retrospective, failure-driven repair of domain knowledge. 

5.    Conclusions: model-based meta-reasoning for self-adaptation.    



Proactive Self-Adaptation: Simple Example!

Insert Bulb Rotate Bulb 

Traditional Installation 

Install Light Bulb 

Agent 

+ Remove Light Bulb 

New Task 

! 

Insert Bulb Rotate Bulb 

Traditional Installation 

Install Light Bulb 

Evolved Agent 

Remove Light Bulb 

Retract Bulb Rotate Bulb 

Newly Created Method 



Why Not Simple Analogy?"

Example: Disassembly Planning"

Remove 

Board-2-1 

Remove 

Board-2-2 

Unscrew 

Screw-2-2 

Remove 

Board-3-1 

Remove 

Board-3-2 

Unscrew 

Screw-3-2 

Remove 

Board-3-3 



But what if causal ordering of actions is 

different?: Example: Assembly Problem!

Remove 

Board-2-1 

Remove 

Board-2-2 

Unscrew 

Screw-2-2 

Place 

Board-2-1 

Place 

Board-2-2 

Screw 

Screw-2-2 



Different Kinds of Similarity!

•! When different problems have very different 
solutions (i.e. different causal ordering of actions), 
then complexity of analogical transfer of solutions is 
no better than of generative planning. !

•! However, different problems may be solved using 
very similar reasoning mechanisms (causal ordering 
of reasoning tasks, methods, etc.). !

•! Can we analogically transfer reasoning mechanisms?!

•! Meta-Cases, Meta-Case-Based Reasoning, Meta-

Analogies!

    (Murdock & Goel 1996, 2001, 2008)!



The REM (Reflective Evolutionary Mind) Shell!

•! Task Method Knowledge models may provide an 

agent with knowledge of its own design.!

    Origin in task models of knowledge systems!

    (e.g., Generic Tasks, Problem-Solving Methods, 

CommonKADS)!

•! TMKL for expressing TMK models of agent designs.!

•! REM  can execute the reasoning processes of agents 

encoded in TMKL. It can also adapt them for some 

classes of problems.!

(Murdock & Goel 2001, 2003, 2008)!



Tasks in TMKL!

•!All tasks can have input & output parameter 
lists and given & makes conditions.!

•!A non-primitive task must have one or more 

methods which accomplishes it.!

•!A primitive task must include one or more 
of the following: source code, a logical 
assertion, a specified output value.!

•!Unimplemented tasks have neither of these.!



Methods in TMKL!

•! Methods have provided and result conditions.!

•! In addition, a method specifies a start transition for 
its processing control.!

•! Each transition specifies requirements for using it 
and a new state that it goes to.!

•! Each state has a task and a set of outgoing 
transitions. !



Physical Device Disassembly!

•! ADDAM: Legacy software agent for hierarchical 
case-based disassembly planning and (simulated) 
execution!

•! Interactive: Agent connects to a user specifying 
goals and to a complex physical environment!

•! Dynamic: New designs and demands!

•! Knowledge Intensive: Designs, plans, etc.!



Adapt Disassembly Plan Execute Plan 

Encapsulate Target Plan Select Base Plan Top Make Subplan Hierarchy 

Make Subplan Hierarchy Method 

Plan Then Execute Disassembly 

Disassemble 

Hierarchical Plan Execution 

Select Next Action Execute Action 

Sequential Plan Execution 

Make Plan Node Mappings Find Equivalent Topology Nodes 

Make Equivalent Plan Nodes Find Base Plan Node Children 

Select Equivalent Plan Node 

Make Plan Node Children 

Topology Based Plan Adaptation 

Match Topologies Sequentialize Plan Execute Sequential Plan Make Plan Hierarchy 

Make Equivalent Plan Nodes Method 

Select Equivalent Topology Node Make Equivalent Plan Node Add Equivalent Plan Node 

Make Plan Node Children Method 

Make Subplan Hierarchy Add Plan Mappings Set Plan Node Children 

Map Dependencies 

Serialized Dependency Mapping 

List Target Dependencies Select Dependency Assert Dependency 

Select Child Plan Node 

Make Plan Hierarchy Method 



Knowledge in TMKL!

•! Foundation: LOOM!

•! Concepts, instances, relations!

•! Concepts and relations are instances and can have 

facts about them.!

•! Knowledge representation in TMKL involves 

LOOM + some TMKL specific reflective concepts 

and relations.!



Sample Meta-Knowledge in TMKL!

•! generic relations!

–! same-as!

–! instance-of!

–! is-a!

–! inverse-of!

•! relation characteristics!

–! single-valued/multiple-
valued!

–! symmetric, commutative!

–! many more!

•! relations over relations!

–! external/internal!

–! state/definitional!

•! concepts of relations 
–! binary-relation 

–! unary-relation 

–! same-as 

–! is-a 

–! inverse-of 

•! concepts relating to 
concepts 
–! thing 

–! concept 

–! Meta-concept 



REM’s Functional Architecture!

Knowledge 

Subtask Subtask 

… 
Task 

Knowledge 

Task 

or 

Retrieve 

Existing Method 

Create 

New Method 

Execute 

Adapt 

Existing Method 

Done! 



Pieces of ADDAM which are key to the 

Disassembly ! Assembly Problem!

Adapt Disassembly Plan Execute Plan 

Plan Then Execute Disassembly 

Disassemble 

Hierarchical Plan Execution 

Select Next Action Execute Action 

Topology Based Plan Adaptation 

Make Plan Hierarchy 

Make Equivalent Plan Nodes Method 

Make Equivalent Plan Node Add Equivalent Plan Node 

Map Dependencies 

Select Dependency Assert Dependency 



Process for Addressing the Assemble 

Task by REM using ADDAM!

•! First the agent tries to find a method for the Assemble 
task.  It doesn’t have one.!

•! Next it tries to find a similar task which does have a 

method.  It finds Disassemble.!

–! The index is the input and output information provided in the task.!

–! Similarity is determined by a combination of general rules plus 

domain-specific rules and assertions.!

•! Next it searches for a relation which links the effects of the 

two task.  It finds Inverse-of.!

•! Finally, it uses this relation to modify components of the 

existing process to address the new process.!



New Adapted Assembly Task!

COPIED Adapt Disassembly Plan COPIED Execute Plan 

COPIED Plan Then Execute Disassembly 

Assemble 

COPIED Hierarchical Plan Execution 

Execute Action 

COPIED Topology Based Plan Adaptation 

COPIED Make Plan Hierarchy 

COPIED Make Equivalent Plan Nodes Method 

COPIED Add Equivalent Plan Node 

COPIED Map Dependencies 

COPIED Select Dependency INVERTED Assert Dependency 

INSERTED Inversion Task 1 

INSERTED Inversion Task 2 

Select Next Action 

COPIED Make Equivalent Plan Node 



Changes to the TMK Model of ADDAM!

•! After the task which produces plan nodes: add a task which 

imposes the inverse-of relation on the type of the node.!

–! e.g., Unscrew ! Screw!

•! The (simple) task which asserts ordering dependencies is 

changed to assert the inverse-of ordering dependencies.!

•! After the task which extracts plan nodes from a plan: add a 

task which imposes the inverse-of relation on the type of 

the node.!

–! e.g., Screw ! Unscrew!



Adaptation Strategy: Inversion!

[Copy methods for known task to main task] 

invertible-relations = [all relations for which inverse-of holds with some other relation] 

invertible-concepts = [all concepts for which inverse-of holds with some other concept] 

relevant-relations = invertible-relations + [all relations over invertible-concepts] 

relevant-manipulable-relations = [relevant-relations which are internal state relations] 

candidate-tasks = [all tasks which affect relevant-manipulable-relations] 

FOR candidate-task IN candidate-tasks DO 

 IF [candidate-task directly asserts a relevant-manipulable-relations] THEN 

  [invert the assertion for that candidate task] 

 ELSE IF [candidate-task produces an invertible output] THEN 

  [insert an inversion task after candidate-task]  



ADDAM 

Example: 

Layered Roof 



Roof Assembly!
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REM: Meta-Analogy 
REM: Graphplan 
REM: Q-Learning 



What kinds of task differences can REM handle? 

Inversion 

Replication 

Simple Generalization/Specialization 

A limitation: 
For complex problems, REM can only localize 

the needed modifications, not precisely identify them 

An opportunity: 

Use model-based meta-reasoning for localization; 

Use local generative planning or reinforcement learning 

for identification.   



Outline: 

1.! Introduction: model-based meta-reasoning for self-adaptation. 

2.    Proactive, goal-directed reconfiguration of reasoning processes.  

3.!   Combining model-based meta-reasoning and reinforcement    

learning in retrospective failure-driven learning. 

      Jointly with Patrick Ulam, Joshua Jones & William Murdock 

4.    Retrospective, failure-driven repair of domain knowledge. 

5.    Conclusions: model-based meta-reasoning for self-adaptation.    



Using Model-Based Meta-Reasoning for 

Localizing Reinforcement Learning!

–!Endow the agent with a TMK model 
of its own design.  !

–!Upon failure, use model-based meta-

reasoning to localize the failure to a 

specific element of task execution!

–!Use reinforcement learning (RL) to 

adapt agent’s reasoning at identified 

location!

Model 

Localize 

Failure 

Perform 

RL 



Freeciv 

(www.freeciv.org) is a 

popular, interactive turn-

based strategy game. 

A human plays the game 

against multiple software 

agents. 

The goal is to conquer 

the world. 

Domain: Interactive Games 



Defend The City Task!

•! Goal!
–! Defend the starting city from 

enemy civilizations for as 
long as possible!

•! Possible actions!
–! Building the unit with 

highest defensive value!

–! Producing wealth!

•! Success conditions!
–! Survive 100 turns!

•! Failure conditions!
–! City is defeated!

–! City revolts!



Defend the city model!

•! Tasks!
–! Defend City!

–! Evaluate Defense Needs!

–! Build Defenses (Procedure)!

–! Evaluate Internal Factors (Procedure)!

–! Evaluate External Factors (Procedure)!

•! Methods!
–! Evaluate and Build!

–! Evaluate Defenses!

•! Knowledge!
–! Different for each task!

–! E.g. evaluate external factors produces 
knowledge about the number of enemy 
units nearby!



Adapting the Defend City Task by "

 Model-Based Meta-Reasoning!

•! Upon task failure, failure type used to localize failure within model!

•! Execution trace used to further narrow space of possible failures locations!

•! Adaptation for each type of failure provided via user-suppplied adaptation 

library!

•! Adaptations consist of small changes to procedural tasks (leaf nodes)!

Adaptation 

Strategy 

Game Input 

(Failure 

Type) 

Model 

Localized 

Failure 

Refine 

Failure 

Location 

Adaptation 

Library 

Failure 

Library 

Task 

Execution 

Trace 



Adapting The Defend City Task Via Pure 

Model-Based Reasoning!

–! Space of possible adaptations and failures is large!

–! Requires significant knowledge engineering to make the 
failure and adaptation library!

–! Difficult to determine if adaptation library is insufficient!

Adaptation 

Strategy 

Game Input 

(Failure 

Type) 

Model 

Localized 

Failure 

Refine 

Failure 

Location 

Adaptation 

Library 

Failure 

Library 

Task 

Execution 

Trace 



Adapting the Defend City Task by 

Reinforcement Learning!

•! State space consisting of 9 
binary variables!
–! E.g.  Are there are less then X 

enemy units near the city?!

–! E.g. Are there are less then Y 
defensive units currently 
stationed at the city!

•! Two actions!

–! Build defensive unit!

–! Build wealth!

•! Negative reward signal 
received upon failure!

Reinforcement Learner 

States!

Percepts 

 Reward 

Actions 



Combining Model-Based Meta-Reasoning 

and Reinforcement Learning !

•! Use model as guide for 

divide state space!

•! Associate each 

subdivision with specific 

portion of model!

•! Each small reinforcement 

learner can receive 

separate reward signal!

Reinforcement Learner 



Adaptation in the Hybrid Technique!

•! Upon task failure, failure type used to localize failure within model!

•! Execution trace used to narrow space of possible failures locations!

•! Only portions of model identified receive reward signal!

Game Input 

(Failure 

Type) 

Model 

Localized 

Failure 

Refine 

Failure 

Location 

Task 

Execution 

Trace 

Perform 

Reinforcement 

Learning 

Reward 

Ulam, Jones, Goel & Murdock 2005, 2008 



Evaluation!

•! Experimental Setup!

–!Performed 100 trials of 100 turns for each agent on 

smallest map setting!

–!Each trial for each agent shared same map!

–! 8 Built-in AI opponents at hardest difficulty!

–!Agent limited to a single city!

•! Evaluation Metrics!

–!Number of failures!

–!Mean time between failures!

–!Number of attacks successfully defended!



Experimental Agents!

•! Control!

–! Agent attempts to maintain 1 defensive unit, no adaptation!

•! Pure model-based reflection agent!

–! Starts from control!

–! Adapts via user defined adaptation library!

•! Pure reinforcement learning agent!

–! Initialized to always build wealth!

–! Q-Learning!

•! Hybrid agent!

–! Initialized to always build wealth!



Experimental Results!

•! Number of trials failed 
directly measures success of 
agent!
–! Less failures indicates better 

performance!

•!  Number of attacks per trial!
–! More attacks survived indicates 

higher performance!

•! Hybrid model-based/RL 
method combines low failure 
rate with good survival rate. !



Experimental Results!

•! Average time between failures!

–! Assumes the better the agent learns 

the task, the longer the period 

between failures!

–! Rate of increase indicator of speed 

of learning!



Outline: 

1.! Introduction: model-based meta-reasoning for self-adaptation. 

2.    Proactive, goal-directed reconfiguration of reasoning processes.  

3.    Combining model-based meta-reasoning and reinforcement    

learning. 

4.    Retrospective, failure-driven repair of domain knowledge. 

       Joint Work with Joshua Jones. 

5.   Conclusions: model-based meta-reasoning for self-adaptation.    
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Predictive Knowledge!

!! Metareasoning techniques for adaptation of agent 

processes in REM use predictive knowledge 

expressed in a functional self-model. !

!! This predictive knowledge enables the agent to both 

detect its failures and diagnose the causes.!
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Adaptation of Domain Knowledge!

!! How can a metareasoning process be used to adapt an 

agent's domain knowledge?!

!! We take an analogous approach, providing the agent 

with knowledge representations that explicitly 

represent predictive implications of conceptual 

knowledge.!

!! We call the metaknowledge associated with each 

concept an empirical verification procedure (EVP).!



45 

Classification Knowledge for Locating Cities in 

Freeciv"
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Abstraction Networks!

!! Abstraction networks (ANs) is a representation that 

adds EVP metaknowledge to concepts in a 

classification hierarchy.!

!! ANs are intended to be as general as possible within 

hierarchical classification, not committing to:!

!! A particular type of sub-learner !

!! A specific diagnostic probe-selection method!



47 The AN representation, instantiating EVP theory in 

the context of compositional classification. 
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Illustration of 

non-

exhaustive 

diagnosis in 

an AN. 
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Auger: Basic Hypotheses"

!! Faster learning with ANs (trees + EVPs)!

!! Faster learning even if imperfect knowledge 

engineering (imperfect trees + EVPs)!

!! Faster learning even if absent EVPs!

!! Refinement of concept semantics (bin size)!
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Auger: Basic Experiments"

!! We have performed basic experiments in 4 domains!

!! Synthetic!

!! FreeCiv Game Playing!

!! DJIA prediction!

!! NFL prediction!

!! 3 learner types have been used!

!! Table-based rote learners!

!! ANNs!

!! kNNs!
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Auger: Basic Procedures"

!! Two kinds of diagnosis!

!! Non-exhaustive “causal backtracing”!

!! Full EVP execution!

!! Two kinds of training!

!! On-line, sequential!

!! Sequence of examples split into equal sized blocks!

!! For each example, perform inference and check for 

error!

!! Then, train!

!! Batch!

!! Used with ANNs only!

!! Typical training set/test set approach with epochs!
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Results: Synthetic Domain, Rote Learners"

Layer sizes 16-8-4-2-1, 3 choices per node, block size 100 examples, average 

of 100 trials. 
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Results: Synthetic Domain, ANNs"

Layer sizes 16-8-4-2-1, 3 choices per node, training set size 1000, test set size 

1000, average of 5 trials, full EVP evaluation. 
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Results: Synthetic Domain, kNNs"

Layer sizes 16-8-4-2-1, 4 choices per node, block size 100 examples, average 

of 10 trials, k=1. 
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FreeCiv Results"

Performance vs. Unstructured Learners 



Conclusions 

How meta-reasoning? Model-based meta-reasoning. 

Models that are compositional and that encode 

predictive knowledge. Models that describe the 

design of the agent. 

Why meta-reasoning? Two more reasons: proactive, 

goal-directed self-adaptation of reasoning processes, 

and localization of situated learning.   
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Conclusions!

•! In proactive reconfiguration of reasoning processes, 

representation of the agent’s design, function, and 

teleology (in the form of TMK models) enables meta-

analogies. !

!! In retrospective repair of domain knowledge, 

representation of empirical verification procedures 

(EVPs) in abstraction networks (ANs) enables 

learning of content of domain knowledge. !
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Implications for Metareasoning 

!! Our work suggests an elaboration of the basic 

metareasoning architecture: 
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