
    AAAI-2010 Workshop on Goal-Directed Autonomy  
Atlanta, July 2010 

Ashok K. Goel 

Design & Intelligence Laboratory 
Georgia Institute of Technology 

Reflection in Action: Meta-Reasoning �
for Goal-Directed Autonomy 




Freeciv 
(www.freeciv.org) is a 
popular, interactive turn-
based strategy game. 

A human plays the game 
against multiple software 
agents. 

The goal is to conquer 
the world. 

Domain: Interactive Games 



Case Study in Freeciv


 >300 changes to Freeciv in a ~4 month period.


 Most (>90%) changes to Freeciv are small Δs.


 None of the Δs are about goals as such.


 But about two thirds are changes to constraints and 
resources that impact achievement of goals.


 All of these changes to Freeciv require  goal-
directed proactive modifications to the Freeciv 
agents (and not failure-driven). 




Adaptation Scenario - 1


New constraints: 

An agent may not declare war on another player 
until more than N (say, 100) fighting units have 
been built. 

Note that the goal of the agent remains the same. 
But the new constraint may impact mechanisms 
for achieving the goal.  



Adaptation Scenario - 2


New resources:  

Luxury resources on the map (e.g. gems, silks) 
will now contribute to happiness of the populace 
of a city if the city is connected (via roads, 
railroads) to the resource. 

Note again that the goal of the agent remains the 
same. But the new resource may impact 
mechanisms for achieving the goal.  



Why is this hard?


•  . Complexity of the environment

•  - Huge state space

•  - Interacting goals, actions

•  - Partially observable environment

•  - Non-deterministic game playing


•   Complexity of the agent

•  Program code

•  Many components and connections

•  Many, many paths through these elements and connections

•  Local change can have non-local effects




REM Hypothesis 

•  Specify the functions, mechanisms, and composition 
of the agent’s design. 

•  Tasks express the functions the agent wants to 
accomplish. 

•  Methods express the mechanisms for achieving a 
goal. 

•  TMKL language. (Fensel & Benjamin’s UPSML; also 
HTN – Munoz-Avila) 

     (Murdock & Goel 2008) 



A TMKL Model of a “LargePox” Freeciv Agent 




Freeciv Ontology 

•  We developed a Freeciv ontology (concepts, 
relations, classes, instances) in OWL using Protege.  

•  Then, in TMKL that uses FOL. 
•  We want to develop a Freeciv agent’s ontology of 

goals and methods. 



The GAIA Project  


Program Code 

A TMKL model 
of an agent’s 
design 

A modified 
TMKL model of 
the agent 

Program Code 

Δ Rule, 
Constraint 



Three  broad stances towards for adaptation: 
(1) Interactive. 
(2) Model-Based Meta-Reasoning. 
(3) Meta-Reasoning + Generative Planning or 
                                    Reinforcement Learning.  



Opened Agent Model 



Opened Agent Model (zoomed out) 



Compiling Agent Model 



Simulating and Observing Adapted Agent 



The GAIA Adaptation Process�
(based on REM architecture)�



This works but …

This works for our adaptation scenario #2 but 
Requires a lot of knowledge engineering. 



Using Model-Based Meta-Reasoning for 
Localizing Reinforcement Learning


–  Endow the agent with a TMK model 
of its own design.  


–  Upon failure, use model-based meta-
reasoning to localize the failure to a 
specific element of task execution


–  Use reinforcement learning (RL) to 
adapt agent’s reasoning at identified 
location


Model 

Localize 
Failure 

Perform 
RL 



Defend The City Task


•  Goal

–  Defend the starting city from 

enemy civilizations for as 
long as possible


•  Possible actions

–  Building the unit with 

highest defensive value

–  Producing wealth


•  Success conditions

–  Survive 100 turns


•  Failure conditions

–  City is defeated

–  City revolts




Defend the city model


•  Tasks

–  Defend City

–  Evaluate Defense Needs

–  Build Defenses (Procedure)

–  Evaluate Internal Factors (Procedure)

–  Evaluate External Factors (Procedure)


•  Methods

–  Evaluate and Build

–  Evaluate Defenses


•  Knowledge

–  Different for each task

–  E.g. evaluate external factors produces 

knowledge about the number of enemy 
units nearby




Adapting the Defend City Task by �
 Model-Based Meta-Reasoning


•  Upon task failure, failure type used to localize failure within model

•  Execution trace used to further narrow space of possible failures locations

•  Adaptation for each type of failure provided via user-suppplied adaptation 

library

•  Adaptations consist of small changes to leaf nodes in the TMKL model,


Adaptation 
Strategy 

Game Input 
(Failure 
Type) 

Model 

Localized 
Failure 

Refine 
Failure 

Location 

Adaptation 
Library 

Failure 
Library 

Task 
Execution 

Trace 



Adapting the Defend City Task by 
Reinforcement Learning


•  State space consisting of 9 
binary variables

–  E.g.  Are there are less then 

X enemy units near the city?

–  E.g. Are there are less then Y 

defensive units currently 
stationed at the city


•  Two actions

–  Build defensive unit

–  Build wealth


•  Negative reward signal 
received upon failure


Reinforcement Learner 

States


Percepts 
 Reward 

Actions 



Combining Model-Based Meta-Reasoning 
and Reinforcement Learning 


•  Use model as guide for 
divide state space


•  Associate each 
subdivision with specific 
portion of model


•  Each small reinforcement 
learner can receive 
separate reward signal


Reinforcement Learner 



Adaptation in the Hybrid Technique


•  Upon task failure, failure type used to localize failure within model

•  Execution trace used to narrow space of possible failures locations

•  Only portions of model identified receive reward signal


Game Input 
(Failure 
Type) 

Model 

Localized 
Failure 

Refine 
Failure 

Location 

Task 
Execution 

Trace 

Perform 
Reinforcement 

Learning 

Reward 

Ulam, Jones & Goel 2008 



Evaluation

•  Experimental Setup


–  Performed 100 trials of 100 turns for each agent on 
smallest map setting


–  Each trial for each agent shared same map

–  8 Built-in AI opponents at hardest difficulty

–  Agent limited to a single city


•  Evaluation Metrics

–  Number of failures

–  Mean time between failures

–  Number of attacks successfully defended




Experimental Agents


•  Control

–  Agent attempts to maintain 1 defensive unit, no adaptation


•  Pure model-based reflection agent

–  Starts from control

–  Adapts via user defined adaptation library


•  Pure reinforcement learning agent

–  Initialized to always build wealth

–  Q-Learning


•  Hybrid agent

–  Initialized to always build wealth




Experimental Results


•  Number of trials failed 
directly measures success of 
agent

–  Less failures indicates better 

performance


•   Number of attacks per trial

–  More attacks survived indicates 

higher performance


•  Hybrid model-based/RL 
method combines low failure 
rate with good survival rate. 




Experimental Results


•  Average time between failures

–  Assumes the better the agent learns 

the task, the longer the period 
between failures


–  Rate of increase indicator of speed 
of learning




Summary


•  Constraints, resources pertinent to an agent’s goals 
in the world constantly evolve (but not necessarily 
goals themselves). 


•  Proactive, goal-directed adaptation of game playing 
software agents.


•  Design stance: Teleology is the fundamental 
organizing principle of agent design adaptation.


•  Meta-reasoning is effective for some problems but 
… requires extensive knowledge engineering.


•  Combine with generative planning and situated 
learning: meta-reasoning for localization.




Acknowledgements 

Spencer Rugaber 

US National Science Foundation (Science of Design) 



Design Stance


 What knowledge of the design of an intelligent 
agent may help make adaptations efficient and 
accurate?


 How may we endow an agent with knowledge 
of its own design?


 How might an agent use this self-knowledge to 
adapt itself?


 How may we design intelligent agents so that 
they can be adapted efficiently and accurately?



